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Abstract This paper presents a novel framework for rec-
ognition of Ethiopic characters using structural and syntactic
techniques. Graphically complex characters are represented
by the spatial relationships of less complex primitives which
form a unique set of patterns for each character. The spatial
relationship is represented by a special tree structure which is
also used to generate string patterns of primitives. Recogni-
tion is then achieved by matching the generated string pattern
against each pattern in the alphabet knowledge-base built for
this purpose. The recognition system tolerates variations on
the parameters of characters like font type, size and style.
Direction field tensor is used as a tool to extract structural
features.

Keywords Optical character recognition · Ethiopic ·
Multifont · Structural and syntactic techniques ·
Direction field tensor

1 Introduction

Ethiopia has one of the longest continuous literature tradi-
tions. Ethiopic script has been used in the country as a unique
writing system since the fifth century BC [18]. Ethiopic is a
general term coined for Ethiopian Semitic languages, such
as Amharic, Geez, Tigrigna, Guragegna, etc. With the intro-
duction of Christianity in the fourth century AD, the script
was largely used by Geez, which was by then the official lan-
guage of both the imperial court and the church. Since the
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fourteenth century, the official status of Geez in the imperial
court has been slowly replaced by Amharic language which
is itself derived from Geez [5]. Amharic remained the official
language of the present day Ethiopia and the language grew
as the second most spoken Semitic language in the world
next to Arabic. However, Geez is also still serving as the
liturgical language of Ethiopian Orthodox Church. There are
also about 72 other languages spoken in Ethiopia and as a
result the Ethiopic alphabet has evolved through many forms
over centuries to better suit the vocal property of different
languages. At present, the alphabet is most widely used by
Amharic and a total of over 80 million people inside as well as
outside Ethiopia are using the Ethiopic alphabet for writing.

Automatic character recognition is one of the early stud-
ied fields of pattern recognition problems. It is motivated
by the need for automatic processing of large volumes of
data in postal code reading, office automation, bank checks,
and other business and scientific applications [25]. The his-
tory of optical character recognition (OCR) starts with the
advent of computers and research on character recognition
of Latin script for machine-printed text has been on the record
since the early 1950s [24,25]. To recognize characters, dif-
ferent pattern recognition techniques like template match-
ing, syntactic and structural, statistical and neural network
approaches have been used.

Template matching is one of the simplest and earliest
approaches of pattern recognition techniques where the
charcater to be recognized is matched against a database
of stored templates of characters [19,22,25]. Syntactic and
structural techniques are used for recognition of complex
patterns which are represented in terms of the interrelation-
ships between simple sub-patterns called primitives [4,9,22,
24]. Statistical approach is the most intensively studied tech-
nique which represents each pattern in terms of features or
measurements [4,22,33], and many OCR systems make use

123



Y. Assabie, J. Bigun

of this technique. In comparison, the neural networks are
recently developed pattern recognition techniques inspired
by neuronal oparations in biological systems [4,17]. They
are known to be more effective on handwritten character
recognition [3,10,22]. Each of the recognition techniques
have their own advantages and limitations, and hybrid sys-
tems draw upon the synergy effect of two or more techniques
[4,9,21,22,30].

Most character recognition techniques pass through four
stages: preprocessing, segmentation, feature extraction, and
classification. Preprocessing includes image enhancement,
noise removal, skewness correction, size normalization, and
thinning [3,16]. These techniques are mostly independent
of the scripts. Thus, preprocessing algorithms developed for
one script can be normally adopted to another script. Seg-
mentation is the step in which observed patterns in the image
are segregated into units of patterns that seem to form char-
acters [16,25]. Feature extraction involves the measurement
or computation of the most relevant information for classi-
fication purpose. It is an important factor in achieving high
recognition performance. The selection of discriminating fea-
tures mostly depends on the nature of character structures
and writing styles. Thus, features used for recognition of one
script and writing style may not be applicable to another
[16,17,33]. Classification is the final stage in character rec-
ognition in which each character is assigned to a certain class
[25].

Intensive research has been carried out on recognition of
machine-printed Latin characters and the research is now
directed towards handwritten and cursive text recognition
[10]. However, due to variations in the structure of scripts,
the available recognition algorithms for Latin script could
not be directly adopted for other scripts. Thus, OCR tech-
nology of non-Latin scripts generally lag behind the status
of Latin OCR [31,32]. However, over the past few years,
there has also been developments in the recognition of Kanji,
Chinese, Arabic, Indian and other oriental scripts [1,15,19,
23–25,27,30–32].

Despite the large population that uses the alphabet, Ethio-
pic OCR technology is far behind the technologies developed
for many largely used scripts, e.g., Latin, Chinese and Arabic.
To the knowledge of authors, there are few published studies
on Ethiopic character recognition. The methods used for rec-
ognition were template matching by taking signature prop-
erty [13] and linear symmetry property [27] of characters. In
this paper, we present a multifont, and size-resilient Ethio-
pic character recognition system. We propose structural and
syntactic techniques for recognition of Ethiopic characters
where the graphically complex characters are represented by
less complex primitive structures and their spatial interrela-
tionships. To this end, a special tree structure is developed in
which primitives and their interrelationships are stored and a
unique set of string patterns is generated for each character.

Recognition is made by matching the generated patterns with
each pattern in a stored knowledge base of characters. The
recognition system does not need size normalization, thin-
ning or other preprocessing procedures. The only parameter
that needs to be adjusted during the recognition process is the
size of a Gaussian window which should be chosen optimally
in relation to font sizes. We constructed an Ethiopic Docu-
ment Image Database (EDIDB) from real-life documents and
the recognition system is tested by documents from the
database.

The organization of the remaining sections of this paper
is as follows. In Sect. 2, we present the structural analysis of
Ethiopic alphabet along with primitive structures and their
spatial interrelationships. Section 3 describes the represen-
tation of the interrelationships of primitives. Extraction of
structural features is discussed in Sect. 4, and in this section,
we also introduced direction field tensor which is used as a
tool in the recognition process. In Sect. 5, we present the over-
all recognition system and experimental results are reported
in Sect. 6. We conclude the paper in Sect. 7 and briefly discuss
the future work. The relevant details of EDIDB are annexed
at the end.

