
Gaussian/Laplacian pyramids.

1. Downsampling and upsampling
When you compute the Gaussian pyramid (GP) you have to make images increasingly small (in size)
(downsample, see Figure 1) and when you compute the Laplacian pyramid (LP) you have to make one GP
image larger (upsampling, Fig. 2) before subtracting two consecutive images of the Gaussian pyramid.

 x[n] Low-pass filter xl[n] y[n]=xl[nM]
 Gain=1 ↓M
 sample period T Cutoff=π/M sample period T’=MT

 Figure 1. Downsampling by an integer factor M, i.e. keep every M'th pixel horizontally/vertically.

 x[n] xe[n] Low-pass filter y[n]=xe[n/L]
 ↑L Gain=L
 sample period T Cutoff=π/L sample period T’=T/L

 Figure 2. Upsampling by an integer factor L, i.e. "expand" every pixel to L pixels.

When computing the Gaussian and the Laplacian pyramids M&L equal 2 giving a cutoff frequency of
π/2 for both the filters, Fig. 1 and Fig. 2.
The ideal low-pass filter can be approximated by a Gaussian function G(ω) = exp(-ω2/2σ2).
For the cutoff frequency of π/2, say you are satisfied with theapproximation σ = σO.
You know the filters in the frequency domain: Gaussian, σ = σO. Use the scaling property of the FT to
find the corresponding filters in the spatial domain: Gaussian; σ =1/σO.

Write a MATLAB script which generates the 1D gaussian filters in the spatial domain.
That is generate one smoothing filter g1, and one interpolation filter g2. The smoothing filter is used
before the subsampling of the image by 2, and the interpolation filter is used after the expansion of the
image by 2. For this exercise use a σ =1.0 for the spatial filters g1 and g2.

s=1.0; %std in the spatial domain
x=-round(4*s):round(4*s); %sample grid
g1=exp(-(x.*x)/2/s/s); %smoothing filter
g1=g1/sum(g1); %gain=1
g2=2*g1; %gain=2
figure(1); subplot(2,1,1);stem(x,g1); %show filters
subplot(2,1,2);stem(x,g2);

What is the result of smoothing and interpolation when the input function is a constant e.g. f=1?
Hints: 1) compute it by Matlab:
 f=ones(1,30);y=conv(f,g1);subplot(3,1,1);stem(f);subplot(3,1,2);stem(y);
 fz=zeros(1,60); fz(1:2:60)= f; fzi=conv(fz,g2);subplot(4,1,1);stem(fz);subplot(4,1,2);stem(fzi);
 2) write down the scalar products <f,g1> and <fz,g2> by hand when f=1.

josef
Typewritten Text

josef
Typewritten Text
0

Using your experience in 1D, write two (own) functions for (2D) images in MATLAB: shrink and expand.

The function shrink should do a shrinking by an integer factor M (↓M). It will take as input parameters an image
I and the factor M, the output parameter S will be the shrinked image (S=shrink(I,M);).
HINT: What is the size of f (1:30) compared to f(1:2:30) and what does the notation in the latter do?
The function expand will do an expansion by an integer factor L (↑L). It will take as input parameters an
image I and the factor L, whereas the output parameter E will be the expanded image (E=expand(I,L);)
where only every L'th point comes from I, the rest being zero.
HINT: What is the size of the expanded image if the L=2, and the original size is 256x256?...if L=3?

Use the image fmt of size 256 x 256. You can generate the fmt image by the function fmtest.
You can use the command truesize in order to ensure that the picture size in pixels is the same on the
screen as in the memory. (Matlab normally resizes images in order to give a ”nice” looking layout for
displayed images).
fmt=fmtest(256, [0.1*pi 0.3*pi]); %generate the image fmt
figure(2); imshow(fmt); truesize; %and display in truesize
What can you say about the frequency content of the image fmt?

Without smoothing, use the function shrink to downsample the image fmt by a factor 2.
Display the result image.
fmt_s2=shrink(fmt,2); %shrink by 2
figure(3);imshow(fmt_s2);truesize; %and display
Explain the effect of downsampling without smoothing.

First smooth the image fmt using filter g1 and then use the function shrink to downsample the
smoothed image by a factor 2.
Display the result image.
y=conv2(conv2(fmt,g1,’same’),g1’,’same’); % first 2D smoothing
fmtsmooth_s2=shrink(y,2); %then shrink by 2
figure(4);imshow(fmtsmooth_s2);truesize; %and display
Explain the effect of smoothing and downsampling.

2. Compute and display the Gaussian pyramid
Use the image fmt. Compute and display the Gaussian pyramid (fmt, y128, y64, and y32) up to a
smallest image, say 32 x 32.
You can use the gaussian smoothing filter g1, and the MATLAB-function shrink for this:

fmt=fmtest(256,[0.1*pi 0.3*pi]); %generate the image fmt
%generate the Gaussian pyramid
y256_s=conv2(conv2(fmt,g1,’same’),g1’,’same’); %first 2D smoothing
y128=shrink(y256_s,2); %then shrink by 2

y128_s=conv2(conv2(y128,g1,’same’),g1’,’same’); %first 2D smoothing
y64=shrink(y128_s,2); %then shrink by 2

y64_s=conv2(conv2(y64,g1,’same’),g1’,’same’); %first 2D smoothing
y32=shrink(y64_s,2); %then shrink by 2

%display the Gaussian pyramid in truesize
figure(5); imshow(fmt); truesize;
figure(6); imshow(y128); truesize;
figure(7); imshow(y64); truesize;
figure(8); imshow(y32);truesize;

How do you interpret the images in the Gaussian pyramid?

3. Compute and display the Laplacian pyramid Compute the Laplacian pyramid (L256, L128, L64)
from the Gaussian pyramid and display it.

Use the MATLAB-function expand and the gaussian interpolation filter g2.

e128_1=expand(y128,2); %first expand
e128_2=conv2(conv2(e128_1,g2,’same’),g2’,’same’); %then interpolate
L256=fmt-e128_2; %take the difference

e64_1=expand(y64,2); %first expand
e64_2=conv2(conv2(e64_1,g2,’same’),g2’,’same’); %then interpolate
L128=y128-e64_2; %take the difference

e32_1=expand(y32,2); %first expand
e32_2=conv2(conv2(e32_1,g2,’same’),g2’,’same’); %then interpolate
L64=y64-e32_2; %take the difference

%display the Laplacian pyramid in truesize
figure(9); imshow(L256); colormap(gray); truesize;
figure(10); imshow(L128); colormap(gray); truesize;
figure(11); imshow(L64); colormap(gray); truesize;

How do you interpret the images in the Laplacian pyramid?
Why do we have the factor 4?
Try to see...

Final questions:
Why do we have to smooth the image before downsampling?
How do we upsample an image to get an expanded image and why do we "smooth"? (Hint: interpolation)

