
Kernel-based multimodal biometric verification

using quality signals

J. Fierrez-Aguilara, J. Ortega-Garciaa, J. Gonzalez-Rodrigueza and Josef Bigunb

aUniv. Politecnica de Madrid, DIAC EUITT Ctra. Valencia km. 7, 28031 Madrid, Spain;
bHalmstad University, Box 823, Kristian IVs vag, S-301 18 Halmstad, Sweden

ABSTRACT

A novel kernel-based fusion strategy is presented. It is based on SVM classifiers, trade-off coefficients introduced
in the standard SVM training and testing procedures, and quality measures of the input biometric signals.
Experimental results on a prototype application based on voice and fingerprint traits are reported. The benefits
of using the two modalities as compared to only using one of them are revealed. This is achieved by using a novel
experimental procedure in which multi-modal verification performance tests are compared with multi-probe tests
of the individual subsystems. Appropriate selection of the parameters of the proposed quality-based scheme leads
to a quality-based fusion scheme outperforming the raw fusion strategy without considering quality signals. In
particular, a relative improvement of 18% is obtained for small SVM training set size by using only fingerprint
quality labels.
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1. INTRODUCTION

Automatic access of persons to services is becoming increasingly important in the information era. Although
person authentication by machine has been a subject of study for more than thirty years,1, 2 it has not been until
recently that the matter of combining a number of different traits for person verification has been considered.3, 4

There are a number of benefits of doing so, just to name a few: false acceptance and false rejection error rates
decrease, the authentication system becomes more robust against individual sensor or subsystem failures and the
number of cases where the system is not able to give an answer (e.g., bad quality fingerprints due to manual work
in fingerprint verification or larynx disorders in speaker verification) vanishes. The technological environment is
also appropriate because of the widespread deployment of multimedia-enabled mobile devices (PDAs, 3G mobile
phones, tablet PCs, laptops on wireless LANs, etc.). As a result, much research work is currently being done in
order to fulfil the requirements of applications for masses.

Two early theoretical frameworks for combining different machine experts in a multibiometric system have
been described respectively by Bigun and Kittler.4, 5 From these studies, the former from a risk analysis perspec-
tive and the later from a statistical pattern recognition point of view,6, 7 it can be concluded (under some mild
conditions which normally hold in practice) that the weighted average is a good way of conciliating the different
authenticity scores from individual modalities of a multimodal verification system.

From a practical point of view, multimodal verification has also been studied as a two-class classification
problem by using a number of machine learning paradigms, for example: neural networks, decision trees and
support vector machines (SVM).8–12 These studies have shown performance gains with trained classifiers, and
favored support vector machines over neural networks and decision trees. As a conclusion, some design guidelines
for a multibiometric system are known and well accepted.

Current trends in multimodal biometrics research include the exploitation of user-specific parameters,13, 14 and
quality signals.15, 16 In this work, we propose and investigate a novel quality-based adaptive trained multimodal
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fusion scheme based on support vector machines. With adaptive fusion scheme, we mean that the fusion scheme
readapts to each identity claim as a function of the estimated quality of the input biometric signal.

The paper is structured as follows. The fusion scheme based on support vector machines from which the
proposed quality-based strategy is derived is first summarized in Sect. 2. In the following the proposed algorithm
is described. The state-of-the-art components of a multimodal authentication application, namely minutiae-
based fingerprint and GMM-UBM speaker verification subsystems,17, 18 are then briefly described in Sect. 3.
Some experiments using the above-mentioned multimodal authentication prototype on real data are reported in
Sect. 4, where some guidelines for the computation of the parameters involved are detailed and the benefits of
the proposed adaptive fusion scheme are revealed. Conclusions will be finally given in Sect. 5.

2. MULTIMODAL FUSION SCHEME

The proposed quality-based fusion scheme is derived from a raw user-independent fusion strategy based on SVM
classifiers.14, 19 In first place, the notation is established and a brief description of the above mentioned approach
is given. Then, the proposed quality-guided fusion scheme is presented.

