
Gaussian/Laplacian pyramids. 
 
 
1. Downsampling and upsampling 
When you compute the Gaussian pyramid (GP) you have to make images increasingly small (in size) 
(downsample, see Figure 1) and when you compute the Laplacian pyramid (LP) you have to make one GP
image larger (upsampling, Fig. 2) before subtracting two consecutive images of the Gaussian pyramid. 
 
 
 
            x[n]            Low-pass filter       xl[n]                                       y[n]=xl[nM] 
                                Gain=1                                         ↓M 
 sample period T     Cutoff=π/M                                                       sample period T’=MT 
                                                                   
            Figure 1. Downsampling by an integer factor M, i.e. keep every M'th pixel horizontally/vertically. 
                               
                               
 
            x[n]                                           xe[n]         Low-pass filter       y[n]=xe[n/L] 
                                       ↑L                                    Gain=L 
 sample period T                                                     Cutoff=π/L        sample period T’=T/L 
 
            Figure 2. Upsampling by an integer factor L, i.e. "expand"  every pixel to L pixels.                 
 
When computing the Gaussian and the Laplacian pyramids M&L equal 2 giving a cutoff frequency of 
π/2 for both the filters, Fig. 1 and Fig. 2.  
The ideal low-pass filter can be approximated by a Gaussian function G(ω) = exp(-ω2/2σ2).  
For the cutoff frequency of π/2, say you are satisfied with theapproximation σ = σO. 
You know the filters in the frequency domain: Gaussian, σ = σO. Use the scaling property of the FT to 
find the corresponding filters in the spatial domain: Gaussian; σ =1/σO. 
 
Write a MATLAB script which generates the 1D gaussian filters in the spatial domain.  
That is generate one smoothing filter g1, and one interpolation filter g2. The smoothing filter is used 
before the subsampling of the image by 2, and the interpolation filter is used after the expansion of the 
image by 2. For this exercise use a σ  =1.0 for the spatial filters g1 and g2. 
 
s=1.0;  %std in the spatial domain 
x=-round(4*s):round(4*s);  %sample grid 
g1=exp(-(x.*x)/2/s/s);  %smoothing filter 
g1=g1/sum(g1);  %gain=1 
g2=2*g1;  %gain=2 
figure(1); subplot(2,1,1);stem(x,g1);  %show filters 
subplot(2,1,2);stem(x,g2); 
 
What is the result of smoothing and interpolation when the input function is a constant e.g. f=1? 
Hints: 1) compute it by Matlab:  
               f=ones(1,30);y=conv(f,g1);subplot(3,1,1);stem(f);subplot(3,1,2);stem(y); 
               fz=zeros(1,60); fz(1:2:60)= f; fzi=conv(fz,g2);subplot(4,1,1);stem(fz);subplot(4,1,2);stem(fzi);
           2) write down the scalar products  <f,g1> and <fz,g2> by hand when f=1. 
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Using your experience in 1D, write two (own) functions for (2D) images in MATLAB: shrink and expand.
  
The function shrink should do a shrinking by an integer factor M (↓M). It will take as input parameters an image 
I and the factor M, the output parameter S will be the shrinked image (S=shrink(I,M);).  
HINT:   What  is the size of  f (1:30) compared to   f(1:2:30) and  what does  the notation in the latter do?   
The function expand will do an expansion by an integer factor L (↑L). It will take as input parameters an 
image I and the factor L, whereas the output parameter E will be the expanded image (E=expand(I,L);)
where only every L'th point comes from I, the rest being zero.  
HINT:   What  is the size of  the expanded image if the L=2,  and the original size is 256x256?...if L=3?   
 
Use the image fmt of size 256 x 256. You can generate the fmt image by the function fmtest. 
You can use the command truesize in order to ensure that the picture size in pixels is the same on the 
screen as in the memory. (Matlab normally resizes images in order to give a ”nice” looking layout for 
displayed images). 
fmt=fmtest(256, [0.1*pi  0.3*pi]);  %generate the image fmt 
figure(2); imshow(fmt); truesize;  %and display in truesize 
What can you say about the  frequency content of the image fmt? 
 
Without smoothing, use the function shrink to downsample the image fmt by a factor 2.  
Display the result image. 
fmt_s2=shrink(fmt,2);  %shrink by 2 
figure(3);imshow(fmt_s2);truesize;  %and display 
Explain the effect of downsampling without smoothing. 
 
First smooth the image fmt using filter g1 and  then use the function shrink to downsample the 
smoothed image by a factor 2.  
Display the result image. 
y=conv2(conv2(fmt,g1,’same’),g1’,’same’);  % first 2D smoothing 
fmtsmooth_s2=shrink(y,2);  %then shrink by 2 
figure(4);imshow(fmtsmooth_s2);truesize;  %and display 
Explain the effect of  smoothing and downsampling. 
 
2.  Compute and display the Gaussian pyramid 
Use the image fmt. Compute and display the Gaussian pyramid (fmt, y128, y64, and y32) up to a 
smallest image, say 32 x 32.   
You can use the gaussian smoothing filter g1, and the MATLAB-function shrink for this: 
 
fmt=fmtest(256,[0.1*pi 0.3*pi]);  %generate the image fmt 
%generate the Gaussian pyramid 
y256_s=conv2(conv2(fmt,g1,’same’),g1’,’same’);  %first 2D smoothing 
y128=shrink(y256_s,2);  %then shrink by 2 
 
y128_s=conv2(conv2(y128,g1,’same’),g1’,’same’);  %first 2D smoothing 
y64=shrink(y128_s,2);  %then shrink by 2 
 
y64_s=conv2(conv2(y64,g1,’same’),g1’,’same’);  %first 2D smoothing 
y32=shrink(y64_s,2);  %then shrink by 2 
 
%display the Gaussian pyramid in truesize 
figure(5); imshow(fmt); truesize; 
figure(6); imshow(y128); truesize; 
figure(7); imshow(y64); truesize; 
figure(8); imshow(y32);truesize; 
 
How do you interpret the images in the Gaussian pyramid? 
 
  
 



3. Compute and display the Laplacian pyramid Compute the Laplacian pyramid (L256, L128, L64) 
from the Gaussian pyramid and display it.

Use the MATLAB-function expand and the gaussian interpolation filter g2. 

e128_1=expand(y128,2);  %first expand 
e128_2=conv2(conv2(e128_1,g2,’same’),g2’,’same’);  %then interpolate 
L256=fmt-e128_2;  %take the difference 

e64_1=expand(y64,2);  %first expand 
e64_2=conv2(conv2(e64_1,g2,’same’),g2’,’same’);  %then interpolate 
L128=y128-e64_2;  %take the difference 

e32_1=expand(y32,2);  %first expand 
e32_2=conv2(conv2(e32_1,g2,’same’),g2’,’same’);  %then interpolate 
L64=y64-e32_2;  %take the difference 

%display the Laplacian pyramid in truesize 
figure(9); imshow(L256); colormap(gray); truesize; 
figure(10); imshow(L128); colormap(gray); truesize; 
figure(11); imshow(L64); colormap(gray); truesize; 

How do you interpret the images in the Laplacian pyramid? 
Why do  we have the factor 4? 
Try to see... 

Final questions: 
Why do we have to smooth the image before downsampling? 
How do we upsample an image to get an expanded image and why  do we "smooth"?  (Hint: interpolation) 




