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Face Authentication with Gabor
Information on Deformable Graphs
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Abstract—Elastic graph matching has been proposed as a prac- Recognition performed by the human being can be simul-
tical implementation of dynamic link matching, which is a neural  taneously seen as a holistic and a feature analysis approach
network with dynamically evolving links between a reference [3]. Automatic face recognition often favors only one of
model and an input image. Each node of the graph contains . .
features that characterize the neighborhood of its location in these a_s‘peCtS' Features used for_desc_r'pt'on of faces are either
the image. The elastic graph matching usually consists of two biometric features of the face, like distances between parts
consecutive steps, namely a matching with a rigid grid, followed of the face like nose and mouth, or more abstract features,
by a deformation of the grid, which is actually the elastic part. |ike filter responses on a grid [4]. Template-based methods

The deformation step is introduced in order to allow for some _Aafi ;
deformation, rotation, and scaling of the object to be matched. that attempt to match well-defined portions of the face (eye,

This method is applied here to the authentication of human faces Mouth) belong to the analysis category [5], [6]. The eigenface
where candidates claim an identity that is to be checked. The approach [7] describes images in terms of linear combinations
matching error as originally suggested is not powerful enough to of basis images, and thus represents a global holistic approach.
provide satisfying results in this case. We introduce an automatic pethods that constrain local features by adding geometrical

weighting of the nodes according to their significance. We also ex- : : .
plore the significance of the elastic deformation for an application constraints can be considered as a mixture of both aspects.

of face-based person authentication. We compare performance ON€ can cite here thdynamic link architecturg DLA) [4]
results obtained with and without the second matching step. and related graph-based feature matching approaches [8], as
Results show that the deformation step slightly increases the well as methods based on neural networks, and feature-based
performance, but has lower influence than the weighting of the approaches where features are geometrical measures [5].

nodes. The best results are obtained with the combination of both The mechanism for assessing connections between the
aspects. The results provided by the proposed method compare . g

favorably with two methods that require a prior geometric face image and model domain turns out to be complex and
normalization, namely the synergetic and eigenface approaches. time-consuming. Therefore, a simplified implementation
Index Terms—Biometrics, face authentication, face recogni- called elastic graph matchindEGM) is often preferred for

tion, face verification, Fisher discriminants, Gabor filters, Gabor  finding objects in the scene with a known reference [9].
information. The elasticity of the matching provides some robustness

to possible distortions of the object that may be due to a
variation in pose, a scaling, or a deformation of the object.
However, as the attributed graph is a two-dimensional (2-
H UMAN identification systems based on biometrics otheh) representation of three-dimensional (3-D) objects, this
than the face have already led to commercial produg§ierance is limited. Other methods should be developed for
with very high identification rates: the iris [1] and fingerprintsarge variations. Extensions have been proposed for rotations
[2] can be cited as examples. However, these systems gf&acial depth [10].
not always appreciated by users, as they require some closgne should note that these algorithms require a face seg-
interaction with the machine often perceived as invasivVgentation preprocessing step, in order to extract faces in a
Moreover, they require the user to stop at the device and &ﬁnplex environment, and to scale them coarsely. Yang and
cooperative, which is acceptable for access control to restricliqgang [11] propose the use of mosaic images for detecting
areas, .put not for other applications like §urve[llance. Fag@man faces in a complex background. A generalization to
recognition may overcome some of these limitations. the low-resolution face template approach has been provided
by Sung and Poggio [12], [13]. Finally, another face detection
approach related to the eigenface approach is the distance-
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set by maximizing an evaluation function using the simplex
method. Although quite general in the theory, the application
of the method requires some fine tuning and samgriori
choices. Furthermore, the optimal settings and the particular
choices seem to have been obtained by trials and testing.
Here we are interested in face authentication, rather than
face recognition. In authentication applications, the system is
provided with a supposed identity of the candidate, which “
is known to the system. The goal is to state whether the
identity is correct or not. Authentication is seldom encountered
in the literature, as most of the time recognition problems
are addressed. In this article, we propose to specialize a
recognition method, the EGM approach, for authentication

applications. For this reason, we propose local discriminant
PP brop Fig. 1. Gabor decomposition of the Fourier domain. The lines show the

measures for face images, Wh'Ch_ lead to _S|g'_“flcantly 'mprovﬁ_ﬁexion points of the 2-D Gaussian-shaped filters. The dashed lines show an
performance for face authentication applications. In our conteiternative decomposition scheme with a minimal amount of overlapping of

bution, subsets of the data are considered separately. Whiletfiggreauency bands.
method we tested is oriented to the authentication of people,

it could also be used for recognition. The method leads tocgnsidered as alirectional microscopewith an orientation
faster training than in [15], as the solution to the optimizatiognq scaling sensitivity.

