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The current text
<—–
The replacement text

%%%%%%%%%%%%%% Page 56, Table before Ex. 3.7

A2 A3 A2

<—–

A2 A3 A4

%%%%%%%%%%%%%% Page 63, Eq. (5.7)

1
i(m− n)ω1

[exp(i(m− n)ω1T )− exp(i0)] = 0

<—–

1
i(m− n)ω1

[exp(i(m− n)π)− exp(−i(m− n)π)] = 0

%%%%%%%%%%%%%% Page 215, bottom

Notice that e(θ) is a norm (in the sense of L2), and from this it follows that when
e(θ)...
<—–
Notice that e(θ) is a norm (in the sense of L2), and from this it follows, because of
the nullness property of norms Eq. (3.17), that when e(θ)...

%%%%%%%%%%%%%% Page 233, eq. (11.101)

= 2πσ2

<—–

= 2πσ−2
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The typo affects equations (11.116)-(11.118) of a proof where the theorem is used.
However, because it concerns a multiplicative constant, and the theorem is duly ap-
plied (including the typo), the conclusion, (11.119), is not affected. Nevertheless, the
corrections are given as below.

%%%%%%%%%%%%%% Page 242, eq. (11.116)

=

<—–

= σ−4
1

%%%%%%%%%%%%%% Page 242, eq. (11.117)
The replacement applies (only) the first occurence of “=” in the equation:

=

<—–

= σ−4
1

%%%%%%%%%%%%%% Page 243, eq. (11.118)
The replacement applies only the last row of the equation:

= (σ2
1 + σ2

2)

<—–

= (σ2
1 + σ2

2)−1

%%%%%%%%%%%%%% Page 259
and the third element will be equal to the speed : v



3

<—–
and the third element will be equal to the speed v in the image plane:

%%%%%%%%%%%%%% Page 259
will then equal to a :
<—–
will then equal to a:

%%%%%%%%%%%%%% Page 259
and the third element will be equal to the speed : v
<—–
and the third element will be equal to the speed v in the image plane:

%%%%%%%%%%%%%% Page 259

v = −va = − kt

k2
x + k2

y

(kx, ky)T

<—–

v = va = − kt

k2
x + k2

y

(kx, ky)T

%%%%%%%%%%%%%% Page 262
When the line sets translate with a common velocity vector v so that a point at
<—–
When the line sets translate with a common velocity vector v, a point at

%%%%%%%%%%%%%% Page 267

s∗ = s + δt[A0s + v0] ⇒ f(x, y, t) = g(s + δt[A0s + v0])

<—–

s∗ = s + δt[A0s + v0] ⇒ f(x, y, t) = g(s + δt[A0s + v0])

%%%%%%%%%%%%%% Page 270, eq. (12.81)
the spatio–temporal image of such moving particles,x where f is the gray intensity.
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<—–
the spatio–temporal image of such moving particles, where f is the gray intensity.

%%%%%%%%%%%%%% Page 271
The solution exists if the matrix
<—–
That is, the existence of an inverse of the matrix

%%%%%%%%%%%%%% Page 271 after ”(12.103)” add
+ is crucial for the solution.

%%%%%%%%%%%%%% Page 281 first line
where (

−−−→
xOP )C = (X, Y, Z)T and

<—–
where (

−−→
OP )C = (X, Y, Z)T and

%%%%%%%%%%%%%% Page 288 Eqs. (13.49) and (13.50) (the x, and y...)

XM11+ YM12+ ZM13+M14−x(XM31+YM32+ZM33 + M34)=0
XM21+Y M22+ZM23+M24−y(XM31+YM32+ZM33 + M34)=0

<—–

XM11+ YM12+ ZM13+M14−c(XM31+YM32+ZM33 + M34)=0
XM21+Y M22+ZM23+M24−r(XM31+YM32+ZM33 + M34)=0

%%%%%%%%%%%%%% Page 291 the M11, M12, M13 in the equation of r0, the
cx, and cy

(M11,M12,M13)

M31

M32

M33

 = c0

. (M11,M12,M13)

M31

M32

M33

 = r0

M2
11 + M2

12 + M2
13 = f2

x + c2
x

.M2
21 + M2

22 + M2
23 = f2

y + c2
y.
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<—–

(M11,M12,M13)

M31

M32

M33

 = c0

(M21,M22,M23)

M31

M32

M33

 = r0

M2
11 + M2

12 + M2
13 = f2

x + c2
0

M2
21 + M2

22 + M2
23 = f2

y + r2
0
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%%%%%%%%%%%%%% Page 293 Fig. 13.7, Marked Digital Image Origins, as
shown

%%%%%%%%%%%%%% Page 295 Eq. (13.73), last equality

(
−−−→
OLP )LC = ML

E(
−−−→
OWP )WH = ML

Ep

<—–

(
−−−→
OLP )LC = ML

E(
−−−→
OWP )WH = ML

Ep = [RL, tL]p

%%%%%%%%%%%%%% Page 295 Eq. (13.7)

p̃ = (
−−−→
OLP )LCH =

[
(
−−−→
OLP )LC :

1

]
<—–

p̃ = (
−−−→
OLP )LCH =

[
(
−−−→
OLP )LC

1

]

%%%%%%%%%%%%%% Page 297 before the lemma
Eq. (13.72). We summarize our findings as the following two lemmas.
<—–
Eqs. (13.72) and (13.85). We summarize our findings as the following two lemmas.

