Interactive Tutorial on Optical Flow Motion
Estimation

Stefan Karlsson, Ph.D., Josef Bigun, Ph.D.

Contact: stefan.karlsson987(at)gmail.com

Feb 2021, v1.07 (First version: June 2013)

1 Let’s get started

Start by running the script runMe. This will display interactive synthetic video,
with green arrows displaying the optical flow. Use the arrow keys and Q,A ,W,S,E,D,P
to modify the rendering as specified below.

e Arrow Keys: move the pattern around
e E/D: increase/decrease speed of rotation
e P(toggle): pauses rendering and calculations, all visualizations freeze.

e W/S: increase/decrease speed of motion along a predefined trajectory
(shaped like an 8)

e Q/A: increase/decrease lag time (delay) between frame-updates

As you interact with the keyboard, the title bar of the figure changes to indicate
the state of rendering.

runMe.m sets up the call to vidProcessing which is our interface with the
toolbox. The toolbox supports different sources of video. Instead of a synthetic
sequence, you can load a video by changing movieType as indicated in runMe.
Try the provided ‘LipVid.avi’ file:

in runMe.m
' '

in.movieType = 'lipVid.avi'; % assumes a file 'LipVid.avi'

in current folder.

It is recommended that you use a camera for this tutorial. If you are running
on windows you don’t need any toolboxes', just set:

in.movieType = 'camera'; %assumes a connected camera to your computer

If at any time during the tutorial you would like to see the principles applied
to real-world data, simply activate a different movieType input.

limage acquisition toolbox is recommended for all platforms, but you will get slower camera

input even without it on windows

mailto:stefan.karlsson987(at)gmail.com
josef
Highlight

josef
Highlight

2 Introduction

This tutorial is about motion in video; dense optical flow. W ith o ptical flow
we are interested in estimating motion at every position in the image. A good
example is provided as you call runMe .m with the default settings. Another way
to measure motion, that we do not deal with in this tutorial, is by tracking
points from one frame to the next. Sometimes, point tracking is called sparse
optical flow. With point tracking, we select (automatically or manually) points
over the video and display their new position for each subsequent frame. With
point tracking, we process positions in the image that change over time, whereas
with dense flow, the p ositions are fixed.

Our intent is to get new minds interested in the topics we love, but also
to advance the field by promoting t he use of good e ngineering a pproaches. At
the time of making the first version of t his t utorial (early 2013) a widespread
myth(in the computer vision community) was that dense optical flow can only
be achieved at extreme computational cost. This tutorial arrives with ease at
implementations that run in real-time, even in pure Matlab without using the
GPU. Estimating optical flow that is a ccurate enough, and stable and robust
for many real-world problems is easy.

This tutorial/toolbox is written/coded/maintained by Stefan Karlsson and
has come about through work done with Josef Bigun at CAISR, Halmstad Uni-
versity. It is intended as a free educational resource as well as a toolbox for
those experimenting with real-world motion algorithms.

2.1 Outline

This tutorial is centered on completing some code; about 10 lines in total. We
will work with 4 separate m-files, listed in the order you need to fix them:

1. grad3D.m, which is used to calculate the derivatives of the video sequence
(dx, dy, and dt).

2. DoEdgeStrength.m, which is used for edge detection.
3. FlowLK.m, which uses dx, dy and dt to calculate optical flow.
4. Flowl.m, which provides improvements to the flow estimation.

At this moment, however, you have working versions of all these four files in
your main folder. First thing to do is to remove the working m-files, and replace
them with the broken versions that are found in the folder "tutorialFiles". The
working files are your correct solutions, so you can review them if you get stuck.
The broken files wont make the application crash or perform chaotically, it will
simply result in the output derivatives and flow field to be zero.

http://islab.hh.se/mediawiki/Stefan_Karlsson
http://www2.hh.se/staff/josef/
http://islab.hh.se/mediawiki/Main_Page
http://www.hh.se
http://www.hh.se
josef
Highlight

3 Estimating derivatives - grad3D.m

We will denote partial derivatives as I, = %, I, = % and I; = %. Corre-

sponding numerical estimates in Matlab are denoted: dx, dy and dt.