2 Structural analysis of Ethiopic script

The recently standardized set of Ethiopic alphabet has 435
characters. Roughly half of this set (238) of them are used by
Amharic and considered as the most commonly used even in
other Ethiopic languages. This subset of the Ethiopic alpha-
bet is conveniently written in a tabular format of seven col-
umns as shown in Table 1. The seven columns represent the
vocal sounds of characters in the order of ä, u, i, a, e, , and o.

Table 1 Part of the Ethiopic alphabet
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The first column in each row (ä sound) represents basic
characters and other columns show modified characters.
Thus, Ethiopic script is a writing system in which vowel
sounds (modifiers) are denoted by diacritical marks or other
systematic modification of the basic characters. When a
modifier is added to the base character, it can also change
the original shape of the base character as in the case of
which can be modified to . Some modifiers do not add extra
symbol and only change the shape of the base character, e.g.,

which can be modified to . This makes it difficult to use
a model representing the basic characters for recognition of
their derivatives.

Most of the modifiers of the basic characters follow a sim-
ilar pattern across each column. The second (u) and third (i)
orders are mostly formed by adding appendages at the middle
and bottom of the right leg, respectively. Although formation
of the fourth (a) order is irregular, it is mostly characterized
by a shortened left leg of basic characters. The fifth (e) order
is typically formed by adding a loop to the right leg usually
at the bottom. The sixth order is marked by high irregular-
ity. Some are formed by bending their legs and some looped
characters add appendages at their loops. Others also add
appendages to the left to form the sixth order. The seventh
(o) order is formed by different ways. Most of the modifi-
ers make the left leg of the basic character longer. Others
form loops at the right top of the character and the rest show
irregularity.

2.1 Primitive structures

The Ethiopic characters are considered to have the most
attractive appearance when written with thick appendages,
vertical and diagonal strokes, and thin horizontal lines. Thus,
prominent structural features in the alphabet are appendages,
vertical and diagonal lines. These structural features form
a set of primitive structures in Ethiopic characters. In this
study, we suggest seven primitive structures which are inter-
connected in different ways to form a character. Primitives
differ from one another in their structure type, relative length,
direction, and spatial position. The classes of primitives are
given below.

1. Long vertical line (LVL). A vertical line that runs from
the top to bottom level of the character. The primitive is
found in characters like and

2. Medium vertical line (MVL). A vertical line that touches
either the top or the bottom level (but not both) of a char-
acter. Characters like and have these primitives.

3. Short vertical line (SVL). A vertical line that touches nei-
ther the top nor the bottom level of the character. It exists
in characters like and

4. Long forward slash (LFS). A forward slash primitive that
runs from the top to the bottom level of a character. It is
found in few characters like and

5. Medium forward slash (MFS). A forward slash primitive
that touches either the top or the bottom level (but not
both) of a character. Examples are and

6. Backslash. A line that deviates from the vertical line posi-
tion to the right when followed from top to bottom. The
characters and have such primitives.

7. Appendages. Structures which have almost the same
width and height. These primitives are found in many
characters. Examples are and

2.2 Spatial interrelationships between primitives

The unique structure of characters is determined by primi-
tives and their interconnection. The interconnection between
primitives describes their spatial relationship. A primitive
structure can be connected to another at one or more of the fol-
lowing regions of the structure: top (t), middle (m) , and bot-
tom (b). There can be one, two or three connections between
two primitives. The first connection detected as one goes
from top to bottom is considered as the principal connec-
tion. Other additional connections, if they exist, are consid-
ered as supplementary connections. The spatial relationship
between two primitives α and β with a principal connection
is represented by the pattern αzβ, where z is an ordered pair
(x,y) of the connection regions with x, y taking the values
t, m, or b. In this pattern, α is connected to β at region x
of α, and β is connected to α at region y of β. When two
primitives are connected by more than one connector, e.g., in
the character where LVL and SVL are connected by two
connectors, then supplementary connection exists between α

and β, and the connection type z will be a set of ordered pairs
of the connection regions. In the pattern αzβ, primitive α is
said to be spatially located to the left of β. Thus, the spatial
relationship between two primitives is described in terms of
spatial position (left or right) and connection type.

In this study, we reveal 18 connection types between
two primitives. As shown in Table 2, there are nine principal

Table 2 Connection types between two primitives with example
characters in brackets
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connections without supplementary connections, and nine
principal with supplementary connections. The principal
connection between two primitives is an ordered pair formed
by the possible combinations of the three connection regions.
This will lead to nine principal connections without supple-
mentary connections as represented by the set: {(t,t),(t,m),
(t,b),(m,t),(m,m),(m,b),(b,t),(b,m),(b,b)}. The principal con-
nection (t,t), i.e., two primitives both connected at the top, has
five types of supplementary connections: {(m,b),(b,m),(b,b),
(m,m)+(b,m),(m,m)+(b,b)}. The principal connection (t,m)
has only one supplementary connection: {(b,m)}. The princi-
pal connection (m,t) has three types of supplementary
connections: {(m,b),(b,m),(b,b)}. The remaining principal
connections do not have any supplementary connection.

3 Representation

The structural analysis of Ethiopic characters in Sect. 2 shows
that each character can be uniquely represented by a set
of primitive structures and their spatial relationships. This
invites to apply structural and syntactic techniques for rec-
ognition. In structural and syntactic pattern recognition sys-
tems, a pattern is represented by the synthesis information
that combines sub-patterns to generate a complex pattern.
Common symbolic data structures that can store this infor-
mation are trees, graphs, and strings [4]. In each data struc-
ture, there is a tradeoff between the representation power and
computational complexity. String matching has less compu-
tational complexity but the representation power is limited
since strings cannot naturally be extended to multi-dimen-
sional data. On the other hand, trees and graphs have better
representational power for higher dimensional data but are
costly for computation [4,11,28]. In this study, a tree data
structure is used for representation of primitives and their
spatial relationships whereas for computational processing
of the data, the tree is converted to a string data structure.
Thus, trees are used as intermediate tool to generate one-
dimensional strings of primitives and their interrelationships
for each Ethiopic character.

