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Abstract. An efficient method for computing texture features based on dominant local orientation is introduced. The features 
are computed as a Laplacian pyramid is built. At each level of the Laplacian pyramid, the linear symmetry feature is computed. 
This feature is anisotropic and estimates the optimal local orientation in the Least Square Error (LSE) sense. It is complex 
valued and hence consists of two components, the local orientation estimate and its confidence measure based on the error. 
The algorithm is based on convolutions with simple separable filters and pixel-wise non-linear arithmetic operations. These 
properties allow highly parallel implementation, for example on a pyramid machine, yielding real time applications. Compara­
tive experimental results are presented using the feature for unsupervised segmentation on test images of natural aerial image 
textures. 

Zusammenfassung. Es wird eine effiziente Methode zur Berechnung von Textur-Merkmalen eingefiihrt, die auf einer lokalen 
Orientierung basiert. Die Merkmale werden entsprechend dem Bau einer Laplace-Pyramide berechnet. Auf jeder Stufe der 
Laplace-Pyramide werden die Iinearen Symmetrie-Merkmale ermittelt. Solche Merkmale sind anisotrop und schiitzen die 
optimale lokale Orientierung im Sinne des kleinsten quadratischen Fehlers (LSE). Sie sind komplexwertig und bestehen daher 
aus zwei Komponenten, dem Schiitzwert der lokalen Orientierung und seinem auf dem Pehler basierenden Vertrauensmafl. 
Der Algorithm us basiert auf Faltungen mit Hilfe separierbarer Filter und pixelweiser nichlinearer arithmetischer Operiltionen. 
Diese Eigenschaften erlauben ein hohes Mafl paralleler Implementierung, zum Beispiel auf einer Pyramide-Maschine, und 
eroffnen die Moglichkeit der Echtzeit-Verarbeitung. Vergleichende experimentelle Resultate werden wiedergegeben, die von 
den Eigenschaften der 'unsupervised' Segmentierung von Testbildern und natiirlichen Texturen von Luftaufnahmen Gebrauch 
machen. 

Resume. Une methode efficace de calcul d'attributs de texture basee sur !'orientation locale dominante est introduite. Les 
attributs sont calcules pendant q'une pyramide laplacienne est construite. A chaque niveau de la pyramide laplacienne, I'attribut 
de symetrie lineaire est calcule. Cet attribut est anisotrope et estime !'orientation locale optimale au sens de la plus petite erreur 
quadratique (LSE). C'est une valeur complexe qui comprend done deux composantes, l'estimee d'orientation locale et sa 
mesure de fiabilite basee sur l'erreur. L'algorithme est base sur des convolutions avec des filtres simples separables et sur des 
operations arithmetiques non-lineaires au niveau des pixels. Ces proprietes permettent une implantation hautement parallele, 
par exemple sur une machine de type pyramidal, engendrant des applications temps reel. Des resultats experimentaux comparat­
ifs sont presentes sur des attributs utilises pour Ia segmentation non supervisee d'images de test realisees a partir d'images 
aeriennes texturees. 
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1. Introduction 

Texture segmentation has been an important 
part of image processing activities. One of the 
reasons is certainly due to its applicability in classi­
fication tasks. A vital step in this process is extrac­
tion of texture features, allowing description and 
segmentation of regions. 

It is now an established fact that mammalia are 
equipped with cells performing local processing at 
an early stage of vision. In particular it is known 
that the human visual system is capable of discrimi­
nating textures differing in their spatial statistics 
higher than the first order [20]. That is, not only 
the gray value occurrence frequency but also the 
spatial arrangement of these occurrences are of 
high importance for vision. Since there exist seg­
mentation methods which perform well on features 
differing by their first order statistics, the problem 
has been to find features representing higher order 
statistics. This has been done by utilizing autocor­
relation functions, partitioning of the Fourier 
transform energy into radial and angular bins [l], 
interpretation of co-occurrence matrices through 
their moments [17], identification of Markov ran­
dom processes parameters [ 14], energy of real 
valued special texture masks [22, 26], etc. 

Although the size of a filter mask is just a param­
eter which can be changed, it is nof a trivial task 
to determine an optimal strategy for the size choice 
since real images contain textures from a very 
broad range of scales. Also the demands of compu­
tational resources may increase dramatically when 
adapting the methods to coarse textures if special 
care is not taken. The patterns which ~an be studied 
within the size of a local image are restricted to 
that size. A constant size can be useful in charac­
terizing a texture well in one scale but perform 
poorly in another. Psycho-physical experiments 
indicate [7, 19] that there exist frequency and ori­
entation selectivity in the human visual system, giv­
ing a hint of how t_hi~. scaling problem can be 
avoided. The difficult questions of how this selec­
tivity is accomplished and how this is further used 
have been the cause of accumulating experimental 
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and theoretical investigations, none offering a 
through insight yet. 

