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Abstract—We suggest a set of complex differential operators that can be used to produce and filter dense orientation (tensor) fields

for feature extraction, matching, and pattern recognition. We present results on the invariance properties of these operators, that we

call symmetry derivatives. These show that, in contrast to ordinary derivatives, all orders of symmetry derivatives of Gaussians yield a

remarkable invariance: They are obtained by replacing the original differential polynomial with the same polynomial, but using ordinary

coordinates x and y corresponding to partial derivatives. Moreover, the symmetry derivatives of Gaussians are closed under the

convolution operator and they are invariant to the Fourier transform. The equivalent of the structure tensor, representing and extracting

orientations of curve patterns, had previously been shown to hold in harmonic coordinates in a nearly identical manner. As a result,

positions, orientations, and certainties of intricate patterns, e.g., spirals, crosses, parabolic shapes, can be modeled by use of

symmetry derivatives of Gaussians with greater analytical precision as well as computational efficiency. Since Gaussians and their

derivatives are utilized extensively in image processing, the revealed properties have practical consequences for local orientation

based feature extraction. The usefulness of these results is demonstrated by two applications: 1) tracking cross markers in long image

sequences from vehicle crash tests and 2) alignment of noisy fingerprints.

Index Terms—Gaussians, orientation fields, structure tensor, differential invariants, cross detection, fingerprints, tensor voting,

tracking, filtering, feature measurement, wavelets and fractals, moments, invariants, vision and scene understanding, representations,

shape, tracking, registration, alignment.
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1 INTRODUCTION

GAUSSIAN filters, and derivatives of Gaussian filters, are
frequently used to produce dense orientation maps of

images. Example applications of such maps include tracking
corners in image sequences [17], [29], and extractingminutiae
points in fingerprint image processing, [21]. Here,we present
symmetry derivatives of Gaussians alongwith analytical and
experimental results that are useful for pattern recognition.
The structure tensor, [6], [23], that has been in use in many
contexts [19], [24], [28], [35] to compute and/or represent
orientation fields, can be analytically extended to yield the
generalized structure tensor [3], which allows to represent and
to detectmore intricate patterns than straight lines and edges,
e.g., those in Fig. 1. Since this tensor, and the applications
which use it are significant benefactors of our results, we
summarize it in Section 2 along with the prior background.
We present our main results on symmetry derivatives, that
are nonspecific to the theory of the structure tensor, as
theorems and lemmas in Section 3. The proofs of the novel
theorems and lemmas are given in the Appendix whereas
known results, to the extent they are indispensable to our
illustrations of these theorems, are briefly stated with
references to proofs. Themain idea of Section 4 is to illustrate
the impact of the results in Section 3 on the structure tensor
theory summarized in Section 2. The novel analytical results

important to the practice of the structure tensor theory, is
presented as a lemma in Section 4. The pattern orientation
parameter alongwith auseful errormeasure, themost crucial
parameters inpractice, havebeen shown tobe implementable
via 1D correlations, only. However, to obtain the minimum
andmaximum errors explicitly, a 2D filtering is still required
for patternswith odd symmetry orderswhichwill be defined
further below. The applications we used to illustrate the
theoretical findings consists of 1) cross marker tracking in
vehicle crash tests and 2) fingerprint alignment. These are
presented in Section 5. It is demonstrated that both applica-
tions are realized by filtering (structure) tensor fields and that
a contribution of our results has been robust and computa-
tionally effective detection schemes delivering features
having a precise meaning. We present our conclusions in
Section 6.

Albeit in parametric statistics domain, the report of [31]
provides a valuable insight into estimation of angular
variables. Another relevant contribution is the motion
estimation technique suggested by [29] that primarily
concerns characterization of regions lacking orientation so
that the aperture problem can be avoided in regions having
a distinct orientation. However, the earliest efforts on
invariant pattern matching, including rotation and transla-
tion invariance, are represented by the reports of [8], [16],
[20], although their formulations concern binary images or
contours.

The popularity of Gaussians as filters, [32], is due to their
valuable properties including: 1) directional isotropy, i.e., in
polar coordinates they depend on radius only, 2) separ-
ability in x and y coordinates, and 3) simultaneous
concentration in the spatial and the frequency domain.
These motivations increasingly make the Gaussians the
prime choice in Finite Impulse Response (FIR) filter
implementation of the linear operators, e.g., [11], [15], [41],
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as well as nonlinear operators which rely on linear
operators e.g., edge operators [32], scale analysis [9], [26],
[28], orientation analysis [23], [35], and singularity points
detection schemes [14], [17].