problem is known analytically. The spectral plane is partitioned inta frequency andn
In this presentation we also study the contribution of thgrientation bands:

deformation capability of the grid by comparing the perfor-

mance of rigid and nonrigid graph matching in case of face  §;;(w) = exp(—3(w — w;)' R, 25 Rl (w — wi;)) (1)

authentication. To the best of our knowledge, such a study has

not been undertaken before. We will compare the influengderel < i < m andl < j < n,R; is a rotation matrix,

of grid deformability with respect to local discrimination.and £;; is a diagonal matrix4;; = RX'R' is a positive-

Both methods are independent and may be combined. Finafhgfinite matrix whose principal axes define an ellipse oriented

the EGM combined withocal discriminants(EGM-LD) is according to the orientation defined Gy see Fig. 1. More

compared with two other authentication methods that usepeecisely

prior geometric normalization of faces: principal component

analysis and synergetic computers [16]. R; = < cos(¢;) Sln(¢j)>
The paper is organized as follows. The elastic graph match- —sin(¢;) cos(¢;)
ing is described in Section Il. The local discriminant measure o <0,2,7. 0 )
is introduced in Section IIl. Alternative methods are described ! 0 ol
iq Section V. Experimental results are given in Section V. e cos(¢;)wr, )
Finally, conclusions are drawn and future developments are Wij =% o | T sin(e; Jwn, (2)

discussed in Section VI.
wherew;; is the central frequency of the filter. The use of an
asymmetric real transfer function implies that the correspond-

Il. ELASTIC GRAPH MATCHING FOR FACE AUTHENTICATION  iNng point spread functions are complex.

. . . . This choice of Gabor decomposition makes the compu-
Attributed graphs describe objects on sparse locations, by. . . . .

. L tation of the corresponding point spread function possible
attaching to each node a feature vector that contains informa-_ . . - .
: . . analytically. Alternatively, other decompositions using log-
tion on the local neighborhood of the node location. Here, Weolar mappings could be used [19]. The impulse res e
use the modulus of complex Gabor responses as features flg)m ppIng ' P PO

filters with six orientations and three resolutions. orresponding ta;; is given by:
gij(x) = exp(—%thjEinzw) exp(i27rw$j:v). 3)
The parameters are not completely determined yet. For a
I%%’composition consisting af orientations anadn resolutions,
transfer functions are chosen here so that neighboring
Xers intersect at equal valuég,/e along their principal axes.
this we follow the choice in [19]. The. orientations are
osen equidistant, which results in a constant vatyefor

A. Gabor Filters

Each face is represented by a set of feature vectors
sitioned on nodes of a coarse, rectangular grid placed
the image. Comparing two face images is accomplished
matching and adapting a grid taken from one image to th
features of the other image [4]. We use the modulus of complgﬁ

Gabor responses as feature vectors. all

Gabor decompositions have been proposed as an analysis%j'
tool for textures [17] motivated by psychophysics of the human or s = 4)
visual system [18]. The Gabor decomposition we use can be ¢ % ap”
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(@ (b)

(c) (d)

Fig. 2. Example of a grid matching. (a) Reference image. (b) Reference grid. (c) Matched grid on another image of the same person (residual matching
error: 740). (d) Matched grid on another person (residual matching error: 1406).

The angular bandwidth of the filters4g/n, and the orientation to the reference graph. The distance between two graphs is
centers are given by evaluated by a dissimilarity function, that considers both the
) feature vectors of each node and the deformation information
wg; =204(j = 1). ©) attached to the edges. We consider dissimilarity measures
The radial frequency bands are distributed in octave stepd)ere the contribution from nodes and edges are independent,
with a frequency bandwidth which doubles at each step, anbre precisely
cover a range fromw,_, >0 to w,__ <1/2, in normalized N, N,
frequencies where one represents the Nyquist frequency. BYd(G, R) = Z dn(Gr, R, + A Z de(Ge,,Re;)  (8)
defining an intermediate variable i=1

j=1
oo = Wrnax ~ Wrmin (6) where G,,, represents théth node of gridG, R, is the jth
2(2m —1) node of gridR; N,,, N. are the number of nodes and edges,
the radial centers and bandwidths are given by respeptively, and\ is a weightiqg factor th_at characterizes
‘ the stiffness of the graph. Alastic graph which opposes no
Wr; =W, +00(1+3(271 = 1)) reaction to deformation correspondsXe= 0, while a totally
oy, =021 (7) rigid graph is obtained with very large values bf

The matching procedure consists of two consecutive steps
- H ! f'iﬂ The first step is used for obtaining a first match, by moving
following: Wrann = 76)Wrmax = 1) M = 3 andn =6. Fig. 1 5 rigid grid over a search area in the image. Starting from this
shoyvs a typical decomposition. ) . initial guess, the grid is deformed in order to minimize (8).

Finally, one should note that Gabor functions are in many The deformation is achieved by displacing each node around
respects similar to 2-D Morlet wavelets [20]. its current location, and by placing it where the minimum value

. ) of d(G, R) is obtained. This operation is applied on each node
B. Elastic Graph Matching successively, and the whole process is repeated until no further

Elastic graph matching(EGM) consists in locating an decrease is obtained. An example of grid matching is shown

attributed graph on the image that is as close as possibieFig. 2.