The scaling problem has, in image processing, 
been attacked by applying Laplacians of different 
sizes [23, 10] or using different size sensitive decom­
positions like Gabor [13], Wavelet [16] and Wigner 
[29] basis functions. In [11] the moments of Lapla­
cian pyramid are proposed providing anisotropic 
information about the local image. In [12] orienta­
tion selectivity within a frequency band is done by 
filtering a Laplacian image with a directional cosine 
filter. In principle this technique can be utilized for 
2-D orientation selectivity. But such an approach 
results in spatial phase dependency, that is, the 
response to a sinusoid is also a sinusoid. This prop­
erty is not desirable in texture analysis because one 
would like to have a uniform response throughout 
regions of the image which have a dominant 
orientation. 

To achieve phase independence, the magnitudes 
of Gabor filter responses or quadrature filter 
responses can be used. The latter is proposed in 
[15, 21], where interpolation on the magnitudes of 
responses, obtained from the directional filters, is 
utilized. However, the filters used in that case are 
non-separable and require dedicated hardware for 
efficient computation. Our main contribution is to 
propose the dominant orientation as a texture fea­
ture in spatial frequency bands separated through 
octave progression and to compute these features 
by using computationally efficient, very few, separ­
able filters. We also present experimental results 
using real, aerial textures with comparisons to 
other feature extraction methods. Although the fil­
ters used are not the Gabor filters, the result of the 
method will be a good estimate of the orientation 
obtained by these. In addition we develop a non­
linear logarithmic transform, CLOG, to improve 
the discrimination power of the texture features in 
general. 

To increase the compuational efficiency further, 
we will decompose the local image into its compo­
nents at different resolutions by means of a Lapla­
cian pyramid [10]. At each level in the Laplacian 
pyramid, i.e. a frequency channel, we will apply 
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linear symmetry [ 4, 6] measuring the orientation or 
lack thereof. Linear symmetry is the simplest type 
in a series of symmetries which can be modeled 
within the same mathematical concept [2]. Symme­
try is defined in terms of harmonic functions which 
model isogray value curves of local images. More­
over, we will use the local energy of each frequency 
channel to measure the activity in that channel. 
This is done to characterize isotropic textures. 

Texture patches from Brodatz album [8] are util­
ized by many researchers to demonstrate the dis­
crimination power of texture features. These 
texture images are easily available and represent a 
large number of homogeneous textures and as such 
have great value. However, they suffer from not 
being very representative in many respects. They 
have a very high signal to noise ratio and are 
formed under highly controlled different imaging 
conditions such as illumination and distance. An 
important application domain for texture feature 
usage is segmentation of aerial images. Such tex­
tures are formed under approximately the same 
imaging conditions, are noisy and frequently lack 
a high degree of homogeneity. For this reason we 
will use real aerial textures in our experiments to 
evaluate the proposed texture features. The 
emphasis of this paper is on feature extraction, 
although experimental results based on unsuper­
vised segmentation techniques will be presented. 

The ideas underlying the concept of linear sym­
metry, essential to this work will be developed in 
Section 2. In Section 3, the local energy feature is 
discussed. In Section 4, the implementation of the 
algorithm in a pyramid structure will be presented. 
In Section 5, the experimental results which include 
signal theoretical tests and experiments using aerial 
textures will be presented. Finally, in Section 6 the 
conclusions are given. 

2. Local linear symmetry feature 

Consider a two-dimensional functionf(x, y) rep­
resenting the local image around a certain point of 
an image. We assume that the Fourier transform 

off is concentrated to a certain frequency band. 
This is not a loss of generality, since it can be 
thought that the image is obtained by means of 
band-pass filtering the original image and multi­
plying the result with a smooth and compact func­
tion such as a Gaussian. To be able to infer whether 
the local image f has a dominant orientation one 
should define this more strictly so that it is mean­
ingful to any local image. The way it is done in this 
paper is illustrated in Fig. 1. It illustrates F, the 
Fourier transform off, which has a dominant ori­
entation. It can be shown that if a functionf(x, y) 
can be expressed as 

-T-
j(X, y) = g(k0,x+ koy)I) = g(kor), 

(1) 

where k0 is a real constant vector, then Fis concen­
trated to a line passing through the origin. E 1 repre­
sents the Euclidean space of dimension 1, the axis 
of real numbers. Such a local image f has isogray 
values consisting of parallel lines as expressed by 
g(l(J i') and will be called linearly symmetric. As f 
deviates continuously from g, that is, it is no longer 
possible to represent/ with g without error, so does 
F from being perfectly concentrated to a line. This 

7t 

Fig. 1. A stylistic illustration representing the Fourier trans­
form of a local image whose energy concentration is confined 
to a certain frequency band. The linear symmetry algorithm fits 
an optimal line, in the LSE sense, to the frequency domain of 

the local image. 