2.1. SVM-Based Multimodal Fusion

Given a multimodal biometric verification system consisting of R different unimodal systems r = 1, . . . , R,
each one computes a similarity score xr ∈ R between an input biometric pattern and the enrolled pattern
of the claimant. Let the similarity scores, provided by the different unimodal systems, be combined into a
multimodal score x = [x1, . . . , xR]′, where ′ denotes transpose. The design of a trained fusion scheme consists
in the estimation of a function f : R

R → R based on empirical data so as to maximize the separability of client
{f(x)|client attempt} and impostor {f(x)|impostor attempt} fused score distributions.

Formally, let the training set be X = (xi, yi)
N
i=1 where N is the number of multimodal scores in the training

set, and yi ∈ {−1, 1} = {Impostor,Client}. The principle of SVM relies on a linear separation in a high dimension
feature space H where the data have been previously mapped via Φ : R

R → H;X → Φ(X), so as to take into
account the eventual non-linearities of the problem.19 In order to achieve a good level of generalization capability,
the margin between the separator hyperplane

{h ∈ H| 〈w,h〉
H

+ w0 = 0} (1)

and the mapped data Φ(X) is maximized (where 〈· , ·〉
H

denotes inner product in space H, and (w ∈ H, w0 ∈ R)
are the parameters of the hyperplane). The optimal hyperplane can be obtained as the solution of the following
quadratic programming problem:19

min
w,w0,ξ1,...,ξN
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subject to

yi(〈w,Φ(xi)〉H
+ w0) ≥ 1 − ξi, i = 1, . . . , N (3)

ξi ≥ 0, i = 1, . . . , N (4)

where slack variables ξi are introduced to take into account the eventual non-separability of Φ(X) into H and
parameter Ci is a positive constant that controls the relative influence of the two competing terms (the higher
the Ci the higher the importance of associated training sample (xi, yi)).

The optimization problem in (2), (3) and (4) is solved using the dual representation:19
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subject to
0 ≤ αi ≤ Ci, i = 1, . . . , N
N
∑

i=1

αiyi = 0
(6)

where the introduction of the kernel function K(xi,xj) = 〈Φ(xi),Φ(xj)〉H
avoids direct manipulation of the

elements of H. In particular, a dot product kernel K(xi,xj) = x′

ixj leading to linear separation surfaces, and
thus to weighted average trained fusion schemes as recommended in previous works,4, 5, 12 has been used for the
reported experiments.

The fused score sT of a multimodal test pattern xT is defined as follows11

sT = f(xT ) = 〈w∗,Φ(xT )〉
H

+ w∗

0 (7)

which, applying the Karush-Kuhn-Tucker (KKT) conditions to the problem in (2), (3) and (4) can be shown to
be equivalent to the following sparse expression

sT = f(xT ) =
∑

i∈SV

α∗

i yiK(xi,xT ) + w∗

0 (8)

where (w∗, w∗

0) is the optimal hyperplane, (α∗

1, . . . , α
∗

N ) is the solution to the problem in (5), (6) and SV =
{i|α∗

i > 0} indexes the set of support vectors. w∗

0 is obtained from the solution to the problem in (5), (6) by
using the KKT conditions.20

As a result, the training procedure in (5), (6) and the testing strategy in (8) are obtained for the problem of
multimodal fusion.

In this work we focus on user-independent SVM fusion. In this case, the training set X = (xi, yi)
N
i=1 includes

multimodal scores from a number of different clients and the obtained fusion rule f(x) is applied at the operational
stage regardless of the claimed identity.

2.2. Quality-Based Fusion Strategy

Let q = [q1, . . . , qR]′ denote the quality vector of the multimodal similarity score x = [x1, . . . , xR]′, where qr is a
quality value corresponding to similarity score xr with r = 1, . . . , R and R is the number of modalities. In this
work, the quality values qr are computed as follows15

qr =
√

Qr · Qr,claim (9)

where Qr and Qr,claim are the quality label of the input signal for biometric trait r and the average signal quality
of the biometric samples used by unimodal system r for modelling the claimed identity respectively. The two
quality labels Qr and Qr,claim are supposed to be in the range [0, Qmax] with Qmax > 1 where 0 corresponds to
the poorest quality, 1 corresponds to normal quality and Qmax corresponds to the highest quality. As a result
q = [q1, . . . , qR]′ is computed from quality measures on the audio- or video-based input biometric signals (e.g.,
SNR or pitch deviations in case of voice utterances,21 orientation certainty in case of fingerprint images,22 etc.).