The function header of grad3D shows 2 inputs, and 3 outputs:

% 1in grad3D.m
[dx, dy, dt] = grad3D (imNew, imPrev)
$calculates the 3D gradient from two images.

imNew and imPrev are the new and previous frames of the video respectively.

For derivatives: I, and I,, we can make use of 3-by-3 differential filters”,
sometimes referred to as central difference over a compact stencil. The simplest
way to estimate the I; derivative is by taking the difference between frames.

In grad3D.m the code labelled "L1" and "L2" in remarks are for you to fill
in. It is a question of using the conv2 function correctly. Finally, on the line
labeled "L3" you should use a difference of frames to estimate I;.

When you are done with the derivatives implementation, we can show the 3
component images and try to interpret them in real-time. This can be done by
setting the argument method inside of runlMe to:

in.method = 'gradient'; $makes the program visualize the gradient only

Re-run runMe.m, use the synthetic video.

Are the gradient component images as you expect them to be? Do you notice
a relation between dt and dx, dy images? Odds are that you notice something
of the relationship often called "optical flow constraint"(read on).

3.1 Optical Flow Constraint

An important assumption to most optical flow algorithms, is the brightness
constancy constraint(BCC). This means that the brightness of a point remains
constant from one frame to the next, even though its position will not. A first
order approximation of the BCC is sometimes called the optical flow constraint
equation. It can be written as:

I+ vl +uly =0 (1)

where ¢ = {v,u} is the motion we are trying to estimate with optical flow
algorithms. We can also write ¥ = —|9|{cos(¢), sin(¢)}, where ¢ is the angular
direction of the motion, and write the optical flow constraint equation as:

I, = ~[8] (cos(9) L, + sin(6)1,) ®)

The quantity (cos(¢)l, + sin(¢)I,) is found in the r.h.s, and is what we call
a ‘directional derivative’. It is the rate of change in a particular direction ¢°.

2The well-used Sobel operator is a special case of this, where the filter sum is not normalized
and contains only integers (1,2,4) of basis 2
3In fact, Iy and I are both directional derivatives with ¢ = 0 and ¢ = 90°

https://en.wikipedia.org/wiki/Sobel_operator

Now, run again the script runMe, with the same settings as before (use synthetic
image sequence), observe the derivative component images.

Does the optical flow constraint equation seem to hold? Does I; resemble a
directional derivative? Does it look like a linear combination of I, and I,,?

Set the motion of the pattern to be along the pattern 8, using keys W /S. The
title bar of the figure contains text indicating the parameters of the rendering.
Set the ‘speed’ to be equal to 1. Pause the motion (keyboard button P) as
the pattern is moving at an angle ¢ = w/4 = 45° (this is when the pattern
is moving towards the lower right corner” as indicated in figure 1. When
paused, enter the following code into the matlab command prompt:

% We display the time derivatives (first)

subplot (1,2,1);
imagesc(dt); title('dt');
colormap gray;axis image;

¥ ...Next to it we display a specific combination of the spatial derivatives
phi = pi/4; subplot(1l,2,2);
imagesc (- (cos (phi) *dx+ (sin (phi) *dy)));

colormap gray;axis image;

The images should be similar according to Eq. 2.

Figure 1: the position of the pattern as it is moving with direction ¢ = 45°. This is what you
should see when pausing (time it well). Red arrow shows the motion vector.

Now lets experiment with faster motions. Set the speed parameter to 2.5,
by hitting W. Get an idea of how the derivatives change as a result. Pausing
the figure at the right time may now be tricky. An extra lag time can be added
by hitting Q, while A reduces it. Pause just as the motion is ¢ = 45° as before,
and run the same code as before to display dt and cos(phi)*dx+sin(phi)*dy.

This time the images are no longer very similar. The optical flow constraint
is valid as an approximation only when the motion is small.

4remember that matlab has its origin at the top left corner of the figure, and that the y

axis is pointing downwards

Redo the same experiment once more, but this time change the scale (the res-
olution) at which the gradient is calculated. The toolbox allows you to define
any resolution of the input video by the argument vidRes. Default height and
width of the video is 128, lets make that half by (in runMe.m):

% [Height wWidth]:
in.vidRes = [64 64]; $video resolution, for camera and synthetic input

Run the experiment at a higher motion as before. With the coarser scale, the two
images will once more be similar. As we reduce the size of the video resolution,
large motions become small motions(as measured in pixels/s). However, notice
that the video has far less detail in it.