Vol. 29, No. I, October 1992 
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deviation from a line is small if the deviation of 
the local image from being one-dimensional, i.e. 
dominance of an orientation, is small since the 
Fourier transform is continuous. For an arbitrary 
local image the linear symmetry algorithm fits a 
line in the Fourier domain such that the following 
error measure is minimized : 

min e(k) = f II m - ( m Tl()/() II 2 

llkll~l Ei 

x IF(m)l2 dco. (2) 

This is the well known line fitting problem or the 
principal axis decomposition problem formulated 
for the local frequency domain. The minimum 
always exists for some /(min. When /(min and its cor­
responding error e(kmin) are found, the question of 
whether this error is large or small needs to be 
answered. We propose that this is done by compar­
ing the smallest error with the largest error: 

(3) 

By estimating this nonnegative quantity and com­
puting kinin, it is possible to know whether there 
exists a dominant orientation and if so its corre­
sponding direction. Conventional differential cal­
culus can be utilized in order to minimize/ 
maximize (2) and compute (3). The closed form 
result depends only on the second order moments 
of the energy function, IFf Such a term is trans­
lated to the spatial domain by using the Parsevall 
relationship: 

(4) 

Since f is the local image function it contains a 
smooth window function implicitly. Having the 
theory of the band limited functions in mind, we 
discretize the right-hand side of (4). As a result, 
the moments of the local Fourier transforms can 
be obtained for al/ local neighborhoods of an image 
by means of convolutions: 

'\' fi-jfi-j 
L,111j x y. 
j 
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(5) 

Here f~ represents the partial derivative of the 
original, (large) image with respect to x at the 
image position i. mj represents the coefficients of a 
low-pass filter, which is defined by the interpolation 
function used in the discretization and the smooth 
neighborhood function contained in f When 
Gaussians are used as both of these functions the 
set {mj} represents a discrete Gaussian function 
controlled by one parameter, the standard 
deviation: 

( 
x

2

+ l) mj=exp _, 1

20
/ . 

By using the theory of the complex number fields 
the optimal solution can be expressed compactly 
as [4, 6] 

Z1 =(Y'f )2
*111, (6) 

where f represents the original image and Vf repre­
sents the complex image C- + ify and *111 represents 
convolution with an averaging filter. We note here 
that the Vf is complex valued and can be exponenti­
ated. Ultimately the solution of the minimization 
problem will be dependent on the neighborhood 
size defining the local image,/, since this is formally 
defined as a product of a smooth window function 
and the original image function f. However, the 
choice of /11 will not be critical since we will apply 
the method to a collection offs each representing 
one frequency band of the original. Thus the stand­
ard deviation parameter of this filter will be depen­
dent of the frequency bandwidth of the applied 
image. We have determined 111 empirically through 
experiments, the full account of which will be given 
in a subsequent section. The complex number, z1, 
obtained at every pixel represents 

lz 1 I = e(iZmax) - e(iZmin), 
(7) 

arg(z1) = 2 arg(/(min)· 

Thus, representation of i(min through an angle 
which is twice the inclination angle of the vector 
i(min is inherent to the method. This representation 
of the orientation of an axis is convenient since two 
different representations always correspond 
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uniquely to two different axes [15]. That is, -i(min 
and /(min have different arguments (the angles <p and 
cp+ n) although they represent the same axis. Using 
2 arg(km;11), instead of arg(lcm;11), eliminates this 
problem. 

Similarly, e(kmax) + (kmin) can be obtained as a 
result of a convolution [2] : 

(8) 

lz11 is an energy dependent certainty measure, that 
is, it decreases as the contrast of the neighborhood 
decreases. Normalizing (6) with the sum of the 
errors we obtain an energy independent complex 
valued texture measure. 

(Vf )2 * 111 
z= 2 • 

IVfl *111 
(9) 

We note that lzl is a certainty measure just like lz1I: 

lzl attains the maximum value 1 if and only if 
e(km;n) = 0, since both e(/cmin) and e(lcmax) are non­
negative. It decreases when the difference between 
the errors decreases. z is defined as 0 when 
e(lcmax) + e(km;n) = 0. This happens only when we 
have a constant image in the neighborhood and 
thus no unique orientation is present. The scheme 
is illustrated in Fig. 2. 