The proposed quality-guided fusion scheme (from now on also referred to as SVMQ) is based on using the
quality vector q = [q1, . . . , qR]′ as follows (the bimodal case R = 2 is described, generalization to the multimodal
case is under investigation):

1. (SVMQ Training) An initial fusion scheme (SVM) is trained as described in Sect. 2.1 by using

Ci = C

(

qi,1qi,2

Q2
max

)α1

(10)

where qi,1 and qi,2 are the components of the quality vector qi associated with training sample (xi, yi)
and C is a positive constant. As a result, the higher the overall quality of a multimodal training score



the higher its contribution to the fusion scheme. Additionally, two SVMs of dimension one (SVM1 and
SVM2) are trained by using training data from respectively first and second traits. Similarly to Eq. (10),
Ci = C(qi,j/Qmax)α1 for SVMj with j = 1, 2.

2. (SVMQ Authentication Phase) At this step, the three above-mentioned classifiers SVM, SVM1 and SVM2

are trained (i.e., the combining functions fSVM(·), fSVM1
(·) and fSVM2

(·) introduced in (7) are available).
An input multimodal biometric sample with quality vector qT = [qT,1, qT,2]

′
(suppose qT,1 > qT,2, otherwise

interchange indexes) claims an identity and thus generates a multimodal similarity score xT = [xT,1, xT,2]
′.

The combined quality-based similarity score is computed as follows

fSVMQ
(xT ) = βfSVM1

(xT,1) + (1 − β)fSVM(xT ) (11)

where

β =

(

qT,1 − qT,2

Qmax

)α2

(12)

As a result, the final fusion strategy is a quality-based trade-off between not using and using low quality
traits.

3. UNIMODAL SUBSYSTEMS

3.1. Speaker Verification Subsystem

For the experiments reported in this paper, the GMM-based speaker verification system from Universidad Po-
litecnica de Madrid used in the 2002 NIST Speaker Recognition Evaluation has been used.18 Below we briefly
describe the basics.23

Feature extraction. Short-time analysis of the speech signal is carried out by using 20 ms Hamming windows
shifted 10 ms. For each analysis window t ∈ {1, 2, . . . , T}, a feature vector vt based on Mel-Frequency
Cepstral Coefficients (MFCC) and including first and second order time derivative approximations is gener-
ated. Moreover, the feature vectors V = {v1,v2, . . . ,vT } are supposed to be drawn from a user-dependent
Gaussian Mixture Model λ which is estimated in the enrollment phase via MAP adaptation of a Universal
Background Model λUBM . For our tests, the UBM is a text-independent 128 mixture GMM which was
trained by using approximately 8 hours of Spanish mobile speech data (gender balanced).

Pattern comparison. Given a test utterance parameterized as V and a claimed identity modeled as λ, a
matching score x′

voice is calculated by using the log-likelihood ratio

x′

voice = log (p [V |λ]) − log (p [V |λUBM ]) (13)

Score normalization. In order to generate a similarity score xvoice between 0 and 1, the matching score x′

voice

is further normalized according to

xvoice =
1

1 + e−cvoice·x
′

voice

(14)

The parameter cvoice has been chosen heuristically on mobile speech data not used for the experiments
reported here.



3.2. Fingerprint Verification Subsystem

For the experiments reported in this paper, a minutiae-based fingerprint verification system has been used.17

Below we summarize the basics.24

Image enhancement. The fingerprint ridge structure is reconstructed according to: i) grayscale level nor-
malization, ii) orientation field calculation,25 iii) interest region extraction, iv) spatial-variant filtering
according to the estimated orientation field, v) binarization, and vi) ridge profiling.

Feature extraction. The minutiae pattern is obtained from the binarized profiled image as follows: i) thinning,
ii) removal of structure imperfections from the thinned image, and iii) minutiae extraction. For each
detected minutia, the following parameters are stored: a) the x and y coordinates of the minutia, b) the
orientation angle of the ridge containing the minutia, and c) the x and y coordinates of 10 samples of the
ridge segment containing the minutia. An example fingerprint image from MCYT Database,26 the resulting
binary image after image enhancement, the detected minutiae superimposed on the thinned image and the
resulting minutiae pattern are shown respectively in Fig. 1 from left to right.

Figure 1. Fingerprint feature extraction process.