In authentication applications a typical parameter set is t
1



DUC et al. FACE AUTHENTICATION 507

1200 ~

A\
{0\
() \\\\e\\\s\\

SRR A
#‘: N }\\\‘\\ N \‘\ N

1200 4 :“i\t\ \?\“‘\\\\\ 1100 - \ “\: .\s,\\\"’

_ — Q
\‘ o

511901 LN SR
21000 -| : \\“\“‘“‘ 2 g00 -G
% {:)
S 900 2 800 4
E € 700

800 i

700 600 -

699 e

° -0 30 20
=3P 40 =40
dy dx
@) (b)

850 - . "

800 - W vll' ‘! \w %
oo g
27 '“ “;‘,,\. " I \l O,
£ 650 m y l\‘r."v.i\ ’f’n'*q" o i
oo JADALIANE \‘v.’f"\'l'\v"w“\“ %:4~r!m~11"|""’3‘ i

550 | \‘\fi\"l :‘ A 7/;\\0'»‘\\\'o\"'t\""\w\;"%" !‘0”"“’"’

4 .

500 -| \\W\I// WA .,":4“ (W ,:' it

450 WA

8%

dx

© (d)

Fig. 3. Objective function for the rigid translation of the graph over the search window. Fig. 2(b) is used as reference grid, and Fig. 2(d) as.test image
Three resolutions of Gabor responses are used. Here, the contribution of each resolution is shown separately. (a) Objective function withavesly the lo
resolution. (b) Objective function with only the medium resolution. (c) Objective function with only the highest resolution. (d) Total objectiva fivwhile

low resolutions provide smooth, convex objective functions, high resolution responses provide sharper minima, and are used for refinement.

C. Coarse-to-Fine Rigid Graph Matching Consecutive refinements are obtained by incorporating higher
In our implementation, the rigid matching is obtained€solution information and by searching on a finer grid around
through full search matching on a predefined rectanguii}e current estimate.
search window. If responses are needed at all points in thd-oarse-to-fine strategies may get trapped in local minima
image, the optimal way of computing the responses consit?3]- A remedy to this weakness consists in the elaboration of
in computing the 2-D fast Fourier transform (FFT) of thdnixed fine-to-coarse and coarse-to-fine strategies. However,
input image, and multiplying it with the frequency respons&e noticed that if only one head is present and occupies a
of the filter. However, for a matching problem, the Gabgtignificant part of the image, this problem does not occur.
responses may be needed only on a small fraction of poidtdis assumption is satisfied when a prior face detection
in the image. If the number of points is small enough, dire@dgorithm that extracts regions of interest is applied. In our
convolution is less expensive. experiments, the images may be considered as the output of
By adopting a coarse-to-fine strategy, the number of reuch a segmentation, therefore a coarse-to-fine strategy has
quired Gabor responses is significantly reduced. Multigrieen retained.
relaxation methods have been proposed in applied numericaln practice, a Gaussian pyramid is built [24]. The highest
analysis [21]. They are particularly well-suited to the imaggesolution level of the pyramid contains the original image,
analysis field [22]. and the next levels contain lowpass versions of the original
We consider a multiresolution description of the imagémage, with a cut-off frequency decreasing @™, where
First, the lowest resolution image is considered for matching.is the level of the pyramid. The lowest level is zero and
As a consequence, the objective function is smoothed, and it&s a normalized maximal frequency §f In the pyramidal
matching may be undertaken on a subsampled lattice. Thizplementation adopted here, the image size depends on the
property is intimately related to the fundamental samplingsolution. The pyramid is built recursively, by building a
theorem: as the objective function has been lowpass filterednétw, lower-resolution level from the previous one by lowpass
may be sampled at a coarser step without loss of informatidiftering and subsampling with a factor two, so that the size
Fig. 3 shows that the low-resolution image provides a smoath the image is divided by two at each iteration. The lowpass
objective function, while the high frequency information gerfiltering was achieved with separable Gaussian filters.
erates a forest of local minima. However, the minima are moreThe definition of filters is simplified by using the same
precisely localized when the high frequencies are incorporateet of filters for a single resolution and a complete set of
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orientations. These filters are applied to each level of tlggven class. Therefore, we propose the following discriminant
pyramid to obtain a complete set of resolutions. A significactiterion:

reduction in the amount of computations is obtained for low N 2

frequency responses, compared to filtering the original image, _ - ] oy 2

as bandpass filters selecting low frequencies have a large k() = ; v (ri =) | = (oalr =)™ (9)
support. =