2 THE STRUCTURE TENSOR AND ITS
GENERALIZATION

Here, our goal is to present the generalized structure tensor
that will be used in other sections. However, to do this, we
need the ordinary structure tensor which we state below in
two variants. To fix the ideas, we first present the most
known version of it, so that we can switch to the less known
variant in which we can identify the same measurement
parameters. This allows to present the generalized structure
tensor, which is based on the second variant but uses
curvilinear coordinates, without effort.

We will refer to an image neighborhood in a 2D image as
image, to the effect that we will treat the local images in the
same way as the global image. Let the scalar function f ,
taking a two-dimensional vector r ¼ ðx; yÞT as argument,
represent an image. Consider the matrix

SðfÞ ¼RR
ðDxfðx; yÞÞ2

RR
ðDxfðx; yÞÞðDyfðx; yÞÞRR

ðDxfðx; yÞÞðDyfðx; yÞÞ
RR

ðDyfðx; yÞÞ2

 !
;

ð1Þ

where integrations of the elements are carried over the
entire real axis for the variables x and y assuming that f
already contains a possible window function. Introduced by
[6], [23] in pattern recognition, this matrix is a tensor.
Sometimes with the notion “matrix” replacing “tensor,” it
has been called symmetry tensor, inertia tensor, structure
tensor, moment tensor, orientation tensor, etc., among
others, [6], [24], [23], [35]. We retain here the term structure
tensor because it appeared most common to us.

The image f is called linearly symmetric if its isocurves
have a common direction, i.e., there exists a scalar function
of one variable g such that fðx; yÞ ¼ gðkT rÞ, where k is a
two-dimensional real vector that is constant with regard to
r ¼ ðx; yÞT . The term is justified in that the spectral energy
of gðkT rÞ is concentrated to a line in addition to that the
linear symmetry direction k represents the common direc-
tion, or the mirror symmetry direction of the isocurves of
gðkT rÞ.

Whether or not an image is linearly symmetric can be
determined by eigen analysis of the structure tensor via the

following result, [6]. We assume that the capitalized F is the
Fourier transform of f and we denote with jF j2 the power
spectrum of f .

Theorem 1 (Structure tensor I). The extremal inertia axes of
the power spectrum, jF j2, are determined by the eigenvectors of
the structure tensor

S ¼
RR

ð!xÞ2jF ð!x; !yÞj2
RR

!x!yjF ð!x; !yÞj2RR
!x!yjF ð!x; !yÞj2

RR
ð!yÞ2jF ð!x; !yÞj2

 !

¼
RR

ðDxfÞ2
RR

ðDxfÞðDyfÞRR
ðDxfÞðDyfÞ

RR
ðDyfÞ2

 !
:

ð2Þ

The eigenvalues �min, �max, and the corresponding eigenvec-
tors kmin, kmax of the tensor represent the minimum inertia,
the maximum inertia, the axis of the maximum inertia, and the
axis of the minimum inertia of the power spectrum,
respectively.

We note that kmin is the least eigen vector but it represents
the axis of the maximum inertia. This is because the inertia
tensor R in mechanics equals to R ¼ TraceðSÞI� S with I
being the unitmatrix. IfSk ¼ �k, thenRk ¼ ðTraceðSÞ � �Þk,
so that thestructureandthe inertia tensorsshareeigenvectors,
for any dimension. But, since in 2D TraceðSÞ ¼ �max þ �min,
the two tensors additionally share eigenvalues in 2D,
although the correspondence between the eigenvalues and
the eigenvectors is reversed. Because of this tight relationship
between the two tensors, the structure tensorS and the inertia
tensor R can replace each other in applications of computer
vision. While its major eigenvector fits the minimum inertia
axis to thepowerspectrum, the imageitselfdoesnotneedtobe
Fourier transformed according to the Theorem. The eigenva-
lue �max represents the largest inertia or error, which is
achieved with the inertia axis having the direction kmin. The
worst error is useful too, because it indicates the scale of the
error when judging the size of the smallest error, �min. By
contrast, the axis of the maximum inertia provides no
additional information, because it is always orthogonal to
the minimum inertia axis as a consequence of the matrix S
being symmetric, and positive semidefinite. Via Taylor
expansion, a spatial interpretation as an alternative to the
spectral inertia interpretation can be obtained. In this
alternative view, the same structure tensor, via its minor
eigenvector,encodes thedirection inwhichasmall translation
of the image departs it from the original the least.

Before coping with generalization of the structure tensor,
we need to restate Theorem 1 in terms of complex moments
which will be instrumental. The complex scalar Imn
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Fig. 1. The top row shows the harmonic functions, (25), that generate the patterns in the second row. The isocurves of the images are given by a
linear combination of the real and the imaginary parts of the harmonic functions on the top according to (26) with a constant parameter ratio, i.e.,
’ ¼ tan�1ða; bÞ ¼ �

4 . The third row shows the symmetry derivative filters that are tuned to detect these curves for any ’ while the last row shows the
symmetry order of the filters.