Pattern comparison. Given a test and a reference minutiae pattern, a matching score x′

finger is computed.
First, both patterns are aligned based on the minutia whose associated sampled ridge is most similar. The
matching score is computed then by using a variant of the edit distance on polar coordinates and based
on a size-adaptive tolerance box. When more than one reference minutiae pattern per client model are
considered, the maximum matching score obtained by comparing the test and each reference pattern is
used.

Score normalization. In order to generate a similarity score xfinger between 0 and 1, the matching score
x′

finger is further normalized according to

xfinger = tanh
(

cfinger · x
′

finger

)

(15)

The parameter cfinger has been chosen heuristically on fingerprint data not used for the experiments
reported here.

4. EXPERIMENTS

4.1. Database Description and Protocol

Cellular speech data consist of short utterances (the mobile number of each user). 75 users have been acquired,
each one of them providing 10 utterance samples from 10 calls (within a month interval). The first 3 utterances



are used as voice modelling training data and the other 7 samples are used as client test data. The recordings
were carried out by a dialogue-driven computer-based acquisition process, and data were not further supervised.
Moreover, 10 real impostor attempts (i.e., each impostor knew the mobile number and the way it was pronounced
by the user he/she was forgering) per user are used as testing data. Taking into account the automatic acquisition
procedure and the highly skilled nature of the impostor data, near worst-case scenario has been prevailing in our
experiments.

Fingerprint data from MCYT corpus has been used.26 Below, some information related to the experiments
we have conducted is briefly described.

MCYT fingerprint subcorpus comprises 330 individuals acquired at 4 different Spanish academic sites by
using high resolution capacitive and optical capture devices. For each user, the 10 prints were acquired under
different acquisition conditions and levels of control. As a result, each individual provided a total number of 240
fingerprint images to the database (10 prints × 12 samples/print × 2 sensors/sample).

Only the index fingers of the first 75 users in the database are used in the experiments. 10 print samples
(optical scanner) per user are selected, 3 of them (each one from a different control level) are used as fingerprint
modelling training data and the other 7 are used as testing data. We have also considered a near worst-case
scenario using for each client the best 10 impostor fingerprint samples from a set of 750 different fingerprints.

All fingerprint images have been supervised and labelled according to the image quality by a human expert.17

Basically, each different fingerprint image has been assigned a subjective quality measure from 0 (lowest quality)
to 9 (highest quality) based on image factors like: incomplete fingerprint, smudge ridges or non uniform contrast,
background noise, weak appearance of the ridge structure, significant breaks in the ridge structure, pores inside
the ridges, etc. Fig. 4.1 shows four example images and their labelled quality.

Figure 2. Fingerprint images from MCYT corpus. Quality labelling from left to right: 0, 3, 6 and 9.

As a conclusion, data for evaluating the proposed fusion strategies consist of 75×7 client and 75×10 impostor
bimodal attempts in a near worst-case scenario.

4.2. Multimodal Experimental Procedure

Multimodal authentication systems are usually compared with the baseline unimodal systems they consist
of.4, 5, 8, 9, 11, 12, 15 As recently pointed out in a panel discussion on multi-biometrics,27 in order to reveal the
benefits of using a number of different modalities, a more fair comparison between unimodal and multimodal
systems should be based on using as many probe samples in the unimodal system as number of modalities in
the multimodal scheme. We have adhered to this philosophy by combining the different probe samples (two in
the experiments that follows) also with a trained SVM.



Several methods have been described in the literature in order to maximize the use of the information
embedded in the training samples during a test.20 For error estimation in multimodal authentication systems,
variants of jackknife sampling using the leave-one-out principle are a common choice.11, 28 In this work, a variant
of bootstrap sampling has been used:14, 15

Multi-Modal Fusion: Bootstrap data sets have been created by randomly selecting M users from the training
set with replacement. This selection process have been independently repeated 200 times to yield 200
bootstrap data sets. Each data set is used then to generate a user-independent fusion rule. Testing is
finally performed on the remaining users not included in each bootstrap data set. Errors on all bootstrap
data sets all finally averaged.

Multi-Probe Fusion: For each user and considering one of the two biometric traits, 7 random matches between
genuine scores and 10 random matches between impostor scores are computed (not permitting a match
between a score and itself) so as to obtain 7 genuine and 10 impostor score pairs each one corresponding to
two independent probe attempts. The two attempts are combined by using the same procedure described
for multi-modal fusion.