Finally, the grid matching serves two purposes: firstly, for classk,k = 1--.¢, where ~; are the components of
aims at normalizing the input, in order to make the subsghe measurement vecter N, is the dimension of the local
quent comparison invariant with respect to translation amdature space, ang, is the mean of vectors. The unknown
a reasonable amount of deformation. Secondly, the residgakfficient vectors,’s are determined on the training set by
error accounts for the difference between the normalized inpuinimizing the ratio:
and the reference pattern. Intuitively, the higher the error, the

higher the probability of having an impostor. Z dr(T)
TCSk
Dy=—————
[ll. FEATURE EXTRACTION Z di(r)
The first step of the authentication process consists in match- eSS
ing the image with the prototype grid of the claimed class (in > vh(r — m)(r — ) v
the following, each person in the database is considered as a __TES%
class of the classification problem). Thls_ prototype is taken Z o (r — ) (r — pa) oy,
as the mean of the feature vectors provided by all images of 7C(5-51)
the considered person in the training set. It is expected that if ot W
the claimed identity is correct, the feature vector will be close = v By (10)

to the class prototype; in case of an impostor, the matching
will be poor. Unfortunately, early experiments showed that thehere S}, is the set of training vectors belonging to cldss
residual matching erroRME), i.e., d(G, R) after matching and .S is the whole training set, so th&s — S;,) is the set
with A = 0, is not sufficient to discriminate between arof all impostors for class:. Here, u; is the mean onS;.
impostor and the authentic person, see Section V-B. ThisBy this, we are back to a two-class classification problem,
partly due to the presence of noise in the measurement, but aldwere the classes af, and (S — Sy). This formulation leads
due to the fact that not all nodes are discriminative. Indeeith, a generalized eigenvalue problei,v, = ABrv, and

the feature space considered here is very large: for an8 w; is given by the eigenvector corresponding to the smallest
grid comprising 18 Gabor responses at each node, a totalgeiheralized eigenvalue. This is knownRasher’s discriminant
Ng = 1152 features is obtained. ratio [25].

Reducing the dimensionality is an efficient way to reduce All local responses have to be combined in order to provide
the influence of noise [25], [26]. From a training set consis& unique, global dissimilarity measure for the considered face.
ing of several frontal views of each person, one establish€Bis is a problem related to sensor or decision fusion [27].
subspaces which maximize the dispersion of all classes wHhilere, we build the global response by simply adding the
minimizing the dispersion within the classes. contributions from the local discriminants. This discriminant

However, the number of training samples is small compareteasure will be abbreviated “LD.”
to the number of features. Also, the features on two graph
nodes may be considered as independent. Therefore, itBisSeparation Parameters

reasonable to address dimensionality reduction independentl)(t is necessary to choose a threshold for defining accep-

at each node of t_hg graph. If fgatures are con5|dgred "?C&Ué( celrejection intervals in the domain of possible responses
the number of training samples is larger than the d|menS|onf? m training data. Here we assume that the system will

the feature space, which allows us to apply standard feau[.‘)rl%vide a soft decision betwedf, o[, therefore a mapping

reduction methods. between the original response interval and the [0,1] interval
o is needed.

A. Local Discriminants An invertible mapping fron{0, oc| to [0, 1] is provided by
Suppose that the dimensionality of the considered featufe tanh function. For our purpose, the soft scaec [0, 1]

space is small compared to the number of training elementssinould be one for an identity claim acceptance, and zero for an

each of thec considered classes. One would like to establigdentity claim rejection, whereas the global discriminant value

a decision criterion for the acceptance or rejection of tiends to zero for a perfect match and to infinity for a perfect

candidate. This criterion should be “small” if the candidate ®ismatch. We suggest the mapping

the right person, and “large” in case of an impostor. Obviously, log(3)

this decision has to be made on the difference between the S(z) = tanh <2—t) (12)

prototype of the claimed class and the measured feature vector. *

The components of this difference do not have the samderet is an empirically chosen constant. By definition

significance, as some may be more relevant than others for thecalled theseparation paramete(SP), as it acts like a
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decision point on: between acceptance and rejection intervals. Principal Component Analysis

(S(t) = 0.5). In Fhe case of a soft de(_:ision, SP acts as aThe eigenface approach [7], [29] is based on hizci-
parameter selecting the mapping function. In the case of

- ‘ ) £l component analysi®PCA), or Karhunen-Leve transform
hard decision, SP can be viewed as a possible threshold. ﬁQET). It takes into account the statistical dependencies be-
threshold itself may be chosen in a number of ways.

tween the pixel values of images in a training set to design

_The first possibility of separation parameter selection cogy, grihogonal basis optimal for representing images. For this
sists in choosing the minimal dissimilarity measure among the, nose " the eigenvectors of the covariance matrix of the
training impostors fort. This quite natural choice leads totraining set of face images are computed; they are called

more false rejections than false acceptances. Another pogglienfacesOnly the most significant eigenfaces, i.e., the ones

bility consists in choosing the maximal dissimilarity MeasUrgyresponding to the largest eigenvalues of the covariance

among training data of the correct person. Statistical t${S,ix are retained for describing the images. Each training
provide a third possibility. Under the assumption that allhg test face is then characterized by its projection on the

Gabor responseg; after matching are independent Gaussiafigenfaces, and the comparison of two faces is achieved by
random variables centred at the corresponding referencescomparmg two sets of projections.