3.1.1 Tuning the gradient filters

There are many ways of estimating gradients, and what is the best method
depends on what we wish to use it for, and what demands we have on our final
algorithm in terms of stability, accuracy and timeliness.

The optical flow constraint equation should be a guiding principle for testing
any single gradient estimation algorithm when the aim is motion. This can be
done in the fashion outlined in section 3.1, and does not need for any explicit
optical flow to be calculated.

On that topic, we can once more re-visit grad3d.m. If you look into the
original file (that occupied the main folder before you replaced it with the one
from "tutorial files"), it describes 2 more approaches of gradient estimation,
constructed for the optical flow constraint to hold better. They generally yield
better result in the end. In short, they add the following:

e Correctly centered spatio-temporal filtering. First approach does
not correspond to correctly centered filtering if one consider a spatio-
temporal volume. We can centre the filtering inbetween frames. This
corresponds to having the same stencil for all the gradient components
(3x3x2).

e Boundary effects. First approach gets edge effects near the image
boundary. To avoid this single-sided differences are applied near the
boundaries. This is similar to the built-in function gradient, except we
use wider kernels/stencils (3x3x2 in middle of image, 2x3x2 and 3x2x2 at
boundaries).

Feel free to implement any kind of gradient estimation you like and visualize
it with the toolbox. Just make sure that the size of dx, dy and dt are always
the same: identical to the frame-size of the video.

4 Edge filtering - DoEdgeStrength.m

The second coding task is to implement edge detection in the image sequence.
This is a common task in video processing, both for motion tasks as well as a

range of other computer vision challenges. The function DoEdgeStrength.m is
there for this task. The function header shows us 4 inputs, and a single output:

function edgeIm = DoEdgeStrength (in, imNew, imPrev,edgelm) ‘

As input we have the new and the previous video frames (imNew, imPrev). We
also have the structure in, which contains all the parameters set in runMe .m, as
well as the previous edgeIm that was generated.

The image edgeIm will contain the strength of edges as given by the 2D
gradient VoI(Z) = {I,(Z), I,(Z)}. The edge strength is defined as the value:

P=|Vol|= /12 +1}.
This first implementation of DoEdgeStrength will be just 2 lines. When you

are done, in order to view the edge detection in realtime® change the argument
in the runMe script:

in.Method = 'edge';

4.1 Gamma Correction

What is meant by an edge depends on the application. A way to change the
sensitivity of our detector and let more candidates be highlighted is by P =
|VoI|Y = (12 + IyQ)% Try implementing this, and then experiment with a few
different ~ values. In the original version of DoEdgeStrength.m, there is the
possibility to modify the v parameter interactively using the keyboard (R/F).

4.2 Temporal integration

An important topic for optical flow is temporal integration. Many algorithms
for flow estimation are improved by incorporating more images of the sequence.
Storing more images of the video sequence is not desirable but there are other
ways. One trick is a recursive filter’. Before we approach optical flow, lets try
this principle on our edge detection algorithm.

5this is especially fun if you can get a camera working, and viewing yourself
Sfirst order linear recursive filter to be exact

DoEdgeStrength receives 4 arguments dx, dy, in and edgeIm(the previous
output of DoEdgeStrength). The idea: lets add the previous value to the current
estimate. We denote our integrated edge strength at time ¢t as P(z,y,t):

P(m,y,t) = a[:’(amy,t - 1)+ (1-a)P(z,y,t)

In DoEdgeStrength,]5(30, y,t — 1) is the input argument edgeIm, and « is
the input in.tIntegration. After you implement this, lets view the result with
a large temporal integration factor, by setting (in runMe):

in.Method
in.tIntegration

'edge';
0.9;

Having such a high integration is not very useful for edge detection, but if
you put it to a lower value, such as 0.2, you will see a reduced amount of noise.
This should be especially clear when you have a connected webcam, and with
low y values.

5 Aperture Problem

Any region 2 where a motion vector ¥ is to be estimated reliably must con-
tain "nice texture". In the synthetic test sequence, 4 examples textures are
given within the support of 4 separate disks. Only one of the textures are
nice(checkerboard pattern), two are linear symmetric images (straight and curved
bars) and one is a constant value(just a disk).