Imnð�Þ ¼
Z Z

ðxþ iyÞmðx� iyÞn�ðx; yÞdxdy; ð3Þ

with m and n being nonnegative integers, is the complex
moment m;n of the function �. The order number and the
symmetry number of a complex moment refer to mþ n and
m� n, respectively. We will be particularly interested in the
second-order complex moments because of the structure
tensor. However, also higher-order complex moments and,
thereby, higher-order symmetry derivatives that will be
defined below, are valuable image analysis tools, e.g., in
texture discrimination and segmentation, [5].

Theorem 2 (Structure tensor II). The minimum and maximum
inertia as well as the minimum inertia axis of the power
spectrum, jF j2, are given by its second-order complex
moments

I20ðjF j2Þ ¼ ð�max � �minÞei2’min ¼
Z Z

ð!x þ i!yÞ2jfj2d!xd!y

¼
Z Z

ððDx þ iDyÞfÞ2dxdy ð4Þ

I11ðjF j2Þ ¼ �max þ �min ¼
ZZ

ð!x þ i!yÞð!x � i!yÞjF j2d!xd!y

¼
ZZ

jðDx þ iDyÞfj2dxdy; ð5Þ

which are computable in the spatial domain without Fourier
transformation. The quantities �min, �max, and ’min are,
respectively, the minimum inertia, the maximum inertia, and
the axis of the minimum inertia of the power spectrum.

The eigenvalues of the tensor in Theorem 1 and the �s
appearing in this theorem are identical. Likewise, the
direction of the major eigenvector of Theorem kmax and
the ’min, of Theorem 2 coincide. While the proof of this
version of the structure tensor theorem is due to [6], a more
recent study has also provided a proof and a different
motivation for its existence, [2]. In fact, the complex scalar
I20 and the real scalar I11 are linear combinations of the
elements of the real and symmetric tensor, SðfÞ. Thus,
Theorem 1 and Theorem 2 are mathematically fully
equivalent, to the effect that the tuple ðI20; I11Þ is just
another way of representing the structure tensor. More
importantly, however, from Theorem 2, the following
attractive conclusions, that do not easily follow from
Theorem 1, emerge:

1. a simple averaging of the “square” of the gradient
ðDxf þ iDyfÞ2 automatically fits anoptimal axis to the
spectrum in that the resulting complex number
directly encodes the optimal direction and the error
difference,

2. a simple averaging of jDxf þ iDyf j2 yields the error
sum, and

3. the Schwartz inequality jI20j ¼ �max � �min � I11 ¼
�max þ�min, holds with equality if and only if the
image f has perfect linear symmetry.

Recently, decomposition of the structure tensor, combin-
ing differences and sums of the eigenvalues has found
novel uses. Called tensor voting, the tensor averaging has
been demonstrated as being effective in 3D interpolation
problems, [33].

Is it possible, with a fixed number of correlations, to
extend the structure tensor idea to find the direction of

sophisticated curve structures and yet provide good
precision for location and orientation? The answer to this
question is yes. The next theorem, [3], generalizes the
structure tensor idea, yielding a method of obtaining the
global orientation of other curves than lines, e.g., the
orientation of a cross pattern or a fingerprint core point.

Theorem 3 (Generalized structure tensor). The Structure
Tensor Theorem holds in harmonic coordinates.1 In particular,
the second-order complex moments determining the minimum
inertia axis of the power spectrum, jF ð!�; !�Þj2, can be
obtained in the (Cartesian) spatial domain as:

I20 ¼ ð�max � �minÞei2’min ¼
ZZ

ð!� þ i!�Þ2jF j2d!�d!� ð6Þ

¼
ZZ

ððD� þ iD�ÞfÞ2d�d�;

¼
ZZ

ei argððDx�iDyÞ�Þ2 ½ðDx þ iDyÞf�2dxdy; ð7Þ

I11 ¼ �max þ �min ¼
ZZ

ð!� þ i!�Þð!� � i!�ÞjF j2d!�d!� ð8Þ

¼
ZZ

jðD� þ iD�Þfj2d�d�; ð9Þ

¼
ZZ

jðDx þ iDyÞf j2dxdy:

The quantities �min, ’min, and �max are, respectively, the
minimum inertia, the direction of the minimum inertia axis,
and the maximum inertia of the power spectrum of the
harmonic coordinates, jF ð!�; !�Þj2.

It should be emphasized that the complex moments I20
and I11 are taken with regard to harmonic coordinates, e.g., as
in (6), although their actual computations only involve the
Cartesian grid, e.g., as in (7).