3.1 The proposed tree data structure

In Sect. 2.2, we discussed that there are three connection
regions for a primitive: top, middle, and bottom. In Ethiopic
script, to the left of a primitive structure, at most one prim-
itive is connected at each connection region. For example,
in the character three appendage primitives are connected
to the left of the Long Vertical Line primitive at each of the
three connection regions. Therefore, a maximum of three
primitives can be connected to the left of another primitive.
In the above example, three appendages are also connected
to the right of the Long Vertical Line primitive at the three

Connection type 

Primitive type 

Top Middle Bottom Bottom Middle1 Middle2 Top

Left nodes Right nodes

Fig. 1 General tree structure of characters

connection regions. In addition, there are cases where two
primitives are connected at the middle of a primitive as in

and Therefore, we have the possibility of having four
connections to the right of a primitive although not at the same
time. To represent this relationship, a special tree structure
having three left nodes and four right nodes is proposed. A
general representation of the tree is shown in Fig. 1. Each
node in the tree stores data about the type of the primitive
itself, the type of connections with its parent primitive, and
the spatial positions of primitives connected to it.

A child primitive is appended to its parent primitive at one
of the seven child nodes in the tree based on the principal con-
nection that exists between them. The principal connection
provides information about the spatial position of child prim-
itives. The existence of supplementary connections does not
have impact on the spatial position of the child primitive but
only affects the connection type between the child and par-
ent primitive. The connection types a parent can have with its
child primitives at different spatial positions and connection
regions is presented in Table 3. Connection type of NONE
is used when there is a primitive without being connected
to any other primitive. Such cases are mostly observed in
degraded documents. In this case, the primitive is appended
to one of other primitives based on the closeness in their spa-
tial position. The connection type of the root primitive, which
has not any parent primitive, is also NONE.

For implementation, a two digit numerical code is assigned
for each primitive and their connection types. The first digit
in the numerical code of primitives represents their rela-
tive length and/or structure, and the second digit represents
their direction. Numerical code of primitives is presented in
Table 4. In the case of connection types, the two digits rep-
resent left and right spatial positions, respectively. The three
connection regions, i.e., top, middle, and bottom are repre-
sented by the numbers 1–3, respectively. The whole connec-
tion type is represented by concatenation of the numbers. For
example, connections (t,m), (m,t)+(b,m), (t,t)+(m,m)+(b,m)
are represented by 12, 2132, and 112232, respectively. A
connection type of NONE is represented by 44.
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Table 3 Connection types
between parent and its child
primitives at different positions

Left Right

Top Middle Bottom Bottom Middle1 & Middle 2 Top

(t,t) (t,m) (t,b) (b,t) (m,t) (t,t)

(t,t)+(m,b) (t,m)+(b,m) (m,b) (b,m) (m,t)+(m,b) (t,t)+(m,b)

(t,t)+(b,m) (m,m) (b,b) (b,b) (m,t)+(b,m) (t,t)+(b,m)

(t,t)+ (b,b) (b,m) (m,t)+ (b,b) (t,t)+ (b,b)

(t,t)+(m,m)+(b,m) (m,m) (t,t)+(m,m)+(b,m)

(t,t)+(m,m)+(b,b) (m,b) (t,t)+(m,m)+(b,b)

(m,t) (t,m)

(m,t)+(m,b) (t,m)+(b,m)

(m,t)+(b,m) (t,b)

(m,t)+(b,b)

(b,t)

Table 4 Numerical codes assigned to primitive structures

Primitive types Numerical codes

Long vertical line 98

Medium vertical line 88

Short vertical line 78

Long forward slash 99

Medium forward slash 89

Backslash 87

Appendages 68

3.2 Building primitive tree

The first step in building a primitive tree is identifying the
root primitive. Variation in setting the root primitive results
in different tree structures which will affect the pattern gen-
erated for a character. Thus, to build a consistent primitive
tree structure for each character, a primitive which is spatially
located at the left top position of the character is used as the
root primitive.

There are few characters like where three primitives are
interconnected to each other and results in one more connec-
tion than ordinary connections between primitives. In such
cases, three primitives with their respective connection types
are recorded once and a node that stores only the extra con-
nection type will be added. Figure 2 illustrates primitive trees
of characters having multiple connections between two prim-
itives two connections at the right middle of a primitive

and three interconnected primitives
The following recursive algorithm is developed to build

primitive tree of characters. The function is initially invoked
by passing the root primitive as a parameter.

BuildPrimitiveTree (Primitive)
{
BuildPrimitiveTree (LeftTopPrimitive)
BuildPrimitiveTree (LeftMidPrimitive)
BuildPrimitiveTree (LeftBotPrimitive)

BuildPrimitiveTree (RightBotPrimitive)
BuildPrimitiveTree (RightMid1Primitive)
BuildPrimitiveTree (RightMid2Primitive)
BuildPrimitiveTree (RightTopPrimitive)

}

4 Feature extraction using direction field tensor

In the previous section, we described that the characters are
represented by patterns of less complex structural features.
Primitives and connectors are the structural features used for
recognition of characters. Thus, extraction of these structural
features forms the basis of the recognition process. We use
direction field tensor as a tool for extraction of the structural
features. Direction field tensor, which is introduced by [8] for
multi-dimensions, has been used in several pattern recogni-
tion problems over the past decade. Below we give a brief
summary of the direction tensor, which is explained in detail
in [6].

4.1 Direction field tensor

A local neighborhood with ideal local direction is character-
ized by the fact that the gray value remains constant in one
direction (along the direction of lines), and only changes in
the orthogonal direction. Since the directional features are
observed along lines, the local direction is also called linear
symmetry (LS). The LS property of an image can be esti-
mated by analyzing the direction field tensor. The direction
tensor, also called the structure tensor [6,7,34], is a real val-
ued triplet, which is a tensor representing the local directions
of pixels. For a local neighborhood f (x, y) of an image f ,
the direction tensor S is computed as a 2×2 symmetric matrix
using Gaussian derivative operators Dx and Dy .