In this context "bad textures" are regions that have either...

e constant gray value(no information), or..
e regions of linear symmetry(information in only one direction).

A region of constant value is bad for motion estimation because there is no
information to work with. How about the linearly symmetric textures? Why
are they so bad? Run the function:

‘Aperturelllustration;

In it, a region 2 is illustrated as a red circle that you can move around
by clicking in the figure. Mouse scroll, or keys Q/A changes its radius, and
W /S changes its boundary. A background circular motion is present of a linear
symmetric pattern. If you put your aperture in the middle of the image, then
it will be impossible to determine any true motion, except for the component
that is aligned with the gradients. Notice that if you bring your aperture to
cover parts of the edge of the pattern, you can almost instantly perceive the
true motion; the edges contain more directionality for your vision system to
work with.

We can say that "nice textures" are those with linearly independent 2D
gradients VoI (#;). In practical language, we must be sure that we do not have
a region of the kind we find in barber poles (fig 2). To see an animated version
of the barberpole illusion, type:

josef
Highlight

ApertureIllustration(2);

Figure 2: The barberpole illusion. A pattern of linear symmetry is wrapped around a cylinder,
and rotated. The true motion is rotation left or right but the perceived motion by the observer
is up or down

Whether a region is "nice" or "bad" depends on how big we make it. Making
a region bigger, makes it more likely to gather observations from the image
that provide new directional information. Making a region bigger will have the
drawback of reducing the resolution of the resulting optical flow, so a comprimise
is necessary:

e big region — better data,

e small region — better resolution.

6 Optical flow by D ifferences or Correlation

Simply formulated, our goal is to find where a pattern has gone toin the next
frame. The vector between the original location and the new location is the
velocity vector, or the optical flow. We ¢ an a nswer t he q uestion b y picking
“all” candidate patterns in the next frame and decide for the (location of the)
one which is most similar to the original pattern. Practically, picking candidate
patterns by cutting/copying one patch having the same size as the original patch
at a time is heavy computationally.

Instead, we shift the entire frame with a fixed vector, that we call (dzh, dyh)
in the software. The net effect is that we displace all candidate patches at the
same relative location in comparison to the original patch such that they are
aligned with the original patch. We save each displaced frame under a unique
identity, id in the software. The similarity of two patches can be evaluated in a
number of ways from displaced frames, though it is most common to use one of
the two comparison methods as follows.

e Norm of the difference between the pattern in the displaced frame and
the original pattern, that is eq. (12.110) of the book

e Correlation between the pattern in the Displaced Frame and the original
pattern, that is eq. (12.110) of the book

josef
Highlight

josef
Highlight

josef
Highlight

In the lab exercise you will have the opportunity to implement both. You
will need to fill in places of “FILL IN PLEASE” in two functions dfd.m and
correlation.m (in the directory tutorial Files. We refer to section 2.10 of the
book for theoretical exposure of the two, which of course are related to each
other fundamentally.

7 2D Structure Tensor

Whether a 2D region is "nice" or "bad" is determined by its structure tensor:

S — (ff]%df ff]xfydf) _ (mo200 MM110)
ff Imfydil_" ff Igdf mi10 ™MMo20
A region is "nice" if both eigenvalues are large. This is equivalent to saying
that S is "well conditioned". In practical terms, it means that g can be inverted
with no problems. If S can not be inverted, its because we have a "bad" texture,
and the 2 cases are distinguished naturally as:

e constant gray value region (both eigenvalues of S are zero)
e linear symmetry region (one eigenvalue of S is zero).

In practice, we will always consider a local region 2, and will always have discrete
images. Therefore we can write here my1y = Zw[xly, where w is a window
function covering the region Q(the function ApertureIllustration gives you a
nice view of a window function that you can position anywhere). In general, we
will write m;jx = > wItl ?JJItk Assuming that we can move the smooth window
function w around, we can consider different regions {2 as window functions
centered at some Z. We will therefore write m119(Z) to indicate positioning of
Q at Z.

8 Optical flow by Lucas and Kanade

Start by considering the optical flow constraint equation (Eq. 1 or equivalently
Eq. 2). We can make many observations of I;, I, and I; if we consider many
positions in some region (thus we can index different observations as I;(p;)). We
will estimate motion over a region), centered at some #, and so we consider
only derivatives within that region(those are the positions pi, p3 ... Py).