The meaning of the line fitting process for the 
spatial domain can be investigated easily by inter­
preting the error function e(l() given by (2) through 
the Parsevall relationship. By inspection and identi­
fying the partial derivatives as Lie translation 
operators one arrives at the following conclusion: 
The axis l'Ci11 ; 11 found represents the direction along 
which an infinitesimal translation of the image 
changes the considered local gray image minimally 
and the error found represents the error made in 
this infinitesimal translation. Thus, the direction 
found has a physical meaning for the local gray 
image. 

Start 

Convolve with 

Dx1 + iDx2 

x 

Convolve with 

m· J 

x 

Convolve with 

m· J 

x 

y 

Fig. 2. The flow chart of the linear symmetry algorithm com­
puting the complex image which represents the local orientation 
and its corresponding certainty. mj represents the coefficients of 

a low-pass filter (Gaussian). 

3. Local energy feature 

When a local neighborhood has zero response to 
the linear symmetry measure it can be shown that 
this corresponds to an isotropic image with no par­
ticular orientation dominance. We mean isotropic 
in the sense that translation of the local image in 
any direction by a small amount yields the same 
error. Hence, the linear symmetry measure is 
'quiet' when the local image is isotropic. In order 
to capture the isotropic information we propose 
the use of a local energy measure. 

Consider again the local image/, and its Fourier 
transform, F. Assume that f is confined to a fre­
quency band as before. Moreover, assume that it 
is isotropic. Then F will have its energy smeared 

Vol. 29, No. I, October 1992 
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lt/2 1t 

Fig. 3. The local energy measure picks up the energy of the 
local image in a rotationally symmetric frequency band. 

out along its passband, as in Fig. 3, resulting in a 
bad characterization if an attempt to fit a line is 
made. For this reason, as a feature, we propose to 
measure the local energy 

(10) 

This is implementable in the spatial domain by 
using Parsevall relation yielding 

f
2 * 111, (11) 

which is a convolution of the square of the entire 
image with an averaging filter [11]. 

4. Implementation using pyramids 

To implement the linear symmetry algorithm for 
the purpose of texture segmentation, we use the 
approach in [23, 1 OJ. We decompose the image into 
a sequence of essentially non-overlapping band­
pass channels by approximating the band-pass fil­
ters as differences of two isotropic low pass filters 
with different cut off frequencies. An efficient 
implementation of this uses pyramids and is illus­
trated by the Laplacian pyramid in Fig. 4. 
Signal Processing 

The Laplacian pyramid consists of a series of 
images decreasing in size and approximates non­
overlapping frequency channels. As the images in 
the pyramid decrease in size, so do the represented 
frequencies. Thus, a signal consisting of frequencies 
corresponding to a specific channel will be observ­
able, essentially in that channel. 

Since the linear symmetry algorithm itself is hier­
archical, the implemenation yields an intermediate 
pyramid before the orientation pyramid is 
obtained. This pyramid, like the orientation pyra­
mid, consists of the complex images 

cw )2 =(or+ i or)
2 

ox oy 

=(f}+f;~) exp(2<p(f)), (12) 

where <p(f) = arg(C+ ifv)· Thus, every level of the 
Laplacian pyramid is filtered linearly and then 
squared resulting in an image of (Vf)2

. This com­
plex image and its real valued magnitude image are 
in turn filtered separately with a Gaussian yielding 
an orientation image (9). The magnitude represents 
the degree of orientation dominance and the argu­
ment represents the orientation. This process is 
illustrated in the upper branch of Fig. 4. 

Similarly, the local energy pyramid is built up 
from the Laplacian pyramid. The real valued pixels 
in the Laplacian pyramid are first squared pixel­
wise and then averaged by means of the same 
Gaussian as before (11). 

The resulting features can be fed to a general 
vector image segmentation algorithm after the nec­
essary size equalization of the images through 
interpolations [10]. In that case, the complex 
images can be treated as two separate features rep­
resenting the real and imaginary parts. 

5. Experiments 

In the previous sections, we have described how 
to obtain two feature pyramids and then proposed 
the images in these pyramids to be texture features. 



J. Biglin / Linear symmetry and textures 7 

Gaussian Laplacian 

Orientation 

' \ 

d \ 
I I I 

Energy 

Fig. 4. The data flow in the pyramid structure proposed. The arrows represent dependencies. The first two pyramids on the left 
represent the Gaussian and the Laplacian pyramids, respectively. The upper branch on the right computes the linear symmetry 
according to Fig. 2. The first pyramid in this branch represents the (Vf)2, while the second corresponds to the local orientation 
estimation. The images in this pyramid are obtained by dividing the smoothed (Vf)2 with the smoothed l(Vf) 2 1. The lower branch 
computes the local energy. The first pyramid is obtained by squaring the Laplacian pyramid inputs. The second pyramid corresponds 

to the results obtained by smoothing the preceding pyramid. 