S =
(∫∫

(Dx f )2dxdy
∫∫

(Dx f )(Dy f )dxdy∫∫
(Dx f )(Dy f )dxdy

∫∫
(Dy f )2dxdy

)
(1)
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Fig. 2 Primitive trees for a
b and c
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The integrals can be implemented as convolutions with a
Gaussian kernel which is isotropic and is defined as follows:

g(x, y) = 1

2πσ 2 exp

(
− x2 + y2

2σ 2

)
(2)

where σ is the standard deviation. Because of its separability
property, the 2D Gaussian is more efficiently computed as
convolution of two 1D Gaussians, gx(x) and gy(y), which are
defined as follows:

gx(x) = 1√
2πσ

exp

(
− x2

2σ 2

)
(3)

gy(y) = 1√
2πσ

exp

(
− y2

2σ 2

)
(4)

Linear symmetry exists among others at edges where there
are gray level changes and an evidence for its existence can
be estimated by eigenvalue analysis of the direction tensor or
equivalently by using complex moments of order two which
are defined as follows:

I20 =
∫∫

((Dx + iDy) f )2dxdy (5)

I 11 =
∫∫ ∣∣(Dx + iDy) f

∣∣2 dxdy (6)

The complex partial derivative operator Dx + iDy is defined
as:

Dx + iDy = ∂

∂x
+ i

∂

∂y
(7)

The value of I20 is a complex number where the argument
is the local direction of pixels in double angle representation
(the direction of major eigenvector of S) and the magnitude
is a measure of the local LS strength (the difference of eigen-
values of S). The scalar I11 measures the amount of gray value
changes in a local neighborhood of pixels (the sum of eigen-
values). Direction field tensor, which is a tensor field defined
over local images for all points in the entire image, can thus
also be conveniently represented by the 2D complex I20 and

1D scalar I11. In the implementation (using MATLAB), I20

and I11 are computed as follows:

1. Generate a 2D Gaussian kernel and a 2D Gaussian deriv-
ative kernel. Since Gaussian functions are separable, two
1D Gaussian kernels (gx and gy) and two 1D Gaussian
derivative kernels (dx and dy) can be used for better effi-
ciency.

2. Apply convolution operations on the original image img
to generate dxf and dyf .

dx f = gy∗ (
dx∗img

)
dy f = gx∗ (

dy∗img
)

3. Compute:
a. Î20 from dxf and dyf by pixel-wise complex squaring.

Î20 = (dx f + j∗dy f )2 where j = √
(−1)

b. Î11 from abs(Î20).
4. Compute the complex image I20 and the scalar image I11

from Î20 and Î11, respectively by averaging with a second
set of Gaussian kernels.

The complex image I20 can be displayed in color as shown in
Fig. 3b where the hue represents direction of pixels in double
angle representation. Pixels with directions of zero are repre-
sented by red color. Another way of displaying the complex
image is to make use of vectorial representation as shown
in Fig. 3c, where the arrows show direction in double angle
representation and the magnitude shows the LS strength of
pixels.

4.2 Extraction of structural features

After computing the direction field tensor, extraction of
structural features involves three steps: (1) classifying pix-
els (low-level features) as parts of the would-be primitives
and connectors; (2) extracting skeletons of the I20 image and
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Fig. 3 a Ethiopic text, b I20 of
a, c vectorial representation of
I20

forming lines (intermediate-level features) from pixels; and
(3) extracting primitives and connectors (high-level features)
from the skeletal form of the I20 image. These steps are
discussed below including segmentation of characters which
is done after skeletal lines are extracted in the I20 image.

4.2.1 Classifying pixels

The LS strength of I20 image is normalized to the range of
[0,1]. In the normalized I20 image, pixels of text region can
be selected by using the strength of LS property (ρ). In this
study, pixels with ρ ≥ 0.05 (strong LS property) are consid-
ered as parts of primitive and connectors of characters. Since
the direction of pixels is represented by double angle, the
angle θ obtained from the argument of I20 is in the range of
0–180◦. The direction of pixels at the edges of primitives is
close to 0–180◦ and can be converted to the range of 0–90◦
by ε = abs(90 − θ), so that ε for primitives is consistently
close to 90o. Among the pixels with strong LS property, those
with ε ≥ 30◦ are considered as parts of primitives, and oth-
ers are considered as parts of connectors. Then, structural
features are further extracted as shown in Fig. 4.

4.2.2 Extracting skeleton of the I20 Image

Due to the Gaussian filtering used in the computation of direc-
tion tensor, the LS strength at the orthogonal cross-section
of edges forms a Gaussian of the same window size as the
Gaussian filter. Pixels that form edges in the grayscale image
correspond to the mean of the Gaussian at the orthogonal
cross-section in the corresponding local neighborhood of the
I20 image. Therefore, the cross-section of lines in the I20

Fig. 4 Flowchart of structural features extraction

image can be reduced to a skeletal form (one pixel size) by
taking the point closest to the mean of the Gaussian formed
by the LS strength in the orthogonal direction. To keep the
continuity of skeletons, candidate pixels are taken from a
local neighborhood of the head of skeleton. The skeletal lines
in the I20 image form the contour lines of the original gray-
scale image. The skeletal form of the I20 image shown in
Fig. 5.

4.2.3 Segmenting characters

Text lines in the I20 image show strong LS property, whereas
the horizontal spaces between text lines are characterized
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Fig. 5 a Ethiopic text, b LS strength of I20 of a, and c skeletal form of
b without direction information

by lack of LS property. Therefore, text lines are segmented
in the skeletal form of the I20 image by searching for areas
that lack LS property. For each segmented text line, vertical
spaces that lack LS are used to segment each character in
the line. Figure 6 shows segmented characters in rectangular
boxes.

4.2.4 Extracting primitives and connectors

For each segmented character, the skeletal form of I20 image
can be decomposed in to two images of primitives and con-
nectors by using the direction and LS strength of pixels as
described before. A linear structure in the gray scale image
forms two lines in the I20 image. The lines are formed as a
result of extracting the skeleton from the I20 image. Connec-
tors are made up of two matching horizontal lines (top and
bottom) in the skeletal image. A primitive structure in the
grayscale image will also have two vertical/diagonal lines
(left and right edges) in the skeletal form of the I20 image.
Primitive structures are then constructed by the two match-
ing left and right lines. The group information about direction
and spatial position of pixels in a primitive are finally used to
classify the primitives. Figure 7 shows extracted primitives
from the left and right edges of the text.