it is possible to design a statistical test [28]. Indeed, if the

G%por responses2 are conS|dQered_ m_dep_endently, the quarﬁ'.tyAdjoint Vectors and Synergetic Computers

3,5 ((gi—mi/o:)” follows axy,, distribution. Therefore, the ) ) ) o

u percentiley?(N¢) provides the SP for the confidence level The eigenface approach is optimal for a compact description
w. For high values ofV¢ (Ng > 50), the following formula of face images in the least square sense: it finds an orthonormal

may be applied for estimating2(N¢) [28]: basis that defines_ a subspace for WhiC.h the projection error is
as small as possible, on average and in a least square sense.
Xa(Ne) ~ 2(zu + V2Ng — 1) (12) Another type of approach also considers the prototype faces

as basis vectors generating a subspace. Here, the basis vectors
where z, is the » percentile for the normal distribution. v, are not orthogonal. Approximating new input images as a
For 1152 Gabor responses, the 0.95 percentile amountslit@ar combination of prototype faces requires the computation
X305 (1152) = 1232. of a set ofadjoint vectorsu,, which satisfy an orthogonality
The situation is somewhat different when the local discrimelationship with thew,,’s:
inants are applied, because we do not sum the squares of the

residualsg; —r;), but the squares of their linear combinations vl V= (13)
N N 2 By constraining the feature vectors to be in the subspace
5 ¢ ? defined by the prototypesv,,» = 1---c}, the problem
e, (1) = Z Z Vi, (935 = 7ij) becomes well-posed, provided thatall are linearly indepen-
=t dent, which is assumed to be the case since they are prototypes
where N, is the number of local discriminants am, = representing distinct persons. By _a(_jopting the matrix notation,
Ng /Ny is the dimension of local feature spaces.(df; — W€ denote byl” the matrix containing vectos, in the uth

. n : e . .
ri;) ~ N(0,05;), one can take into account the facfolumn, and byV'™ the matrix of adjoint vectors, written in

that a linear combination of Gaussian random variables "@WS. By definition of adjoint vectors, one has

also Gaussian. More precisely, if; ~ N(ui,_o—i), then a vty =TI (14)
linear combination given by = X7, a;x; iS such that

y ~ NI, aip, /S, a2a?). Taking into account Expressing adjoint vectors as linear combinations of prototype

this result, one obtains that each local discriminants Vectors gives
]\Tg a
N(Ej:l Uk;Tijs
In the case of the residual matching error as well as for ] . )
local discriminants, the mean and variances of the Gausslaifoducing (15) in (14) yields
variables are estimated on the training set. V= (VtV) vt (16)

Vvt = AVt (15)

Relationship (14) yields an optimal separation of classes
(persons), instead of a compact description, as obtained with

The proposed algorithm has been compared with two othle PCA. An input vectog may be approximated by a linear
approaches that require a geometric normalization of imagesasnbination of the reference vectors

a preprocessing step: the eigenface and a simplified synergetic

computer. These methods require a prior image normalization q= Z Euu. 17)
because the image content is scanned and put into a 1-D u

structure, which is seen as an element of a vector space. Ththe input image belongs to persan then it is expected
alignment of data is necessary if one wants to keep soimat &, is close to one while the remaining, , v # u are
spatial coherence between vectors after the 1-D “projectioalbse to 0.

of the image. Both approaches describe subspaces generatddhis approach may be viewed as a particular case of syn-
by the training images by means of an appropriate basis. ergetic computers [16], [30]. Synergetic computers model the

IV. ALTERNATIVE APPROACHES
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Fig. 4. Experimental protocol. (a) The database is divided into a training set of three shots of 36 persons and a test set consisting of all 37 persons.
This defines a configuration. (b) For authentic tests, the 36 persons in the training set access under their identity; for impostor tests, thersieft-out p

(here person 37) attempts to access under the 36 other identities. Each configuration brings a total of 36 authentic accesses and 36 impostor accesses.
(c) Permutation of shots and left-out persons for defining a new configuration.

process of pattern recognition by a dynamic process exprestigat have a symmetric gray-level distribution in a rectangular
by a differential equation. The most general model allows wegion. This region has the shape of a horizontal bar that
to deform and move patterns. In case no such transformatwovers the face region and the background on the two sides of
is allowed, the dynamic process can be dropped, as the orther face. We compute the horizontal center of gravity and the
parameter which is closer to one in the initial computatiosymmetry with respect to this center and select images with an
always converges to one. extremal symmetry measure. However, the use of this method
The adjoint vectors are used here for authentication. Thas been semiautomatic as it fails sometimes. As the frontal
training consists in building* from a reference view of eachview extraction is not the main focus of this contribution, we
person by using (16). A separation parameter is computed fre;gamined the output of the detection algorithm and discarded

the training set as explained in Section III-B. the false detections. In total, 551 frontal face images are used,
yielding approximately 15 frontal views per person taken at
V. EXPERIMENTS four different weeks.
The experiments were conducted following a combination
A. Face Database and Experimental Setup of the left-one-out and the rotation estimates, which is a variant