The theorem provides a principle that can be used to
extract the position and the orientation of a target pattern
with a few filters. Just like in the ordinary structure tensor
approach in which only horizontal and vertical filters are
used to detect the positions and the orientations of target
patterns that possess linear symmetry, the generalized
structure tensor determines the position and orientation of
its target patterns via two orthogonal filters. The drawback
is that a straightforward derivation of these filters yields
nonseparable filters, [3]. However, by means of the results
introduced in the next section, we will present an alter-
native technique that yields 1D implementations. Evidently,
when the harmonic coordinate transformation is the
identity transformation, i.e., � ¼ x and � ¼ y, Theorem 3
reduces to Theorem 2.

We emphasize that it is the coordinate transformation that
determines what I20 and I11 represent and detect. Central to
generalized structure tensor is the harmonic function pair
x ¼ �ðx; yÞ and y ¼ �ðx; yÞ which creates new coordinate
curves to represent the points of the 2D plane. An image
fðx; yÞ can always be expressed by such a coordinate pair
� ¼ �ðx; yÞ and � ¼ �ðx; yÞ as long as the transformation from
ðx; yÞ to ð�; �Þ is one to one and onto. The deformation by itself
does not create newgray tones, i.e., no new function values of
f are created, but rather it is the isogray curves of f that are
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1. A coordinate pair �ðx; yÞ; �ðx; yÞ is harmonic iff Dx� ¼ Dy� and
Dy� ¼ �Dx�, i.e., the curves �ðx; yÞ ¼ � ¼ 0 and �ðx; yÞ ¼ �0 are perpendi-
cular. If � satisfies ðD2

x þD2
yÞ� ¼ 0, then a function � making ð�; �Þ a

harmonic pair, exists.



deformed. The harmonic coordinate transformations deform
the appearance of the target patterns to make the detection
process mathematically more tractable. In the principle
suggested by Theorem 3, however, these transformations
are not applied to an image because they are implicitly
encoded in the utilized complex filters. The deformations
occur only in the idea, when designing the detection scheme
and deriving the filters.

The shape concept that the generalized structure tensor
utilizes depends on differential operators which do not
require a binarization or an extraction of the contours.
Sharing similar integral curves with the generalized
structure tensor, the Lie operators of [13], [18] should be
mentioned, although these studies have not provided tools
on how to estimate the parameters of the integral curves,
e.g., the orientation and the estimation error.

The generalized structure tensor is a powerful analytical
tool that can model and estimate the position and
orientation parameters of harmonic function patterns such
as those illustrated by Fig. 1, explicitly. However, it is in
place to point out that it was Knutsson et al. who first
predicted that convolving complex images by complex
filters, can result in detection of intricate patterns, though
without providing an analytic model of the computed
parameters, [25]. That is because they modeled the local
orientation field in isolation from the underlying isocurves.
By contrast, the generalized structure tensor models the
isocurves by two harmonic basis curves � and �. The linear
combinations of these curves define a target pattern family
from the beginning, and a member of this family that is
closest to the image in the least square error sense is also
represented by the tensor. Recently, an efficient polynomial
filtering of orientation maps has been worked out by [22] by
the use of Gaussian derivatives too. The main novelties in
our contribution will be explicited in greater detail in the
following sections.

3 SYMMETRY DERIVATIVES OF GAUSSIANS

Definitions: We define the first symmetry derivative as the
complex partial derivative operator

Dx þ iDy ¼
@

@x
þ i

@

@y
; ð10Þ

which resembles the ordinary gradient in 2D. When it is
applied to a scalar function fðx; yÞ, the result is a complex
field instead of a vector field. Consequently, the first
important difference is that it is possible to take the
(positive integer or zero) powers of the symmetry deriva-
tive, e.g.,

ðDx þ iDyÞ2 ¼ ðD2
x �D2

yÞ þ ið2DxDyÞ ð11Þ
ðDx þ iDyÞ3 ¼ ðD3

x � 3DxD
2
yÞ þ ið3D2

xDy �D3
yÞ ð12Þ

� � �

Second, being a complex scalar, it is even possible to
exponentiate the result of the symmetry derivative, i.e.,
ðDx þ iDyÞnf , toyieldnonlinear functionals: ½ðDx þ iDyÞnf �m.

The operator, ðDx þ iDyÞn will be defined as the nth
symmetry derivative since its invariant patterns (those that
vanish under the operator) are highly symmetric. In an
analogous manner, we define, for completeness, the first
conjugate symmetry derivative as Dx � iDy ¼ @

@x � i @
@y and the

nth conjugate symmetry derivative as ðDx � iDyÞn. We will,
however, only dwell on the properties of the symmetry
derivatives. The extension of the results to conjugate
symmetry derivatives are straightforward.

We apply the pth symmetry derivative to the Gaussian
and define the function �fp;�2g as

�fp;�2gðx; yÞ ¼ ðDx þ iDyÞp
1

2��2
e�

x2þy2

2�2 ; ð13Þ

with �f0;�2g being the ordinary Gaussian.