Fig. 7 a Ethiopic text, b primitive lines shown as white lines, and con-
nectors shown as the gray lines, c extracted primitive structures

4.2.5 Restoring broken primitives

Primitive lines which make up primitive structures can be
broken due to image noise, degraded document, misclassi-
fication of some parts of primitive lines as connectors, and
junction with connectors. When only one of the primitive
lines is broken, it can be restored by following the other
matching primitive line as shown in Fig. 8. In Fig. 8c, the
left and right primitive lines of the longest primitive struc-
ture in the character are broken due to junction and noise,
respectively. The junction created lack of LS at the left edge
of primitive structure, resulting in two left primitive lines.
The continuity of the two left primitive lines, which are part
of one long left primitive line, is restored by following the
corresponding area of the right primitive line as shown in
Fig. 8d.

When a primitive structure is connected to two other prim-
itive structures both at the same area, the left and right primi-
tive lines are broken resulting in two or more broken primitive
structures. Under normal circumstances, there are connector
lines at the top and bottom of primitive structures resulting
in closed ends. When a primitive structure is broken due to
junctions, connector lines will not exist due to lack of LS.
Therefore, the broken primitive structures are left with open
ends. In this case, the primitive structure can be restored by
merging the broken primitive structures with open ends as
shown in Fig. 9.

Fig. 6 a Original Ethiopic text,
b segmented characters
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Fig. 8 a The character with noise, b LS strength I20 of a, c connector and primitive lines extracted from skeletal form of b, d extracted primitive
structures of a

Fig. 9 a The character b LS strength of I20 of a, c connector and primitive lines extracted from skeletal form of b, d extracted primitive structures
of a, e restored primitive structures

Computation of  
Direction Field Tensor

Character Segmentation 

Get Scanned Image

Generate Text 

Building  
Primitive Tree 

Pattern Generation 

Extraction of  
Structural Features 

Connectors 

Pattern Matching

Knowledge 
Base

Primitives 

Fig. 10 Flowchart of the recognition process

5 The recognition system

The recognition system takes the document image as an input
and generates its equivalent text as an output. As shown in
Fig. 10, it can be seen as having two stages: (1) representation

of characters in a tree structure of primitives and their spatial
relationships, and (2) recognizing characters using the tree
representation. The first stage is discussed in the previous
sections, and the second stage of the recognition system is
explained below.

5.1 Pattern generation

Trees provide a convenient representation for handling the
spatial interrelationships of primitives. They are, however,
costly in terms of further processing [4,11]. In some charac-
ters, there are primitives which compete closely to be selected
as root primitives for the tree. As a consequence, there is a
probability that more than one type of tree structure be built
for a character. This means computational efficiency is an
issue since significant comparison processing and storage
will be needed. String patterns are more efficient than trees
for computation purpose, and therefore, we convert primitive
tree patterns to their corresponding string patterns for further
processing.

In the domain of data structure, binary search trees pro-
vide an efficient way of storing data in an orderly manner. In
binary search trees, the values of all child nodes in the left
subtree of a given node are less than the value of the parent
node, and the values of all child nodes in the right subtree
of a given node are greater than the value of the parent node
[29]. Data stored in a binary search tree can be traversed and
converted to a string pattern in three ways: pre-order (parent–
left–right), in-order (left–parent–right) and post-order (left–
right–parent). In such trees, in-order traversal generates data
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Fig. 11 Binary search trees for
the same set of data with
different root nodes

Fig. 12 Primitive trees for
with root primitive a b

44
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(a) (b)

in ascending order whereas pre-order and post-order travers-
als generate them neither in ascending nor in descending
order. It means that in-order traversal uniquely generates the
same string pattern out of different binary search trees that
are built from the same set of data [29]. This is because, for
a given set of data, their arrangement in an ascending order
forms a unique pattern no matter how they are arranged in the
binary search tree. For example, in Fig. 11, the three binary
search trees are built from the same set of data but different
root nodes. The pattern generated by in-order traversal of the
three trees is the same: {1, 2, 3, 4, 5, 6, 7, 8, 9}.

Our primitive tree behaves essentially as a binary search
tree in the sense that primitives are systematically appended
to other primitives in an orderly manner with respect to their
relative spatial position and relationships. Consider primi-
tives α, β, χ, δ, and γ . Then α is said to be less than γ if α is
connected to the left side of γ . We also say α < β < χ if they
are connected to the left of γ at the top, middle and bottom
positions, respectively. On the other hand, α < β < δ < χ

if they are connected to the right of γ at the bottom, mid-
dle1, middle2, and top positions, respectively. The primitive
tree is built with such orderly manner. We can convert each
primitive tree to a string by using in-order traversal of the
tree (left{top, middle, bottom}, parent, right{bottom, mid-
dle1, middle2, top}). In-order traversal of the tree keeps the
relative order of spatial relationship and position of primi-
tives in the same way as the binary search trees do. For a
given character, this traversal also consistently generates the
same pattern of primitives from trees that are built differ-
ently because of variations in selecting the root primitive.
Figure 12 shows the character represented by two different
trees as a result of selecting different root primitives which
are spatially located at the left top of the character.

In-order traversal of the tree in Fig. 12a generates the
pattern {44, 68, 13, 88, 21, 78, 31, 88, 12, 68} and Fig. 12b
generates {21, 68, 13, 88, 44, 78, 31, 88, 12, 68}. The order
of primitives in the two string patterns is the same. The order
of connection types of the two strings can be made the same
by swapping the connection type of the root primitive in the
string pattern of Fig. 12b, which is always 44, with the first
connection type in the string. This rule also works for other
character strings. Thus, with minimal computation, a char-
acter with no major structural differences in its fonts can be
uniquely represented by a string. The proposed in-order tra-
versal algorithm is implemented using a recursive function
in a similar way as building the primitive tree. This function
is also invoked by passing the root primitive as a parameter.