In the experiments presented below, the octave 
low-pass filter used to build the Laplacian pyramid 
consisted of an 11 x 11 Gaussian filter. It was trun­
cated at a radius when the value of the filter 
reached 0.1 % of its maximum value. This choice 
was made because a Gaussian is isotropic and 
separable, although the 5 x 5 filter proposed in [10] 
could be used with somewhat poorer performance. 
This degradation was noticeable at the highest fre­
quency channel and can be explained by the fact 
that the cascades of the 5 x 5 filter approximate a 
rotationally symmetric filter first at medium and 
low frequencies. To build the local energy pyramid 
a 17 x 17 Gaussian filter, averaging the squares of 
the Laplacian pyramid images was utilized. The 

filter used to obtain the partial derivative in order 
to compute orientation is given by 

(x + iy) exp(-f3(x2 + y2)). (13) 

It had a size of 9 x 9 and was composed of separ­
able components. That is, (13) can be rewritten as 

exp(-/3/)[x exp(-f3x2
)] 

+ i exp(-f3x2)[y exp(-/3/)], (14) 

resulting in two sets of separable (in x and y) 

convolutions. 
Vol. 29, No. 1, October 1992 
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The truncation of the filter was done in the same 
way as it is done for the Gaussian filters, that is, 
the complex filter was truncated at a radius when 
the absolute value of the filter reached 0.1 % of its 
maximum absolute value. The orientation pyramid 
was built by averaging the squares of the complex 
derivatives with a Gaussian filter of the size 17 x 17, 
the same filter used for building the local energy 
pyramid. Moreover, the image pyramids in the fol­
lowing experiments were built to level 3 starting 
with level 0 with the largest image having the size 
of 256 x 256. Thus, the images at the highest levels 
of the pyramids had the size of 32 x 32. It should 
be remembered that the total amount of data in 
any octave pyramid is less than one and one half 
times the size necessary to represent the largest 
image in a pyramid even if one goes up to the size 
of 1x1. 

5.1. Results on the fi'equency modulated 
test image 

The frequency modulated (FM) test image, 
256 x 256 in size, Fig. 5, is designed for the purpose 
of understanding the signal theoretic behavior of 

Fig. 5. The frequency modulated (FM) test image. 

Signal Processing 

21515 

127 

Fig. 6. Cross sections of the energy of Laplacian pyramid of 
the FM test image. 

the features proposed. It includes spatial frequen­
cies with all directions and all frequencies up to the 
half Nyquist frequency. The rate of increase of the 
spatial frequencies in the radial direction is expo­
nential because this forces the center frequencies of 
a set of band pass filters (decreasing in octaves) to 
be separated in an equidistant manner. Figure 6 
consists of the profiles of the local energy responses 
along a line cutting through the center. It illustrates 
the equidistant separation of the frequency chan­
nels, confirming the octave decrease of the channels 
as obtained by means of the Laplacian pyramid, 
second in Fig. 4. 

The result, illustrating z1 in pyramid, is presented 
here as a gray image with lines, Fig. 7(b). But in 
reality, every pixel is complex valued and the 
advantages of color screens can be utilized to 
inspect local orientation images. The frequency 
bands of the corresponding input images decrease 
clockwise from top-left. The lines in this figure rep­
resent different orientations with the lengths being 
certainties. The center frequencies as well as the 
band widths of the inputs change in octave progres­
sion, Fig. 6. The local energy pyramid is illustrated 
as a gray scale image on the left in the same figure. 
In full size, it is illustrated as a set of gray scale 
images in a similar way on the left. It can be 
observed that both the certainty response of the 
linear symmetry and the response of the local 
energy have no ripples, that is, they are phase 
independent. 
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(a) (b) 

Fig. 7. (a) The local energy pyramid and (b) the local orientation pyramid of the FM test image. The lines represent the orientations 
at the respective positions while gray values represent certainties. 

5.2. CLOG mapping 

For many reasons, for example the speed and 
simplicity of the relevant hardware, the integer 
number representation is by far the most common 
technique for storing images, in particular texture 
feature images. However, special care should be 
taken in order not to destroy the discrimination 
power of the features. In image ciassification, the 
absolute values of the feature pixels are not impor­
tant, but their relative values compared to the 
values of the other pixels are crucial. Since we 
intend to have integer representation at the final 
stage, we cannot have the luxury of having good 
relative quantization error representations at all 
parts of the unit interval. In the following, we pro­
pose an adaptive mapping of the feature values 
followed by a uniform quantization. Many image 
processing algorithms require that images, includ­
ing feature images, should be represented by means 
of integer numbers per pixel (typically 8 bits) 
mainly because of storage requirements. But also 
other more fundamental reasons, like the need of 
histogram based image processing may be the 
cause of integer representation. To utilize the avail­
able dynamic range better, the feature images 