Theorem 4. The differential operator Dx þ iDy and the scalar
�1
�2
ðxþ iyÞ operate on a Gaussian in an identical manner:

ðDx þ iDyÞp�f0;�2g ¼ �1

�2

� �p

ðxþ iyÞp�f0;�2g: ð14Þ

The theorem reveals an invariance property of the
Gaussians with regard to symmetry derivatives. We
compare the second-order symmetry derivative with the
classical Laplacian, also a second-order derivative operator,
to illustrate the analytical consequences of the theorem. The
Laplacian of a Gaussian

ðD2
x þD2

yÞ�f0;�2g ¼ � 2

�2
þ x2 þ y2

�4

� �
�f0;�2g ð15Þ

can obviously not be obtained by a mnemonic replacement
of the derivative symbol Dx with x and Dy with y in the
Laplacian operator. As the Laplacian already hints, with an
increased order of derivatives, the resulting polynomial
factor, e.g., the one on the righthand side of (15) will
resemble less and less the polynomial form of the derivation
operator. Yet, it is such a form invariance that the theorem
predicts when symmetry derivatives are utilized. By using
the linearity of the derivation operator, the theorem can be
generalized to any polynomial as follows:

Lemma 1. Let the polynomialQ be defined asQðqÞ ¼
PN�1

n¼0 anq
n.

Then,

QðDx þ iDyÞ�f0;�2gðx; yÞ ¼ Q
�1

�2
ðxþ iyÞ

� �
�f0;�2gðx; yÞ:

ð16Þ

That the Fourier transformation of a Gaussian is also a
Gaussian has been known and exploited in information
sciences. It turns out that a similar invariance is valid for
symmetry derivatives of Gaussians too. In the theorem
below, as well as in the rest of the paper, all integrals have
their integration domains as the entire 2D plane.

A proof of the following theorem is omitted because it
follows by observing that derivation with regard to x
corresponds to multiplication with i!x in the Fourier
domain and applying (14). Alternatively, Theorem 3.4 of
[39] can be used to establish it.

Theorem 5. The symmetry derivatives of Gaussians are Fourier
transformed on themselves, i.e.,

F½�fp;�2g� ¼ ð17Þ

¼
ZZ

�fp;�2gðx; yÞe�i!xx�i!yydxdy ð18Þ

¼ 2��2ð�i

�2
Þp�fp; 1

�2
gð!x; !yÞ: ð19Þ
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We note that, in the context of prolate spheroidal
functions [38], and when constructing rotation invariant
2D filters [10], it has been observed that the (integer)
symmetry order n of the function hð�Þ expðin�Þ where h is a
one-dimensional function, � and � are polar coordinates, is
preserved under the Fourier transform. To be precise, the
Fourier transform of such functions are: H0½hð�Þ�ð!�Þ, where
H0 is the Hankel transform (of order 0) of h. However, this
result does not provide sufficient guidance as to how the
function family h should be chosen in order to make it
invariant to Fourier transform.

Another analytic property that can be used to construct
efficient filters by cascading smaller filters or simply to gain
further insight into steerable filters and rotation invariant
filters is the addition rule under the convolution. This is
stated in the following theorem.

Theorem 6. The symmetry derivatives of Gaussians are closed
under the convolution operator so that the order and the
variance parameters add under convolution.

�fp1;�21g � �fp2;�22g ¼ �fp1þp2;�
2
1þ�22g: ð20Þ

4 MATCHING WITH THE GENERALIZED STRUCTURE

TENSOR AND THE SYMMETRY DERIVATIVES

In computer vision, normally, one does not locate an edge
or compute the orientation of a line by correlation with
multiple templates consisting of rotated edges, incremented
with a small angle. However, multiple correlations with the
target pattern rotated in increments is commonly used to
detect other shapes. This approach is also used to estimate
the orientation of such shapes. The number of rotations of
the template can be fixed a priori or, as in [7], dynamically.
The precision of the estimated direction is determined by
the number of the rotated templates used or by the amount
of computations allowed. Although such techniques yield a
generally good precision when estimating the affine
parameters, that include target translation and rotation, in
certain applications (e.g., our example applications), an a
priori undetermined number of iterations may not be
possible or be desirable due to imposed restrictions that
include hardware and software resources. Furthermore, the
precision and/or convergence properties remain satisfac-
tory as long as the reference pattern and the test pattern do
not violate the image constancy hypothesis severely. In
other words, if the image gray tones representing the same
pattern differ nonlinearly and significantly between the
reference and the test image, then a good precision or a
convergence may not be achieved. Our fingerprint align-
ment application represents a matching problem that
severely violates the image constancy assumption.