The LK method handles this using the least square method which is a com-
mon numerical approach to solve over-determined linear systems of equations.
Then we seek ¢ that "fits the data" best. This is a ¢ that will try to conform as
"best it can" to all the observations at all positions in the region Q. We wish
to find the solution that “minimizes” all errors:

e(pi) = ul,(pi) + vl (pi) + Lt(py) (3)

where e(p;) is the error associated with the BCC equation generated by the
point p; € Q. The expression e(p;) is called the error because it should ideally

josef
Highlight

be zero, in which case the equation becomes the BCC Equation. If there are N
points in £ then there are IV such errors e;:

€= (e(p1),e(p2), - -e(pn)” (4)

Defining the matrix D and the vector cf, which hold the observations, as

L(p1) I,(p1) Ii(p1)
e I I I)
I(pn) 1,(PN) Ii(pn)

a system of equations can be obtained

€:D<Z>+J:D6+cf (6)

Here we should ideally have & = 0. However, we are far from the ideal in reality
and € will never vanish for any fixed v, in fact even the best € may not achieve
to produce zero error at all equations, although it may come close to this goal.
We are nontheless interested in finding the best . To find it, we will attempt
to minimize

Epi (%) = [Do+d]? = 0" D' Di+d" d+26" D d = Y (ul, (7)) +vl, (5:)+1(5:))

Pi€Q
(7)
by choosing ¥ = (u,v)”. Technically, ¥ can be found by setting the derivatives
of Erg war.t. u, v and solving these equations’. In other words we solve®

O_(ou ’ Ov

)T yielding

0 = D'Dy+D”d
_ (> opiea L2 (i) 2 pico Ix(p;‘)fy(pi) >77+ (> pieq e (i) I (pi) >
> piea Le(pi) Iy(pi) > opicaly (i) > piea Ly(Pi) It (pi)
_ (mzoo mllO)(u)+(m101>:6 (8)
mii0 Mo20 v miio
where we remind the reader of the notation mi;, = Y- o ILIJIf. We recall

at this point that the matrix term is the 2D structure tensor S for the current
neighborhood € (around the current pixel), and introduce the vector b:

S — (ma200 MM110) :DTD’ g: < miol) :DTJ’

mii0 MMo20 mo11

"This called least square minimization, which sholuld not to be mixed with total least
square minimization.

8When we use least squares approach, we should make sure our error function is "convex".
All the objective functions we deal with in this tutorial will be of this type, meaning that a
global extrema is found by looking for where the gradient of the error is zero.

10

Yielding the grand expression for the LK method of optical flow:

7 =—(D"D)'DTd= -8 9)

From the previous section we know of cases when S can not be inverted.
This happens for the "bad textures" (the case when we have the "barber pole"
for example). We must somehow deal with this, and one way is to check how
well-conditioned S is before inverting (thereby skipping those regions).

According to the original LK algorithm, observations of I, I, and I; within
our region (2, should all be weighted equally. This would amount to a window
function w that is strictly Boolean in value. However, we will use a smooth
window function (fuzzy definition of Q), effectively weighting observations less
that are positioned further away from the center of 2. This is sometimes called
a "weighted least squares" approach.

9 Optical Flow - FlowLK.m

The moment images will be central to our implementation of optical flow,
and you can find how the mogo (%) and mg20(Z) are calculated in the function
FlowLK.m as:

% 1) Compute dx by convolution and form the elementwise product
momentIm = dx.”2; %Note that .” means elementwise power
% 2) smooth with large seperable gaussian filter (spatial integration)
momentIm = conv2(gg,gg,momentIm, 'same');

3) downsample to specified resolution:
m200 = imresizeNN (momentIm , flowRes) ;

In this approach, the region €2 is a Gaussian window function and represented
by the filter gg in the code. To view what Q looks like, execute the following
lines:

gaussStd = 1.4;

gg=gaussgen (gaussStd) ; %gaussgen is in 'helperFunctions'
imagesc (gg'+*gg);

colormap gray; axis image

Here, gg is a one dimensional filter used in seperable filtering” and gg’*gg
is its outer product: the equivalent Q we use.