Large image databases for authentication purposes are m@tfe jackknife method [25], [32]. This protocol, which also
harder to collect than those for recognition purposes. In ord@#PPorts multimodal authentication, has been adopted by all
to account for intraperson appearance variability due to timRartners of the project for multimodal authentication, so that
many images of the same person must be recorded. We rgeults from all modalities can be compared. Alternatively,
aware of many recognition results in the literature based 6Ach person is labeled as @mpostor while the other 36
databases consisting of hundreds of persons having at most 8@ considered aslients see Fig. 4. For each combination,
or three frontalimages Evidently, such databases are of lestfiree shots of the 36 clients build the training set while the
value for establishingauthenticationresults on clients than fourth shot is used as an evaluation set in the following way:
a smaller database that offers larger intraperson variabili§ach client attempts to access under its own identity, and
Therefore, a database with a small number of people but mdég impostor attempts to access under the identity of the 36
information for each person was prefered to databases wdients. This sums up to 36 authentic tests and 36 impostor
many people and few data available per person. tests. This procedure is repeated four times, by successively

This work is part of a project developing authenticatiogonsidering each shot for evaluation. In total, the client and
methods based on several modalities, such as speech, frofitapostor verifications amount eadf x 4 x (37— 1) = 5328.
and profile views of the face. The use of several modalities The local discriminants are estimated from the training set
required the acquisition of a multimodal database, whigtonsisting of 36 people. For this purpose, a reference view is
contains both sound and image information [31]. It includegelected for each person among all available images at random.
four shots of 37 individuals, which were taken at one weegkuthentic accesses are obtained by simulating accesses with
intervals. For each shot, people were asked to rotate their h@ddavailable images of a person to his reference. Accesses
from ® to —90°, again to 0, then to+90° and back to ® imposting a given person are simulated by considering the
degrees. Currently this effort is being continued to increageference views of each of the remaining 35 persons in the
the size to 300 persons. training set.

For image-based authentication, the rotation sequences werg€he separation parameter is chosen in several ways as
considered by using the luminance information of imagekescribed in Section I1I-B, and the discriminant measures are
in QCIF format (144 x 176). Frontal images are selecteanapped to the [0,1] interval. For obtaining a hard decision, a
automatically using a symmetry measure. The number tireshold is necessary. While its default value is 0.5, varying
selected images varies for each person. We select imagesthreshold between zero and one allows us to varyatlse
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Fig. 5. Plot of distances for person (or class) 15. The distance of the grigg. 6. Plot of discriminant values for person (or class) 15. The image indices
of different kinds of images, namely impostors in the training and the test seérrespond to the ones of Fig. 5. If one uses the minimal discrimination
members of the class in the training and test set, are shown. If one usesrifeisure over the training impostors as a threshold for the decision, then all
minimal distance on the training impostors as a threshold for the decisigivints are correctly classified. Members of the class and impostors are better
some members of the class in the training and test set are misclassified. Feisarated than in Fig. 5.

figure is given as an illustration and does not follow the experimental protocol

described in Section V-A.

10° . .

acceptancgFA) and false rejection(FR) rates, the decrease
of one of them being balanced by the increase of the other.
By varying the threshold continuously, one may draw curvesgm’1 5
of FA as a function of FR, which are denoted as receiver g
operating characteristic (ROC) curves in the following.

B. Elastic Graph Matching and Feature Reduction

false acceptan
S
8

In order to justify the process of feature extraction, we first
want to show that the Euclidean distance between features, 10 | R artor
i.e., the residual matching err@i(G, R) with A = 0, is not
sufficient for a reliable decision. Fig. 5 shows distances of
training and test samples with person 15 used as reference. It 104 ‘
turns out that the distance to the reference view is clearly not 107 1072 ; 107 10°

. . . alse rejection rate
sufficient to detect impostors.

A representation of discriminant values for the same persb@. 7. Experimental ROC curve for the residual matching error and the
is shown in Fig. 6. Now the discrimination of impostors iéocal discriminants in a log-log scale. Results were obtained with 2.
much more powerful. One can notice that there seems to be
some overtraining, as the discrimination measure is almdstst method is the one which provides the lowest FR for the
zero for all members of the considered class in the trainimgposed value of FA. For other applications, one might want
set, and significantly larger for images of the same class in tie smallest FA for a given FR. Fig. 7 shows that the LD
test set, while remaining smaller than the threshold. This @sitperforms the RME everywhere.
due to the small number of training samples for each persorAnother interesting point is that it is not necessary to take
in the database. into account all local discriminants in order to obtain good