An early exception to the “rotate and correlate” approach
is the pattern recognition school initiated by Hu [20] who
suggested the moment invariant signatures to be computed
on the original image which was assumed to be real valued.
Later, Reddi [36] suggested the magnitudes of complex
moments to efficiently implement the moment invariants of
the spatial image, mechanizing the derivation of them. The
complex moments contain the rotation angle information
directly encoded in their arguments as has been shown in
[5]. An advantage they offer is a simple separation of the
orientation parameter from the model evidence, i.e., by

taking the magnitudes of the complex moments, one
obtains the moment invariants which represent the evi-
dence. The linear rotation invariant filters suggested by [11],
[15], [41] resemble the linear filters implementing the
complex moments of a real image. With appropriate radial
weighting functions, the rotation invariant filters can be
viewed as equivalent to Reddi’s complex moments filters
which in turn are equivalent to Hu’s geometric invariants.
From this view point, the suggestions of [1], [37] are also
related to the computation of complex moments of a real
image and, hence, deliver correlates of Hu’s geometric
invariants. Additionally, however, the latter authors sug-
gest the use of normalized phases which are computed by
dividing a complex moment with complex moments having
lower orders, typically first-order. In the approach of [37],
there is a further advantage in that the phase normalization
includes more lower order complex moments increasing
resilience to noise. Despite their demonstrated advantage in
the context of real images, it is not a trivial matter to directly
model tensor fields by complex moment filters or their
equivalent rotation invariant filters. This is because the
argument response when the complex or tensor valued
image is convolved with steerable filters is not easy to
interpret. By contrast, next we will use symmetry deriva-
tives and the generalized structure tensor to model and to
sample tensor fields, yielding a geometric interpretation of
the argument response or equivalently the “eigenvectors”
of the response tensor field.

An analytic function gðzÞ generates a harmonic pair via
� ¼ <½g� and � ¼ =½g�, representing the real and the
imaginary parts of g. Such pairs include the real and
imaginary parts of polynomials as well as other elementary
functions of complex variables, e.g., logðzÞ,

ffiffiffi
z

p
, z1=3. The

next lemma, a proof of which is given in the Appendix,
makes use of the symmetry derivatives to represent and to
sample the generalized structure tensor. Sampled functions
are denoted as fk, i.e., fk ¼ fðxk; ykÞ.
Lemma 2. Consider the analytic function gðzÞ with dg

dz ¼ z
n
2 and

let n be integer, 0;�1;�2; � � � . Then, the discretized filter
�
fn;�22g
k is a detector for patterns generated by the curves

a<½gðzÞ� þ b=½gðzÞ� ¼ constant provided that a shifted Gaus-
sian is assumed as interpolator and the magnitude of a
symmetry derivative of a Gaussian acts as a window function.
The discrete scheme

I20ðjF ð!�; !�Þj2Þ ¼ Cn�
fn;�22g
k � ð�f1;�21g

k � fkÞ2 ð21Þ

I11ðjF ð!�; !�Þj2Þ ¼ Cnj�
fn;�22g
k j � j�f1;�21g

k � fkj2; ð22Þ

where 0 � n and Cn is a real constant, estimates the
orientation parameter tan�1ða; bÞ as well as the error via I20
and I11 according to Theorem 3. For n < 0, the following
scheme yields the analogous estimates

I20ðjF ð!�; !�Þj2Þ ¼ Cn�
�fn;�22g
k � ð�f1;�21g

k � fkÞ2 ð23Þ

I11ðjF ð!�; !�Þj2Þ ¼ Cnj�
�fn;�22g
k j � j�f1;�21g

k � fkj2; ð24Þ

where ��fn;�22g ¼ ð�fn;�22gÞ�.

We note that the parameter Cn is constant with regard to
ðxl; ylÞ and has no implications to applications because it
can be assumed to have been incorporated to the image the
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filter is applied to. In turn, this amounts to a uniform
scaling of the gray value gamut of the original image.

4.1 Detectable Patterns and Their Illustration

The procedure below is due to [3]. It uses real and
imaginary parts of analytic functions, which are harmonic,
to reveal the detectable patterns that Lemma 2 affords via
the generalized structure tensor. To that end, we integrate
dg
dz ¼ z

n
2 to obtain the real and imaginary parts of g,

gðzÞ ¼
1

n
2þ1 z

n
2þ1; if n 6¼ �2;

logðzÞ; if n ¼ �2:

�
ð25Þ

The filter �fn;�2g detects the patterns that are generated by
real and imaginary parts of gðzÞ. Such patterns are shown in
Fig. 1 by gray modulation

sða� þ b�Þ ¼ cosða<½gðzÞ� þ b=½gðzÞ�Þ: ð26Þ

The 1D function sðtÞ ¼ cosðtÞ is chosen for illustration
purposes. The filters that are tuned to detect the isocurves
a� þ b� are not sensitive to s, but to the angle