It will be your task to write the expressions for several m,;, (%) images in
FlowLK.m. Continue reading when this is done.

The moment images makes it possible to define local structure tensors'’, one

9We could equally well use a 2D filter directly, but making slower code.
10 k.a tensor field

11

for each neighborhood (around each pixel z) in the image as:

S(7) = < mzoo(ﬂi) muo(@ >
mi10(Z) mo20(Z)

These should all be inverted in order to estimate motion according to Eq. 9,
but we need to check if each matrix is well-conditioned (to make sure we have
"nice texture"). One commonly uses the conditional number of a Matrix to see
if it is worthwhile to invert. In Matlab, we use the function rcond for this, as
seen on the line labelled "L1" in FlowLK.m.

You are now well prepared to finish the missing code in FlowLK. Once you
are done, the configuration for running the LK algorithm is:

in.method = Q@FlowLK;

Run the LK algorithm on the synthesized sequence. Does the algorithm per-
form as you would expect? There are points in the sequence where performance
is better than other places due to the texture being nicer. Try to relate your
observations to what you know about the aperture problem, and what you could
observe from running;:

‘Aperturelllustration;

9.1 Issues with the classical LK flow method

FlowLK sort of works with the synthetic sequence, but we note that regions
without nice texture are missing flow estimates. If you run FlowLK on real-world
data (use recorded video or live feed from a camera by changing movieType
argument in runMe), you notice quickly that the method has two drawbacks:

1. Unstable (unable to handle linear symmetry regions and explodes on oc-
casion), and

2. Inefficient(slow computations)

Regarding the first issue, changing the threshold EPSILONLK in FlowLK, will
allow you to tune the algorithm somewhat for different data. However much
you tune it, never expect an explicit implementation of the LK algorithm to
behave too well on real-world data.

10 Regularization, Temporal Integration and Vec-
torization - Flowl.m

For a better method of optical flow estimation, set:

in.method = @Flowl; $Locally regularized and vectorized method

12

Lets take a moment'' and derive Flowl.m. It deals with the two drawbacks
of instability and inefficiency of the standard LK implementation. This is where
our tutorial starts to scratch the surface of useful algorithms.

10.1 Local Regularization

The aperture problem was addressed by investigating the conditional number
(built-in function rcond) of the structure tensor, before inverting it. With local
regularization'?, we aim to force a change of the conditional number instead of
only investigating it. We will use so-called Tikhonov regularization. In practice,
we will add a positive value to m20 and m02 before we invert. It makes a huge
difference to the stability of the algorithm, and will also allow it to handle the
linear symmetry textures, although it gives only the motion that is parallel to
gradients for those regions.

With this regularization, we are minimizing a different error than the tra-
ditional LK. The idea is to add a term to Epx of Equation 3, so that the
error is always higher for larger flow vectors (|7|) thus favoring solutions that
are smaller. In the following error we add a term c||?, and call ¢ our tunable
Tikhonov constant:

..
Ei(u,v) = §C|v\2 +Erk =

% <0u2 +cv? + Z (uly (pi) + vl (ps) + It(ﬁi))2>

VieQ

yielding an error gradient expression:

VE;(u,v) =...

U ulg ‘ol Iy + 11\
C(v > +v%(I2 4 ul Dy + 1,0,)

Moo + € mi1o0 U I miol) _ g
m110 mMo20 + € v m110

Thus, Tikhonov regularization amounts to adding a tunable constant to the
mMogo and Mmoo moments.

10.2 Temporal Integration

So far, we have used integration only over the = and y coordinates of the image
for generating the moment images m;;(Z). With DoEdgeStrength we saw how
easy it was to incorporate information of previous frames for better estimates.
We did this without storing any extra images by recursive filtering. If we do

HMpun intended :)
12The keyword "Local" is used here to not confuse the topic with global regularization, and
so called variational approaches

13

the same thing with our moment images, it will make regions of interest, €2,
that stretch into the temporal dimension(t in addition to z and y) giving a
more stable tensor field for optical flow estimation. Lets denote the temporally
integrated moments by 1, (x,y,t):

mir(z,y,t) = amgr(z,y,t — 1) + (1 — a)myr(x,y,t)"

As with the edge detection example, we should expect a delayed, temporal
blurring effect in the flow estimation if we make the a € [0,1) value too large.