should be re-mapped non-linearly in such a way 
that the outliers, the few pixels which have high 
values, should be suppressed. In our case this is 
particularly important since it is known that the 
histograms of the derivatives of natural images 
have the form of an exponential function. For this 
reason, we have applied the centroid adaptive loga­
rithmic mapping, CLOG, described in the follow­
ing, to our features. That is, the magnitude of the 
complex pixels are mapped through the CLOG 
mapping. Similarly, the local energy features were 
mapped through CLOG mapping before they were 
quantized. These integer feature images (12 in 
total) were processed further by the feature reduc­
tion and segmentation methods. 

We assume that the images are in the floating 
point representation and are scaled so that they 
have the dynamic range of [O, 1]. Here 1 represents 
the maximum and 0 represents the minimum mag­
nitude in the feature images. Utilizing uniform 
discretization to represent the feature value is 
neither economical nor accurate for the subsequent 
arithmetic operations. If /1 is the available number 
of bits per pixel we have s = 211 different labels for 
the numbers to be represented. Quantizing 

Vol. 29, No. I, October 1992 
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uniformly the unit interval, the representable real 
numbers are given by q1(k)=k/s, where k is an 
integer and runs between 0 and s-1. Differentiat­
ing q1 with respect to k gives us 

I 
dq1 =-die 

s 
(15) 

This equation shows that the quantization error is 
independent of k and is constant throughout the 
interval. But on the contrary the relative quantiza­
tion error is not constant: 

(16) 

Thus, the closer the integer k is to 0, the larger the 
relative quantization error gets. The image and its 
histogram in Fig. 8 (left part of the figure) illustrate 
the magnitude of the Laplacian of the test image 
with uniform discretization. It can clearly be seen 
that the majority of the pixels are at the lower 
end of the interval. Thus, the relative quantization 
errors made in this representation of Laplacian are 
very large. The wish to represent very few large 

Fig. 8. The magnitude of Laplacian of a test image and its 
histogram. Results of linear mapping (left) and the CLOG 

mapping (right). 

Signal Processing 

numbers with high precision caused the majority 
of the pixel values represented very poorly. 

We assume that the relative quantization error 
in the representation is constant: 

dq=~dk 
' 

(17) 
q s 

where C is a positive real constant and s is a posi­
tive integer. The solution of this differential equa­
tion (with q(O) = 1) is given by 

(kc) q(k) =exp --; . (18) 

However, when k and s are positive integers then 
q(k) ~ 1. Thus, to represent a value xE[O, l] by 
means of q(k) we apply translation and scaling 
(translation would suffice but we will explain the 
reason of scaling with a constant a, soon): 

q(k)=I+ax. 

Thus 

k ln(I+ax) 
-~ 

s c 

(19) 

(20) 

Here the ~ is used since the right-hand side is in 
general irrational and k/s can only be its rational 
approximation if k and s are restricted to integers. 
Remembering that xE[O, I] and kE{O, ... , s-1} 
forces C to be ln(l +a). Equation (20) suggests 
that we should discretize the image uniformly after 
having transformed it through the mapping 

'(
·) ln(l+ax) 

1 x . 
ln(l +a) 

(21) 

Here x represents the feature image. h is well 
defined if - I <a for x E [O, 1]. When a approaches 
zero the mapping approaches the linear mapping, 
h(x) =x, which can be verified by Taylor 
expansion. 

Figure 9 illustrates h(x) for 3 different values of 
a. The limit functions when a approaches - I and 
oo are simply unit impulses at the positions 0 and 
1, respectively. 
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0. 8 

0.6 

0. 4 

0 .2 

0. 2 0. 4 0. 6 0. 8 

Fig. 9. The function utilized in CLOG mapping for 3 different values of a: 20, 0 and -0·9. 

The constant a is proposed to depend on the 
centroid of the historgram. Let µ be the abscissa 
(the coordinate in the bin axis) of the centroid of 
the continuous image histogram (frequency func­
tion). We approximateµ as the mean value of the 
feature image. We choose a in such a way thatµ 
is mapped to 111c, 111c = g(µ ), e.g. by the Newton­
Raphson method: 

ln(l +aµ) 
l11c= ' 

ln(I +a) 
(22) 

where 1110 is an empirically chosen constant in the 
central one third of the unit interval [ *, h Thus, 
for every feature image we have a new function h 
which is adapted to the histogram of the image in 
such a way that the histogram of the resulting 
image has a mass shift towards the center of symbol 
range. For this reason we call this non-linear map­
ping a centroid adaptive logarithmic mapping, 
CLOG. It is worth noting that the mass center of 
the new histogram does not become me in general. 
Similarly, the mass of the new histogram moves 
towards me from above if the original histogram 
has a centroid with its x coordinate larger than 
me. This bit-allocation defavors the extreme values 
which are obtained after a derivative filtration. 