’ ¼ tan�1ða; bÞ: ð27Þ

The nonlinear convolution scheme of Lemma 2 estimates
’ via the argument of I20 regardless of s. In Fig. 1, this angle
is fixed to ’ ¼ �

4 and n is varied between �4 and 3. Each n

represents a separate isocurve family. By changing ’ and
keeping n fixed, the parameter pair ða; bÞ is rotated to ða0; b0Þ.
Except for the patterns with n ¼ �2, which we will come
back to here next, this results in rotating the isocurves since
for n 6¼ �2 and gðzÞ ¼ z

n
2þ1, we have

a0� þ b0� ¼ <½ða0 � ib0Þð� þ i�Þ� ¼ <½ða0 � ib0ÞgðzÞ� ð28Þ

¼ <½ða� ibÞei’zn
2þ1� ¼ <½ða� ibÞgðzei

1
n
2
þ1
’Þ� ð29Þ

¼ a�0 þ b�0: ð30Þ

Here �0 and �0 are rotated versions of the harmonic pair �

and �, so that gðz expi’0Þ ¼ �0 þ i�0 for some ’0. The top row
of Fig. 2 displays the curves generated by (26), for
increasing values of ’ in ða; bÞ ¼ ðcosð’Þ; sinð’ÞÞ, to illus-
trate that a coefficient rotation results in a pattern rotation.

When n ¼ �2, we obtain the isocurves via the function
gðxþ iyÞ ¼ logðjxþ iyjÞ þ i argðxþ iyÞ, which is special in
that it represents the only case when a change of the ratio
between a and b does not result in a rotation of the image
pattern. Instead, changing the angle ’ bends the isocurves,
sinð’Þ logðjxþ iyjÞ þ sinð’Þ argðxþ iyÞ ¼ constant. That is,

the spirals become “tighter” or “looser” until the limit
patterns, circles and radial patterns, corresponding to
infinitely tight and infinitely loose spirals, are reached.

4.2 Implementation and Use

There are two parameters employed by the suggested
scheme that control filter sizes, �1 which is the same as in
the ordinary structure tensor, determining how much of the
high frequencies are assumed to be noise, and �2 represent-
ing the size of the neighborhood.

Equations (21) and (23) can be implemented via separable

convolutions since the filters�
fn;�22g
k are separable for alln. The

same goes for (22) and (24), provided that n is even.

Consequently, for even n, both I20 and I11 can be computed

with 1D filters. For odd n, only I11 is not separable. For such

patterns, while I20 can be computed by the use of 1D filters,

the computationof I11willneedone true2Dconvolutionoran

inexact approximation of it obtainable, e.g., by the SVD

decomposition of the 2D filter. Alternatively, the computa-

tional costs can still be kept small by working with small �2

andGaussian pyramids. A fingerprints application demand-

ing detection of patterns with odd symmetry for which

computation of I11 has been utilized in a pyramid scheme, is

presented in the next section.
Lemma 2 assumes that there is a window function, the

purpose of which is to limit the estimation of I20 and I11 to a
neighborhood around the current image point. Apart for
n ¼ 0, straight line patterns, the local gradient direction
argðdgdzÞ ¼ argðzn

2Þ is not well defined in the origin for patterns
generated by (25). This is visible in Fig. 1. The factor jxþ
iyjn in the window function is consequently justified since it
suppresses the origin as the information provider for n 6¼ 0.
Fig. 1 shows that the filters that are suggested by the
Lemma for various patterns vanish at the origin except for
the (Gaussian) one used for straight lines extraction.

As mentioned, for n 6¼ 0, the origins of the target patterns
are singular. Because of this, with increased jnj, the
continuous image of such a pattern becomes increasingly
difficult to discretize in the vicinity of the origin, to the
effect that the discrete image will have an appearance less
faithful to the underlying continuous image near origin. As
a consequence, approximating such patterns with band-
limited or other regular functions, a necessity for accurate
approximation of the integrals representing I20 and I11, will
be problematic because the singularity at the origin is barely
or not at all accounted for already at the original image
level. The continuous window function, by being close to
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Fig. 2. The top row shows the rotated patterns generated by gðzÞ ¼
ffiffiffi
z

p
, i.e., when n ¼ �1 in (25), for various angles between the parameters. The

second row displays the corresponding curves for gðzÞ ¼ logðzÞ, i.e., when n ¼ �2. The third row is ’ which represents the parameter ratios used to
generate the patterns. The change of ’ represents a geometric rotation on the top row whereas it represents a change of bending in the second row.



zero for n 6¼ 0, counter balances this problem, but this will
not help if the image is not sufficiently densely discretized
when approximating the square of a function. As n grows,
this becomes a necessity for accurate approximation of the
integrands of I20 and I11 containing second-order terms.
This can be achieved by signal theoretically correct
sampling, [12], e.g., when the square of an image on a
discrete grid is needed, then the discrete image must be
assured to have been over sampled by a factor 2 before
pixelwise squaring is applied. Oversampling can be effec-
tively implemented by separable filters and pyramids [9]. In
our experiments however, the original sampling frequency
of images we used were sufficient to detect the target
patterns.