GeneratePattern (Primitive)
{
GeneratePattern (LeftTopPrimitive)
GeneratePattern (LeftMidPrimitive)
GeneratePattern (LeftBotPrimitive)
PrintPattern (ConnectionType, PrimitiveType)
GeneratePattern (RightBotPrimitive)
GeneratePattern (RightMid1Primitive)
GeneratePattern (RightMid2Primitive)
GeneratePattern (RightTopPrimitive)

}

5.2 Alphabet knowledge base

The geometric structures of primitives and their spatial rela-
tionships remain the same under variations in fonts and their
sizes. In Fig. 13a, all the different font types and sizes of
the character are described as two Long Vertical Lines
both connected at the top. This is represented by the pattern
{44, 98, 11, 98}. In such patterns, only the relative size of
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Fig. 13 a The character with
different types and sizes of 12
and 18, b bold style of a and c
italic style of a

Table 5 Part of the alphabet knowledge base

primitives, not the absolute size, is encoded. As there is no
structural difference between a long vertical line and its bold
version, Fig. 13b is also represented by the same pattern as
in the case of Fig. 13a. In Fig. 13c, the character is described
as two Long Forward Slashes both connected at the top and
it is represented by the pattern {44, 99, 11, 99}. Therefore,
any form of the character is represented as a set of patterns
{{44, 98, 11, 98}, {44, 99, 11, 99}}.

Accordingly, the knowledge base of the alphabet consists
of a set of possibly occurring patterns of primitives and their
relationships for each character. This makes the proposed
recognition technique tolerant of variations in the parame-
ters of fonts. Table 5 shows part of the knowledge base for
some characters with different fonts and writing styles. In the
table C1, C2, C3, . . . , etc. indicate connection types whereas
P1, P2, P3, . . . , etc. indicate primitives.

5.3 Pattern matching

Pattern matching is a fundamental step in the recognition pro-
cess in which unknown input strings are compared against
each pattern in the knowledge base. Several pattern match-
ing algorithms have been introduced over the past decades
for general pattern recognition problems [20]. Although the
algorithms are usually customized to specific problems,
pattern matching algorithms are classified in two broad cate-
gories: exact and approximate pattern matching algorithms.
Exact pattern matching algorithms find an exact occurrence
of input pattern in the knowledge base whereas approximate
pattern matching algorithms find the occurrences of an input
pattern within some threshold of error. Approximate pattern
matching measures the similarity of two strings and the sim-
ilarity measure can be computed by using distance functions
[20,26].

More strings in the 
knowledge base? 

Is the maximum similarity 
measure above threshold?

No 

Yes 

Yes 

No

No

Yes 

Get generated
string S1

Get string S2 from 
knowledge base

Is similarity measure 
equal to 1?

String recognized String not recognized 

Get next string 
S2 from the 

knowledge base

Extract primitives and connection 
types of S1 and S2

Align the two strings S1 and S2 

Compute similarity   
of connection types 

Compute similarity  
of primitives 

Compute the similarity 
measure of S1 and S2

Fig. 14 Pattern matching algorithm

Extraction of primitives and their spatial relationships is
sometimes affected by noise that may exist in the origi-
nal image. Thus, it is not always possible to generate the
desired string pattern for a character. To take the advantage
of tolerating such small errors, approximate pattern matching
technique is employed for recognition of strings. Figure 14
depicts the algorithm used for deciding whether an unknown
input string is recognized or not, based on the maximum
similarity measure of the string against with each string in
the knowledge base. The two strings considered for compar-
ison are aligned optimally based on the similarity of primi-
tives. Once strings are aligned, the overall similarity measure
is computed as a cumulative effect of the similarity of the
corresponding individual components of the strings.
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Fig. 15 Sample documents
from EDIDB showing a Visual
Geez 2000 Main font, b Visual
Geez 2000 Agazian font, c
Visual Geez Unicode font with
italic style, d book, e newspaper,
f magazine

The string size of each primitive type is 2. The similarity
P of two primitives α and β with numerical codes α1α2 and
β1β2 is computed as:

P = 6 − (|α1 − β1| + |α2 − β2|)
6

Whenever the numbers of primitives in the two character
strings differ, an empty primitive is used as a place holder, and
the overall similarity value of any primitive with an empty
primitive is set to be 0. This keeps the similarity value P
between two primitives to be in the range between 0 and 1,
with higher value showing better similarity.

The string size of a particular connection type ranges from
2 (only one connection) to 6 (three connections). Compari-
son between two connection types is made first by optimally
aligning the substrings. Then, the similarity C of two con-
nection types χ and δ is computed as

C =
6 −

(∑n
i=1

|χi −δi |
n

)
6

,

where n is the size of the longest substring. Whenever the two
substrings do not match in their length, a connection type of
NONE (numerical code 44) is inserted in the vacant places.
To make the measurement consistent, the difference between
an empty connection (NONE) and any other connection type
is considered to be 6. Thus, the similarity value C between
two connection types ranges from 0 to 1, with higher value
for better similarity.

The overall similarity measure K between two character
strings is the mean value of the similarity between corre-
sponding components, i.e., primitives and connection types.
Therefore, K is computed as follows:

K =
∑m

j=1

(
C j + Pj

)
2m

,

where m is the total number of primitives in the longest char-
acter string. The value of K is in the range of [0,1]. For two
strings having the same pattern, K has a value of 1 and the
value decreases to 0 as the difference between two strings
increases. Whether or not two strings are considered similar

is determined by a threshold. A character is then said to be
recognized when the most similar pattern in the knowledge
base has a similarity measure of above the threshold value. To
balance false acceptance and false rejection rates, a thresh-
old value of 0.75 is used in this experiment. It means that, on
average, for a pair of connection types and primitives χα of
one string and δβ of another string, the following conditions,
the thresholds of which are found empirically, are tolerated.

• χ and δ are the same (C = 1), α and β are different in
orientation or relative size but not both (P ≥ 0.5)

• at least one connection region of χ and δ are the same
(C ≥ 0.5), α and β are the same (P = 1)

• the difference between χ and δ is only one connection
region (C ≥ 0.67), α and β are close in orientation and
the same in relative size, or vice versa (P ≥ 0.83).

6 Experiments

6.1 Database development

A standard image database of Ethiopic text is not available so
far for testing character recognition systems. Thus, we devel-
oped Ethiopic document image database (EDIDB) for test-
ing the recognition system with different real life documents.
EDIDB also helps to standardize the evaluation of Ethiopic
character recognition systems in general. The database con-
sists of wide range of document types taken from printouts,
books, newspapers, and magazines. Specific details of the
database are presented in Appendix A. The recognition sys-
tem is tested with documents taken from EDIDB. Sample
documents are shown in Fig. 15 and experimental results are
discussed below.