In the code of flowl.m we use the variable TC for our Tikhonov constant (the
implementation of ¢ above), and we have tInt for our a. The implementation of
the Tikhonov regularization and temporal integration is found in the following
lines:

% 1) make elementwise product
momentIm = dx."2;

% 2) smooth with large seperable gaussian filter (spatial integration)
momentIm = conv2(gg,gg,momentIm, 'same');

% 3) downsample to specified resolution

momentIm = imresizeNN (momentIm , flowRes);
$ 4) ... add Tikhonov constant if a diagonal element (for m200, m020)
momentIm = momentIm + TCj;

% 5) update the moment output (recursive filtering, temporal integration)
m200 = tInt+*m200 + (l-tInt)*momentIm;

Your first task in flowl.m is to fill in the expressions for the missing mo-
ments. Careful so that that only m200 and m020 gets the TC constant added,
and that the one liners have their brackets correctly placed.

As with the EPSILONLK parameter, play around with TC to suit your data.
TC will affect the resulting flow field in the following way:

e make it too small — numerically unstable, ill-conditioned solutions (the
flow field will wiggle around and explode occasionally),

e make it too large — all flow vectors will tend to shrink in magnitude

10.2.1 Vectorization

Implementing the LK by using vectorized programming'® will make use of the
built in parallelism in Matlab.

Lets revisit the grand expression for the LK method, Eq. 9. This is a 2-by-2
system, and its solution can be derived analytically. To derive the full symbolic
expression for the solution of the system, use the matlab symbolic toolbox'* by

typing:

$declares symbolic variables:
syms m200 m020 m110 ml101 mO11;

13in particular, using no for loops

14Mathematica or Maple are also good tools for these sorts of tasks

14

b = [ml01;
mO11];

S2D = [m200, mllO0;
ml110, m020];

v = -S2D\b

The output of above code should be implemented on lines labelled "L2" in
Flowl.m. Make sure you do not forget the Matlab dot to indicate elementwise
operations when needed.

With a vectorized formulation, we can now run the algorithm at the same
resolution as the original video (i.e. one flow vector per pixel). A streamlined m-
file for Flowl.m is FlowlFull.m, found in the folder ‘helperFunctions’. Open it
up to view its contents. Notice that Flowl1Full.m is understandable, short, fast
and robust compared to the previous implementation of LK. The core algorithm
is implemented on the following lines:

©

%% The regularized, temporally integrated and vectorized flow algorithm:
%Tikhonov Constant:
TC = single(150);

%generate moments

m200= tInt*m200 + (1-tInt)*(conv2(gg,gg, dx.”2 ,'same')+TC);
m020= tInt*m020 + (1-tInt)*(conv2(gg,gg, dy.”"2 ,'same')+TC);
mll0= tIntxmll0 + (1-tInt)x conv2(gg,gg, dx.xdy, 'same');
ml0l= tInt*ml01 + (l-tInt)«* conv2(gg,gg, dx.xdt,'same');
m0ll= tInt*m01ll + (l-tInt)«* conv2(gg,gg, dy.xdt, 'same');
$flow calculations:
U =(ml0l.+m110 - m011l.%m200)./(m020.+m200 - ml110."2);
V =(-ml101.%m020 + m011l.%m110)./(m020.+m200 - ml110."2);
It is activated by:
in.method = @FlowlFull; $Flowl streamlined for full resolution

When dealing with higher resolution optical flow, it becomes ineflicient to
illustrate the flow using vectors, and it is customary to display it with a color
coding instead, illustrated in figure 3.

N

=S

R

b LS
oy

05 3 T

Figure 3: Color coding of the optical flow. Left, the higher resolution, color equivalent of the
right side vector version.

We choose to superimpose the optical flow as color on the grayscale video, in

order to get a an intuitive feel for the performance. If you wish to see the flow in
the traditional color coding (seperate windows, one for flow and one for video),

15

you can choose to save the output to file and use function flowPlayback.m (this
is illustrated in exampleUsage.m, and will be discussed in more detail below).

11 Some Challenges

We have shown how to implement a dense optical flow algorithm in Matlab
(with ease). The final algorithm is very short in code, understandable, (quite)
robust, and efficient.

There are several classical issues with optical flow estimation we have yet to
discuss, and that our algorithm does not deal with.