%%%%%%%%%%%%%% Page 299 before Eq.(13.92)
fitted plane, normal whose now represents the sought position
<—–
fitted plane, whose normal now represents the sought position

%%%%%%%%%%%%%% Page 299, right after (13.119) insert
where E = TR.
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%%%%%%%%%%%%%% Page 304 Eqs. (13.114)-(13.116),

(
−−−−−→
O′LP ′L)LD = ML

I (
−−−−−→
O′LP ′L)L

where ML
I is the matrix encoding the intrinsic parameters of the left camera. Simi-

larly, we obtain

(
−−−−−→
O′RP ′R)RD = MR

I (
−−−−−→
O′RP ′R)R

The epipolar equation (13.112) can then be denoted as

(
−−−−−→
O′RP ′R)T

RDF(
−−−−−→
O′LP ′L)LD = 0,

<—–

(
−−−−→
CLP ′L)LD = ML

I (
−−−−→
CLP ′L)L

where ML
I is the matrix encoding the intrinsic parameters of the left camera. Simi-

larly, we obtain

(
−−−−→
CRP ′R)RD = MR

I (
−−−−→
CRP ′R)R

The epipolar equation (13.112) can then be denoted as

(
−−−−→
CRP ′R)T

RDF(
−−−−→
CLP ′L)LD = 0,

%%%%%%%%%%%%%% Page 305 the lines 4 and 5,

(
−−−−−→
O′LP ′L)LD is known, then by substituting it in Eq. (13.116) one obtains the search

line on which the corresponding unknown point (
−−−−−→
O′RP ′R) must lie. <—–

(
−−−−→
CLP ′L)LD is known, then by substituting it in Eq. (13.116) one obtains the search

line on which the corresponding unknown point (
−−−−→
CRP ′R) must lie.

%%%%%%%%%%%%%% Page 305 Eq. (13.121),

0 = (pR)T F pL

= cRcLF11 + cRrLF12 + cRF13 +
+rRcLF21 + rRrLF22 + rRF23 +
+ cLF31 + rLF32 + F33 = 0

<—–
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0 = (pR)T F pL = (cR, rR, 1)F(cL, rL, 1)T

= cRcLF11 + cRrLF12 + cRF13 +
+rRcLF21 + rRrLF22 + rRF23 +
+ cLF31 + rLF32 + F33 = 0

%%%%%%%%%%%%%% p. 307 begining of Paragraph 1.

Naturally, the epipolar line represented by (
−−−−→
O′LEL)LD is given by the last row of

V, whereas (
−−−−→
O′RER)RD is given by the last row of U.

<—–
Naturally, the epipolar line represented by (

−−−−→
O′LEL)LD, Eq. (13.120), is given by

the least (significant) eigenvector of FT F, whereas (
−−−−→
O′RER)RD is given by the

least (significant) eigenvector of FFT .

%%%%%%%%%%%%%% Page 332 Eq. (15.19), Expression 2, fK

S =
1
K

∑
k

fkfT
k =

1
K

[f1, · · · , fK ]

 fT
1
...

fT
K

 =
1
K

OOT

<—–

S =
1
K

∑
k

fkfT
k =

1
K

[f1, · · · , fK ]

 fT
1
...

fT
K

 =
1
K

OOT
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%%%%%%%%%%%%%% Page 333 Eq. (15.21), Expression of Õ

Õ = [f̃1, · · · , f̃K ], O = [f1, · · · , fK ], BN = [ψ1, · · · ,ψN ]

<—-

Õ = [f̃1, · · · , f̃N ], O = [f1, · · · , fK ], BN = [ψ1, · · · ,ψN ]

%%%%%%%%%%%%%% Page 334 Eq. (15.27), Expression of Õ
where the eigenvalues are sorted as λ(1) ≥ · · · ≥ λ(M). The new coordinates are given
by

Õ
T

= OT BN , with Õ = [f̃1, · · · , f̃N ].

<—-
where the eigenvectors are ordered according to their sorted eigenvalues as λ(1) ≥
· · · ≥ λ(M). The new coordinates are given by

Õ
H

= OHBN , with Õ = [f̃1, · · · , f̃K ].

%%%%%%%%%%%%%% Page 338 the Paragraph before Eq. (15.38)
the problems of vision can be effectively modeled¿ as
<—–
the problems of vision can be effectively modeled as