6.2 Result

The robustness of the recognition system on variations in font
type, size, style, document skewness, and document type is
tested and results are presented below.
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Table 6 Recognition results with different font types

Font type Recognition (%)

Visual Geez Unicode 94

Visual Geez 2000 Main 94

Visual Geez 2000 Agazian 94

PowerGeez 94

GeezType 93

• Font type: Test documents have the same text content and
font size of 12, but different font types. A total of 175
pages (about 35 pages for each font type) are used for
testing the recognition result is presented in Table 6.

• Font size: Test documents have the same content of text
with Visual Geez Unicode font but with different sizes.
A total of 107 pages are used for testing (excluding font
size 12, which is already tested above). The result is pre-
sented in Table 7.

• Font style: Test documents have the same content of text
with Visual Geez Unicode font and 12 font size, but dif-
ferent formatting styles. About 70 pages, excluding the
normal style which is already tested above, are used for
testing and the result is presented in Table 8.

• Skewness: About 24 skewed documents are used to test
the robustness of the recognition system with regard to
skewness. The skewed documents are the same in con-
tent as that of Visual Geez Unicode font with 12 font
size, and a comparison of the results is shown in Table 9.

• Document type: Test documents are taken from five books
(a total of 48 pages), three newspapers (equivalent to 26
pages on A4 size paper), and two magazines (equivalent
to 23 pages on A4 size paper). Results are summarized
in Table 10.

Table 7 Recognition results
with different font sizes Font size Recognition (%)

8 91

10 93

12 94

16 95

20 96

Table 8 Recognition results
with different font styles

Font Style Recognition (%)

Normal 94

Bold 95

Italic 92

Table 9 Recognition results with different document skewness

Skewness in degree Recognition (%)

−20 and +20 88

−10 and +10 91

−5 and +5 94

0 94

Table 10 Recognition results with different document types

Document type Recognition (%)

Books 89

Newspapers 86

Magazines 88

6.3 Discussion

The recognition system was tested on various real life
Ethiopic documents of Amharic and Geez languages. The
only parameter that is changed with variation in documents
is the size of Gaussian window. The results obtained by
Gaussian filtering operations are generally maximal when
the window is perfectly symmetric along pixels. Thus, a
Gaussian window size of even numbers is avoided in this
experiment. The size of the Gaussian window is determined
by the noise level of the document and the size of fonts. For
clean documents, we used a window of 3 × 3 pixels for texts
with font sizes of less than or equal to 12, a window of 5 × 5
pixels for font sizes of 16, and a window of 7 × 7 pixels
for font sizes of 20. On the other hand, for most documents
taken from books, newspapers, and magazines (font sizes are
equivalent to about 12), a window of 5 × 5 pixels was used
because of their higher level of noise. For noisy documents,
a 5 × 5 pixels window sometimes over-smoothes characters.
However, it still gives better recognition result than a 3 × 3
pixels window which is, as expected, not sufficient to remove
excessive noises.

The major sources of errors in the recognition system are
errors that arise from character segmentation and extraction
of structural features. Character segmentation errors depend
mainly on the quality of documents. In poor quality docu-
ments, thin horizontal lines in characters are easily lost dur-
ing smoothing and give way for erroneous segmentation of a
character into two or more parts. The noise in documents also
hinders segmentation of characters. Although the segmenta-
tion accuracy of characters varies as such with the noise level
and quality of documents, an average segmentation accu-
racy of 94% was achieved for books, newspapers, and mag-
azines. For clean printouts which generally have less noise,
about 98% of the characters were successfully segmented.
Extraction of structural features is also influenced by font size
and quality of documents. In the case of small font sizes,
appendages and other small primitive structures are more
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vulnerable to being lost due to over-smoothing. Noises that
are close to edges of characters may also disrupt the process
of structural feature extraction. The evaluation of extraction
of structural features was made by automatically marking the
extracted features (see Figs. 7–9) on the image and compar-
ing with knowledge about the structural features that make up
the characters. For documents taken from books, newspapers
and magazines, an average of 93% of the primitive struc-
tures were successfully extracted. For clean printouts with
font sizes of 16 and 20 about 99% of the primitive structures,
for font size of 12 about 97% of the primitives structures,
and for font sizes of 8 and 10 an average of 95% of primitive
structures were successfully extracted.

Recognition of characters also depends on the nature of
characters themselves. Characters that are formed out of more
complex interrelation of smaller primitive structures like
and are recognized less efficiently. On the other hand,
characters which are formed from simpler relationships of
large primitive structure like and are recognized
easily. Some groups of characters are also confused between
each other than others. This includes and ; and
and and and and

In general, character recognition results show that the
recognition system can be used for various documents. The
variations in the results are mainly due to the inherent
characteristics of documents like noise level, which are also
the case in Latin OCR softwares. For example, some clean
pages from books, newspapers, and magazines were
recognized in the same rate as clean printouts and other poor
quality pages were recognized below the average result. For
the case of smaller font sizes, we can improve the recogni-
tion accuracy by scanning documents at a higher resolution,
which helps to increase the size of small primitive structures.

6.4 Comparison to other character recognition approaches

In Sect. 1, we mentioned some major approaches to solve pat-
tern recognition problems: template matching; syntactic and
structural; statistical and neural network classifiers. Every
approach has its own advantages and limitations, and the
approaches are not necessarily independent. Moreover, it is
widely accepted that no single approach is best to solve all
types of general pattern recognition problems.

As compared to other recognition approaches, our pro-
posed system has an advantage of being resilient to variations
in the characteristics of documents, which is a major issue
of OCR systems. Template matching approach is the easiest
method for implementation of recognition systems. How-
ever, it is computationally demanding. Templates made from
the signature property of characters improved the processing
speed, but the recognition was marked by high degree of con-
fusion between Ethiopic characters [13]. Another drawback

of template matching approach is its limitation to recognize
various fonts. This requires storing the templates of
characters with various font types and styles which is
practically difficult, if not impossible, to exhaustively include
all the variants. The processing speed becomes even worse
as comparison is also to be made against each template. For
Ethiopic script, a template matching of direction fields tested
on a few set of characters with a specific font type, size, and
style gives 92% accuracy [27]. However, this is not directly
comparable to our results since the size and type of test data
are different.