In clustering methods the problem of outliers has 
been known as robust discrimination [9, 24]. In 
particular, we note that an important class of these 
methods cluster the rank of the samples instead of 
the samples themselves. Clustering in this space has 
been observed to be more robust in comparison 
with the original space. One reason is that the fea­
ture space remains unchanged even if an extreme 
value is very far away from the rest of the samples. 
Another reason is that the distribution of the rank 
data is expected to be more normal like even if the 
original data is drawn from an unknown distribu­
tion [9]. In our particular application, ranking 
means that the pixel values (in floating point repre­
sentation) within a feature image are sorted and 
replaced by their rank in the sorted set. The rank­
ing is carried out in such a way that the smallest 
value is assigned the rank value 1 and the next 
smallest value is assigned the value 2, etc. This 
procedure can be seen as a nonlinear mapping fol­
lowed by a discretization where the mapping is 
similar to the CLOG mapping when the image 
histogram is exponential like. 

Figure 8 (right) illustrates the result of the 
CLOG mapping when mc=0.4 followed by a 
uniform discretization. We have tested the CLOG 
mapping only in connection with our features. 
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These tests were carried out on hardware using an 
integer arithmetic convolver, GOP-302. We have 
utilized the CLOG mapping not only on the magni­
tudes of the output images coming from the GOP-
302 integer arithmetic convolver, but also at the 
intermediate results between the cascade of the 
three required convolutions: Laplacian filtering, 
partial derivative filtering and averaging. Our test 
results indicate that the texture discrimination 
property is not very sensitive to different choices 
of 1110 as long as 1110 is approximately in the central 
one third of the unit interval. We have therefore 
used 1110 = 0.4 throughout our experiments pre­
sented in this paper. 

5.3. Results on real texture images 

The original image, with the true borders super­
imposed for the purpose of elucidation, which we 
used in the subsequent tests, is presented in Fig. 
IO(a). It consists of different types of field and 
forest textures and a texture which represents an 
urban area. The textures were selected by a group 
of 3 people, independent of the author, with experi­
ence in aerial images to decrease the unconscious 
bias in the choice of interesting textures. It consists 

\a) 

Table I 

The special arrangement of the textures in the test 
image 

T4 T7 T6 Tl 

T2 Tl T4 TS 

T4 T3 T2 T7 

T2 TS T6 T3 

of 16 patches and has size 256 x 256. Among the 
patches there are only 7 distinct textures which are 
arranged in such a way that each of these has all 
the other textures as a neighbor at least once. Table 
1 illustrates the spatial arrangement of the textures 
corresponding to Fig. 10. The horizontal borders 
of the patches are straight, while the vertical bor­
ders are different realizations of a Markovian pro­
cess. Moreover each texture is brightness (mean) 
and contrast (variance) normalized individually, 
before it is incorporated to the test image. 

Figure IO(a) illustrates the result obtained by 
utilizing the proposed features, the automatic fea­
ture sub-selection method of [3, 5] and the 
unsupervised segmentation method of [25]. The 
feature images were blown up to the size of the 
original using the interpolation technique 

(b) 

Fig. JO. (a) The used aerial texture image containing 7, different textures corresponding to fields, forests and an urban area. (b) The 
unsupervised segmentation result of the proposed features. 

Signal Processing 
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described by [10] before the selection method was 
applied. The selection method is based on the use 
of the KL transform on local neighborhoods as 

. well as on the global image. It applies the KL trans­
form to the vectors which are the best representa­
tions of the original feature vectors in a 
neighborhood. The result is a set of images which 
are ranked according to a significance vector. 
Finally, the feature images are selected by 
thresholding the significance vector. The segmenta­
tion method performs clustering in the feature 
space which now has a reduced dimensionality. In 
order to increase the computational efficiency and 
to reduce the noise further, this method performs 
a size reduction of the feature images. Each feature 
space point is compared to the other points in order 
to see whether they lie within a small sphere around 
the current point. A new feature space is computed, 
which corresponds to the centroids of the points 
within that sphere, and the old space is replaced 
by the new one. This process is repeated until a 
convergence of the feature space has been 
obtained. The points in the converged space are 
then taken as the class centers. 

The result predicts 6 classes, of which 5 corre­
spond to true classes and the remaining class corre­
sponds to a merging of two true classes. Almost all 
borders are found with good accuracy. It should 
be noted that the classification as well as feature 
reduction is unsupervised. Thus the border quality 
and the classes found should be compared with 
other results, like the subsequent ones to be pre­
sented, using unsupervised procedures. 