At that point, the discriminant values in the, o[ interval performance. By retaining only a fraction of the discriminants
are normalized to the [0,1] interval, so that they can Wbat reach the largest values of the following criterion:
combined with or compared to other verification modalities
like speech [33]. Nevzrtheless, using a hard threshold is Cr = Z di(r) (18)
useful for comparing performance of different alternatives. As TeS=Se)
an illustration of the usefulness of the discriminant measuresults are almost as good as with all discriminants taken
over all classes, we show the ROC for the RME and theto account.D;, defined in (10), is not chosen to order
local discriminants (LD) in Fig. 7. Such curves reflect théD’s according to their relevance because it is not suitable
performance of a given solution averaged owdlr classes. for comparing information in different regions. Indeed, it
The points on the ROC were obtained by scaling the minimunas been observed that in homogeneous regions, much lower
threshold displayed in Figs. 5 and 6 with a varying factor. Fmalues ofD;, may be reached than in textured ones, however,
safety critical applications, a low value of FA is desired. Theomogeneous regions are not significant for authentication.
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Fig. 8. (a) Equal error rate as a function of the number of most significant LD’s retained. A local minimum is obtained when 140 LD’s are kept. The
significance of the nodes is displayed in (b)—(d), for the three different resolutions. The radiuses of the circles located at each node aralpmportion
the significance of the nodes, i.e., @, as defined in (18).

When considering thequal error rate(EER) as a criterion, compared to the impostor accesses, the dissimilarity measure
a local minimum is obtained when 140 LD’s are kept [sends to zero for all authentic accesses: we are at the limit of
Fig. 8(a)]. Fig. 8(b)—(d) illustrate the significance of each nodevertraining. In this situation, it is difficult to estimate reliably

at each of the three resolutions. It is intuitively correct thdahe variance required for normalization in the statistical test,
the weights are higher around the eyes at high frequencarsl the maximum of authentic accesses also loses part of its
while they are larger in the chin and cheek areas at lowsignificance, as it always tends to zero. On the contrary, the
frequencies. For frontal face authentication, the tip of the nosgnimum of training impostors keeps a finite value. Therefore,
region is not significant. the minimum of training impostors is chosen as the standard

separation parameter and thresholding in the following.

C. Separation Parameter Comparison

All results shown before were obtained by hard decisidd: Evaluation of Elasticity Significance
using a threshold, the minimum of training impostors; see In order to assess the effectiveness of grid elasticity, we
Section 1lI-B. Fig. 9 shows a comparison of results obtainembmpare an elastic and a nonelastic graph matching procedure.
with three types of SP’s. It turns out that the difference iShe nonelastic graph matching is obtained by dropping the sec-
not significant when the RME is used. On the contrary, dnd step of the matching procedure described in Section II-B,
the LD’s are used as dissimilarity measure, the minimum w@fhich is equivalent to choosing a very largein (8). A
training impostors provides the best results, followed by tteompletely “plastic” grid is obtained with = 0: as the second
statistical test and the maximum of training authentic accessesm vanishes, each grid node is free to move everywhere
This can be explained by comparing Figs. 5 and 6. When the the image. By running the simulations according to the
local discriminants are used (Fig. 6), and due to the relativedxperimental protocol of Section V-A with several values of
small number of authentic accesses in the training phase)adt is possible to assess the usefulness of the elastic step, and
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EQuAL ERROR RATES, WITH RESIDUAL MATCHING ERROR AND WITH
LocAL DISCRIMINANTS AS DISSIMILARITY MEASURES THE RIGID CASE
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Fig. 9. Comparison of thresholds, in case of (a) sum of LD’s and (b) RME. In conclusion, it has been shown that a small degree of
These plots were obtained with = 2. elasticity provides an improvement in the performance. The

behavior remains constant over a certain ranga,dfut from

also to study the tolerance of the discriminant approach wighcertain rigidity on, the performance degrades.
respect to the rigidity of the grid.
Fig. 10 shows the total error rate defined by FEFA + ) ]
FR, for the rigid matching and the elastic graph matching, f& Comparison with Other Approaches
both types of discriminant measures. Clearly, the presence oDur method has been compared with two other approaches,
the local discrimination has a larger influence on the resutteamely the eigenface approach (see Section IV-A) and the
than the elastic deformation. synergetic computer approach (see Section IV-B) using the
The EER defined as the point where FAFR is shown same database and test protocol.
for several values oh in Table I. There is a transition from The geometrical normalization method considered here con-
elastic to rigid matching. The local discrimination is able tsists of a face detection algorithm followed by an affine
provide almost constant results for between 0.5 and 3.0. transformation that places the eyes and the center of the
For larger values of\, the performance degrades. The elastimouth at predefined locations in the normalized image. The
graph matching improved the rigid graph matching, whicface detection is modular and consists of a series of three
can be observed by inspecting Fig. 10. Table | shows thainsecutive steps. At each step, candidates in the previous
the EER is improved from 14% down to 11%. Howeverstep are examined. As each step imposes new conditions,
combining the rigid graph matching with local discriminants ithis approach allows us to progressively get rid of false
better than elastic graph matching without local discriminantce detections. Of course, the first steps should not be too
Not surprisingly, combining the elastic deformation with localestrictive, so that the good candidates are almost certainly
discrimination yielded the best results. retained. The three modules are the following.
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1) Template matching on a multi-resolution pyrami@&m- 10 i
plates of the head with conditions on gray-level values gL
that are to be fulfilled are applied on a Gaussian pyramid. ‘
Here, the subsampling factor of 1.7 is chosen in order
to allow finer intermediate scales than with the standard
subsampling factor of two. First, head templates are
applied on a range of pyramid levels, then eye region
templates are applied. This step is inspired from mosaic
images proposed by Yang and Huang [11].