Statistical approaches describe characters in terms of
d-dimensional feature spaces, and a suitable set of repre-
sentative features with small intra-class and large inter-class
variations must be selected. In Ethiopic script, since only
small structures are added to modify the base characters,
the modified characters retain the original shape of the base
characters. This results in small inter-class variations which
produces high degree of confusion even for template match-
ing [13]. Consideration of various font types and styles would
increase the intra-class variations which poses an additional
problem. Moreover, since features are described as a fixed
number of dimension, statistical approach usually requires
preprocessing procedures like thinning, skew correction, size
normalization. In fact, template matching also requires most
of the preprocessing procedures. Our proposed approach does
not require any of these preprocessing procedures, and in
effect the total processing time is minimal. However, for
Latin script, where the script is vowel-based (not modifi-
cation based), the intra-class variation would be relatively
larger. In fact, many Latin character recognition systems
make use of the statistical approach. On top of this, linguistic
models such as spell-checkers and part of speech analyzers
are better studied for Latin languages, and used as post-pro-
cessing tools to improve recognition results. With all these
efforts, Latin OCR products suggesting a recognition rate of
above 99% are now available on the market [12]. For mul-
tifont Chinese character recognition, Wu and Wu [35] used
statistical techniques and an average recognition rate of 98%
was achieved for practical Chinese documents with various
fonts types. An average recognition rate of about 95% was
also obtained for isolated Arabic characters with five differ-
ent font types [2].

Neural networks are good classification tools if they are
trained sufficiently. They have been effectively used for hand-
written digit recognition, e.g., reading of zip codes. Tradition-
ally, inputs to the neural network are pixel values of character
images. Since the number of input nodes is a pre-determined
fixed number, neural networks also require, among other
procedures, normalization of the size of character images.
Another drawback of neural network systems is that it is not
possible to reason out how the result is obtained and there-
fore to introduce efficient remedy when they fail. The optimal
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network model is obtained experimentally by the training and
testing procedures [14].

6.5 Adaptability to other pattern recognition problems

Our approach offers a description of a complex pattern in
terms of the relationships of its simpler sub-patterns. It can
be adapted to other recognition problems provided that the
complex patterns lend themselves to be described by spatial
arrangements of simple sub-patterns. However, the specific
representations of the relationships between sub-patterns
vary according to the nature of the problem. Although it needs
more study, we hope that the general framework will also be
a useful basis for recognition of Ethiopic handwritten text.

The traditional approach for low level image processing
is to make use of the gradient field. The direction field ten-
sor, which we used for extraction of structural features, is
more advantageous than the gradient field because it pro-
vides the optimal direction of pixels in a local neighborhood
of an image in the total least square error sense. Direction
field tensor also amplifies linear structures and suppresses
non-linear structures. Therefore, it can be used as an efficient
low-level image processing tool in a wide range of document
processing and graphics recognition problems. Examples
include recognition of engineering drawings, maps, diagrams,
symbols, shapes, tables, and forms.

7 Conclusion and future work

In this paper, structural and syntactic techniques are applied
to develop multifont and size-resilient recognition system for
Ethiopic characters. Recognition of simpler structural fea-
tures is easier than recognizing complex structures. Thus, we
develop a recognition system by dealing with smaller con-
stituents of character structures. Since the recognition system
is insensitive to variations on font size, type and other para-
meters of characters, it does not require preprocessing tech-
niques like thinning and size normalization. This, together
with the 1D image processing that we use throughout, helps
the system to be efficient in computational costs.

Images taken from clean printouts show better recognition
performance due to their relatively better quality, and larger
font sizes tend to be recognized only slightly better than their
smaller versions. However, there was not a major difference
in recognition accuracy due to variation in fonts. The recogni-
tion accuracy can still be improved by dedicating more efforts
on character segmentation, extraction of structural features,
knowledge base development and representation, and pat-
tern matching algorithms. Extraction of structural features
and pattern matching can be further improved by applying a
hybrid system of neural networks and statistical techniques.
The general framework of the proposed system can also be

extended for recognition of handwritten characters and there-
fore, the research results are expected to lead to robust OCR
systems for Ethiopic script.
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Appendix A: Ethiopic document image database
for character recognition

I Introduction

With the growing need of computerized information process-
ing, many researches in the area of recognition of various
scripts have been conducted over the past decades. The types
of documents used for testing recognition systems highly
affect the results. Thus, to standardize and compare research
results, text image databases are built for various scripts.
Examples include NIST1 for Latin, CEDAR2 for Japanese,
ERIM3 for Arabic etc. However, there has no standard data-
base for Ethiopic text so far. As part of the research on
recognition of Ethiopic characters, we developed Ethiopic
Document Image Database (EDIDB).4 The database is also
intended to serve other researchers in the area and standardize
the research on Ethiopic character recognition. EDIDB helps
researchers to test recognition systems with respect to vari-
ation on font type, font style, font size, document skewness,
document uniformity and document type.

II EDIDB specification

Scanner: CanoScan LiDE 20 flatbed scanner
Resolution: 300 dpi
Image format: JPEG, Grayscale
Total Pages: 1,204 images
Languages: Amharic and Geez
Document types: Printouts, books, newspapers, and maga-
zines

(1) Printouts
a. Total scanned pages: 983
b. Fonts types: Geez Type, Power Geez, Visual Geez

2000 Main, Visual Geez 2000 Agazian, and Visual
Geez Unicode

1 http://www.nist.gov/srd/optical.htm.
2 http://www.cedar.buffalo.edu/Databases/JOCR/.
3 http://documents.cfar.umd.edu/resources/database/ERIM_Arabic_
DB.html.
4 Researchers in the area of Ethiopic character recognition can contact
the authors to get the database for free.
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c. Font sizes: 8, 10, 12, 16, 20
d. Font styles: Normal, Italic, and Bold
e. Skewness: Non-skewed, and skewed from −30◦ to

30◦
f. Uniformity of documents: Uniform in font size and

style, combination of various font sizes (8–20) and
styles (normal, bold, italic, and bold+italic)

(2) Books
a. Total books: 5
b. Total scanned pages: 116

(3) Newspapers
a. Total newspapers: 3
b. Total scanned pages: 79

(4) Magazines
a. Total magazines: 2
b. Total scanned pages: 26
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