For the experiments reported in the following, the problem in Eq. (5) subject to (6) has been solved by using
an interior point optimization solver. C = 100 has been used in all tests.

Error rates are subsequently given either at the so-called Equal Error Rate (EER), i.e., the specific point
attained when False Acceptance and False Rejection errors coincide,29 or trading off False Acceptance and False
Rejection errors by means of DET plots.30

4.3. Results

Verification performance results of unimodal and SVM-based multimodal systems without signal quality are
plotted in Fig. 3 for M = 20 clients in the SVM training set.

In the following, the proposed quality-guided fusion scheme is studied. Regarding the quality measures, we
have used the quality labels in MCYT database linearly normalized into the range [0, 2] for fingerprint images.
In case of voice utterances, uniform quality q = 1 is used in all cases.
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Figure 3. Verification performance of unimodal and SVM-based multimodal systems without signal quality.
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Figure 4. Effects of varying parameters α1 (a) and α2 (b) on verification performance.

The effects on the verification performance when parameters α1 and α2 vary are first explored in Fig.4.

In Fig. 4 (a) verification performance of the bimodal authentication system is shown for increasing α1 (i.e.,
increasing confidence on high quality multimodal training scores), while α2 → ∞ so as to cancel the trade off in
Eq. (11). Worth noting, a maximum of performance of 1.45% EER is obtained for α1 = 0.5.

In Fig. 4 (b) verification performance of the bimodal authentication system is shown for increasing α2 (as α2

decreases, the confidence on high quality test traits increases), while fixing α1 = 0.5. A maximum of performance
of 1.35% EER is obtained for α2 = 1.
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Figure 5. Effects of the number of clients in SVM training set on verification performance and DET plots with (SVMQ)
and without (SVM) quality signals.
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Figure 6. Training/testing scatter plot and decision boundaries for SVM fusion schemes with and without quality signals.

In the last experiment, we study the influence of increasing the number of clients M in the SVM training set
over the verification performance. As it is shown in Fig. 5 (a), the error rate decreases monotonically with the
number of clients in the SVM training set. In particular, a fast decay occurs for the first 10 clients (specially in
the case the quality signals are used) and small improvements are obtained for more than 30 users. As can be
observed, the proposed quality-based fusion scheme behaves particularly well in small training size conditions.
Verification performance trade off plots with and without quality signals for M = 20 are given in Fig. 5 (b).

Finally, some examples that may provide an intuitive idea about how the fusion scheme is adapted depending
on the image quality of the input fingerprints are shown. In particular, two different data sets of the bootstrap
error estimation process are depicted in in Fig. 6 (a) and (b) respectively. User-independent decision boundaries
(i.e., fSVM(x) = 0 and = fSVMQ

(x) = 0) have been included. In the case the score quality is considered, we
observe that the SVM is adapted so as to increase or reduce the weight of the fingerprint score based on the
fingerprint quality: the higher the image quality the higher the fingerprint weight and the lower the quality the
lower the weight.

5. CONCLUSIONS

A kernel-based fusion scheme has been introduced. This scheme is based on SVM classifiers, trade-off coefficients
introduced in the standard SVM training and testing procedures, and quality measures of the input biometric
signals. The elements of a authentication application based on voice and fingerprint data have been described
and some experiments using this prototype on real data have been reported.

In first place, the benefits of the combination of the two modalities are explored by using a novel experimental
procedure comparing multi-modal verification performance tests with multi-probe tests of the individual subsys-
tems. As a first result, verification performance of multi-probe individual systems (4.40% and 2.70% EER for
fingerprint and voice subsystems using two probe samples) is improved by the bimodal system (1.65% EER), so
the benefits are revealed. Appropriate selection of the parameters of the proposed scheme on the above prototype
application leads to a quality-based fusion scheme outperforming the raw fusion strategy without considering
signal quality. In particular, a relative improvement of 18% is obtained for small SVM training set size by using
only fingerprint quality labels.

Future work includes the investigation of automatic quality measures for the different audio- and video-
based biometric signals,21, 22 the generalization of the proposed scheme to the case of combining more than two
modalities and the comparison of the reported scheme with other quality-based strategies.15
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