Figure 11 (a) illustrates the result when the tex­
ture energy measures proposed in [22] are utilized 
as features along with the same feature reduction 
and clustering technique as before. The texture 
energy planes are obtained by first convolving the 
original by 7 filters (E5L5, L5E5, R5R5, E5S5, 
S5E5, L5S5, S5L5 as labeled in [22]) and then 
applying the standard deviation filtering using a 
7 x 7 window. We have also tried larger sizes which 
resulted in a poorer class and border performance 
compared to Fig. 11 (a). The feature dimensionality 
reduction process of [3, 5], tested also on many 

other different feature sets, seems to be an adequate 
means to compress the information and increase 
the discrimination power of the texture features. 
The texture feature dimensionality reduction has 
also been dealt with recently in [28]. The result 
suggests that 4 classes exist of which two more 
or less represent two classes while the two others 
represent the merged classes. Many borders are 
identified with good accuracy. 

Figure 11 (b) illustrates the segmentation result 
when the features proposed by [27] are utilized. 
These features, totaling 4, are obtained by first 
computing the discrete Hadamard transform 
within a neighborhood of 2 x 2 and then applying 
the variance filtering to those in a window of 8 x 8. 
In the result 4 classes can be distinguished and of 
these one corresponds to a true class, while the 
remaining are merged classes. Some of the borders 
can be identified with reasonable accuracy. 

We have also tried to obtain a segmentation 
result using the 13 features proposed in [ 17]. The 
features used represented certain, in [17] well 
defined, properties (angular second moment, con­
trast, etc.) of the co-occurrence matrix with 64 
quantization levels computed in 9 x 9 neighbor­
hoods using a distance vector of (0, l)T. The result 
was a single class for the.entire image and naturally 
no borders. 

Here we stress the fact that no attempt to choose 
the best features manually from the originally pro­
posed total set was made. The used automatic 
selection method is based on local homogeneity 
and cannot compete with a human, who subcon­
sciously also uses her expertise in classification, 
when making her choice. Moreover, the clustering 
methods are in general quite bad in finding differ­
ent class modes as the dimensionality of the feature 
space increases. Thus, we do not exclude that the 
result stemming from this feature set can be 
improved if the conditions of the entire segmenta­
tion process are changed. However, in order to 
limit the scope of this paper, we have refrained 
from such an attempt. 

An explanation for why the proposed features 
have performed well is that the textures in the test 

Vol. 29, No. I, October 1992 



14 J. Bigii11 /Linear symmetry and textures 

(a) (b) 

Fig. 11. The segmentation result using the features of (a) [22] and (b) [26]. 

image differ in their 'repetition frequency', e.g. 
scale, considerably while the used neighborhoods 
in the 3 compared methods were constant. On the 
other hand, a straight-forward application of these 
techniques to every level of a multiresolution pyra­
mid would result in too many texture features for 

(a) 

further unsupervised processing.The proposed fea­
tures are directly measuring the dominant orienta­
tion and frequency information in each channel. 
This is a property which is in line with the current 
understanding of the human visual system. The 
results of these unsupervised experiments and 

(b) 

Fig. 12. The used test image containing another set of aerial textures and the segmentation result obtained by using the proposed 
features. 
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J. Bigiin / Linear symmetry and textures 15 

others, like those of Figs. 10 and 12, we have per­
formed, using aerial images suggest that the linear 
symmetry features can be used successfully in tex­
ture analysis. 

6. Conclusion 

A conceptually common feature in the local 
energy and local orientation pyramid is that these 
results are obtained as averaging the result of a 
linear filtering followed by the same non-linear 
operation, squaring. The averaging after this non­
linear operation has an optimization effect as indi­
cated in Section 2. 

If a Gaussian pyramid based segmentation algo­
rithm is utilized, averaging will be done inherently 
by the segmentation algorithm. For the images of 
a high level in the local energy and the local orien­
tation pyramid this means that the segmentation 
algorithm can start from a small image, offering 
computational advantages. The experiments done 
during this work indicate that the linear symmetry 
pyramid together with the local energy pyramid 
are efficient texture features. The pyramid structure 
facilitates the modeling of textures at different sizes 
with respect to isotropy and anisotropy allowing 
the proposed features to be incorporated into real 
time recognition systems. Moreover, the linear 
symmetry applied to a certain frequency channel, 
i.e. a level in the orientation pyramid, has a similar 
response to the orientation estimation through 
interpolation of the Gabor or quadrature mirror 
filter responses. But the computational cost per 
pixel is much less. 
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