11.1 Higher Motion

The first issue is higher motion which we discussed in section 3.1. The standard
way to deal with this is through pyramid, multiscale approaches (sometimes
called multi-grid solutions). The main problem with that approach is that
finer-scale details in the images disappear for the coarser scales of the pyramid.

11.2 Failing the BCC

The starting point of deriving our optical flow method is the BCC. We would
expect our algorithm to be quite dependent on it. Important examples of when
the BCC fails include varying light field in the scene(such as shadows) and
automatic gain control in the camera (including automatic camera parameter
setting such as shutter speed).

An important phenomenon, in low-end web cams especially, is the presence
of flicker.

11.3 Multiple Motions

The questions of having several motions in the same) causes some quite specific
problems. The background motion has some distribution of gradients, while the
foreground motion has others. A perceived motion over such an aperture is not
obvious. Run:

‘ ApertureIllustration (4);

This renders two bar patterns moving with one partly obscuring the other.

11.4 Noise

As with all sensors, cameras have noise. This is the bane of many optical flow
algorithms.

16

11.5 Generating test sequences

The test sequences we have generated so far has been very kind for optical flow
algorithms. In order to render images that

e fail the BCC(through flicker),
e has multiple motions(a strong constant edge in the background) and
e has zero mean, additive Gaussian noise

use the following settings:

in.movieType
in.method

%generate synthetic video
%generate (Lo Res)groundtruth motion

in.syntSettings.backWeight = 0.3; $background edge pattern weight
in.syntSettings.edgeTilt =2xpi/10;%tilt of the edge of the background
in.syntSettings.edgeTiltSpd=2+pi/300; $speed of rotation of background edge

in.syntSettings.flickerWeight= 0.3; %amount of flicker in disks (in [0,1])
in.syntSettings.flickerFreq = 0.6; $frequency of flicker (in range (0,Inf])

o0

in.syntSettings.noiseWeight = 0.3; signal to noise (in range [0,1])

12 Extras

In the software we have provided with this tutorial, there are some useful fea-
tures that will allow you easily to experiment with optical flow, and to test new
algorithms as you go along. The most classical algorithmm of so-called varia-
tional approaches(global optimization) to optical flow is Horn and Schunk, and
it is activated as:

in.method = 'HSFull';

The toolbox then calls function FlowHS .m, which could be interesting to take
a look into.

In the file exampleUsage .m there are a couple of more settings to play around
with. It includes a method for saving and reading files from experiments you
may want to conduct.

This can be especially useful if you want to save some video for consistent
testing.

12.1 Generating Groundtruth motion from synthetic im-
ages

We already noticed how to activate the groundtruth motion generation by

in.movieType
in.method

'synthetic'; %generate synthetic video
'synthetic'; %generate (Lo Res)groundtruth motion

17

for a high resolution version, with the now familiar color coding:

in.method = 'syntheticFull'; $%generate (Hi Res)groundtruth motion

In order to save the video and the output flow, we put:

in.bRecordFlow = 1;

This will automatically generate new subfolders where the full data is stored.
The data will be stored in compressed form to save space, and enable streaming
reading of it later. A function getSavedFlow has been provided that reads
saved experiments. It is used by the function flowPlayBack.m to generate
nicely looking playback of saved data:

in.bRecordFlow = 1;
[dx, dy, dt,Ul,Vl1,pathToSave] = vidProcessing(in);
flowPlayBack (pathToSave) ;

More examples are given in exampleUsage.

18

	Let's get started
	Introduction
	Outline

	Estimating derivatives - grad3D.m
	Optical Flow Constraint
	Tuning the gradient filters

	Edge filtering - DoEdgeStrength.m
	Gamma Correction
	Temporal integration

	Aperture Problem
	Optical flow by Differences or Correlation
	2D Structure Tensor
	Optical flow by Lucas and Kanade
	Optical Flow - FlowLK.m
	Issues with the classical LK flow method

	Regularization, Temporal Integration and Vectorization - Flow1.m
	Local Regularization
	Temporal Integration
	Vectorization

	Some Challenges
	Higher Motion
	Failing the BCC
	Multiple Motions
	Noise
	Generating test sequences

	Extras
	Generating Groundtruth motion from synthetic images