2) Eye localization and verificationEyes are localized
precisely and checked against grey-level and gradient °
templates selected on a training set. Finally, the size I
and exact position of the eyes are determined. e \

3) Nose and mouth detectias achieved by looking for 102 ‘ % _
grey-level minima along the median line between the 19 o o e
eyes. Precisely, the bottom of the nose and the lower alse rejection rate
side of the upper lip are detected, which correspond to @
the first and second significant minima along this line,

respectively.
For authentication, it is obvious that a reliable normalization

is highly desirable. If this prior step fails, the candidate will 045 ¢
certainly be rejected, as a badly normalized image is usuall
very different from its reference.

The normalization method described above was applied tg
the M2VTS database (Section V-A), wheegactlyone head &
is present in each image. From the 551 images that werg
presented to the head detection algorithm, 112 images wete X
considered as containing no head, while in all others exactly 93 | .
one head was detected, i.e., there was no false detection. o
Therefore, a false rejection rate of 18.5% was observed. Byo0.25 ¢ T S
visual inspection of the 439 normalized images, 41 of them
were undoubtedly badly normalized, yielding a 9.3% bad 5, , , X , ,
normalization rate. 0 s o 15 20 25 30 35

From a detailed analysis of the reports, it turns out that the Number of Eigenfaces
method is very sensitive to the eye detection step. If the person (b)
wears glasses, or in case the eyes are not looking straigigt 11. (a) ROC curves for various numbersof eigenvalues retained.
ahead or are closed, the detection usua”y fails. One remél’dp? n mMost significan_t vect(_)rs are always r_et_ained._(b) EER as a_function
is to incorporate additional templates specifically for thesg%pr:(e)x?;glgs of retained eigenvalues. A minimum is reachedhfe 20,
situations into the model. For authentication tests according to
the protocol of Section V-A, all rejected and badly normalizegignificantly better performance in our tests. Still, the best
images were excluded, which means that 398 images wegeults were obtained with the elastic graph matching with
used, so that the authentication results reflect as much Gshor features and local discriminants.
possible the performance of the methods, and not that of therhe poor performance of the two alternative methods may
prior normalization. also be due to the normalization step. As mentioned above, the

Fig. 11 shows the ROC curves for various numbers efuality of the normalization was judged by visual inspection.
eigenvalues retained. The performance of the system increases possible that small errors decrease the performance of the

with the number of eigenfaces retained, until a minimum kdjoint vectors method and of the PCA approach drastically.
reached at about 20 eigenfaces.

Fig. 12 shows a comparison between ROC curves for the

eigenface, the synergetic computer, and the proposed EGM- VI. CONCLUSION

LD approach. Table Il gives the equal error rates of the In this contribution, we have shown how the matching
three methods. The principal component analysis provides tifesparse local frequency information arranged on a regular
poorest results. This may be explained in the following wagrid may be used for face authentication. A local, linear
theoretically, the PCA provides the best orthogonal descriptidiscrimination approach has been presented, that weighs the
of normalized face images in the sense that the reconstructammtribution of each feature according to its significance for
from PCA coefficients yields on average the smallest sum tfe considered class. This discrimination can be seen as
squared errors. This does not assure that PCA is the basspecialization of the elastic graph matching approach to
discrimination approach. The synergetic computers providadthentication. It improves the performance significantly. This

false acceptance rate

0.5 T T . T T T
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increase in computational complexity brought by the elastic
deformation is acceptable. Therefore, for best performance,
elastic matching together with local discrimination should be

We would also like to point out that the requirements in
terms of computational complexity are different in the training
and in the operational phase. As the training is usually done
off-line, computationally expensive methods may be used.
On the contrary, the authentication of a candidate in the
operational phase should be achieved with minimum delay.
The LD’s add a significant increase in the computational com-
plexity of the training. However, in the operational phase, the
cost of adding local discrimination is insignificant compared
to the graph matching.

The different aspect of frequency information provided by
the Gabor decomposition, namely the complex response, its
phase and its modulus, need to be compared. In particular,
phase information shows interesting properties, like robust-
ness with respect to illumination, and may be used for the
refinement of the matching.

Finally, this verification application is embedded into a mul-
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@
x Elastic Graph (local discrimination)
+ Elastic Graph (residual matching error)
1.2 = Adjoint Vectors (synergetic) 1
o Eigenface (20)

total error rate

timodal approach for person authentication, which promises
significantly lower error rates than monomodal methods [33],
[34]. Here, local discriminants are simply added to provide
a global response. However, it is possible to improve this
strategy by training [35].
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