4.3 Steerability of the Filters and the Detected
Patterns

The filter family hð�Þein� is well studied in the context of
real valued images, [38]. The term ein� in this angularly
separable function family has been observed to be determi-
nant for obtaining rotation invariant linear filters by [11],
and later by [41] when discussing the prolate spheroidal
filtering in image analysis. The filtering scheme suggested
by [26], [27] presents certain derivatives of Gaussian filters
that are applied to the original image with the purpose to
model the structure by rotation invariant filters. The
steerable filter theory, [15], [34], introduced the steerability
condition for linear spaces of the above mentioned function
family by establishing that the angularly band-limited
functions are steerable. In these contributions, the steerable
filters have been studied for filtering real valued (gray)
images. The filters suggested by Lemma 2 are rotation
invariant by construction in the sense of [11], [41], and since
they are linear combinations of derivatives of Gaussians,
they are also closely related to those of [26], [27]. Because
they also contain a single angular frequency, ein�, they are
steerable too. Below we discuss the novelties as compared
to this background.

First, we study the filtering of tensor fields bymeans of the
filter family, hð�Þein�, previously studied in the context of
linear filteringof real images,with theexceptionof the studies
in [3], [22], [25].Wemodel the structure of an image bymeans
of its isocurves instead of modeling its gray tones directly.
Consequently, these results help to extend the application
field of the mentioned filter family from originally being
intended and designed for filtering of real valued images in
linear schemes, to vector or tensor images obtained through
nonlinear schemes via the same filter family. This is
important because through tensor fields one can more
directly study isocurves than by first modeling the gray
tones and then studying the isocurves within the gray tones.

Second, (28), (29), and (30) show that the isocurves of the
patterns that are detectable by the symmetry derivatives of
Gaussians are obtained as a linear combination of the
nonrotated isocurves, except gðzÞ ¼ logðzÞ. Yet, half of these
patterns are not predicted by the steerability condition,
which is novel. To be precise, gðzÞ ¼ z

n
2þ1 does not satisfy the

steerability condition of [15] when n is odd since it is not
possible to expand odd powers of a square root with a
limited number of (integer) angular frequencies. The same
goes evidently for gray images generated by the isocurve
family represented by linear combinations of real and
imaginary parts of logðzÞ, which are not even possible to
rotate by changing the linear coefficients. Consequently, the

patterns with odd n or with n ¼ �2 are not possible to
generate by weighted sums of a low number of steerable
functions. In turn, this makes it impossible to detect the
mentioned patterns by correlating the original gray images
with steerable filters. Yet, as a consequence of Lemma 2,
these patterns can be exactly generated by analytic functions2

and detected by correlating the structure tensor field with
steerable filters. We can conclude that, Lemma 2 shows as a
byproduct, that the angular band-limitedness condition of
[15] is sufficient but not necessary for steering the rotation
of a 2D pattern, since there exist functions whose isocurves
are steerable without that the corresponding 2D gray
function or its isocurves are band-limited angularly.
Furthermore, there exists a pattern family, the one with
isocurves given by logðzÞ, that are not steerable at all, but yet
are detectable by correlating steerable filters with the
structure tensor field.

The results of the next section can be viewed as a further
build-up of the theory and practice presented in [3], [22],
[25]. We model isocurves by harmonic functions as in [3]
and obtain filters that detect them by means of the
symmetry derivatives. Our separable filters estimating I20,
given in the technical report [4], are similar to those
suggested by Johansson [22] to model the orientation in
the image. The main novelties of the next section compared
to the latter study can be summarized as 1) we enhance I20
that encodes the orientation of the pattern with an
additional error measurement, I11 so that these are fully
equivalent to the three (real) elements of the generalized
structure tensor, and 2) through the tensor, we fit a
harmonic curve family to the isocurves of the image that
satisfies a least squares optimality criterion.

5 APPLICATIONS AND EXPERIMENTAL RESULTS

5.1 Symmetry Tracker

In vehicle crash tests, the test event is filmed with a high
speed camera to quantify the impact of various parameters
on human safety by tracking markers. A common marker is
the “cross” which allows to quantify the planar position of
an object as well as its planar rotation, see Fig. 3c. Markers
have to be tracked across numerous frames (in the order of
hundreds to thousands). The tracking has to be fast and
robust in that the markers should not be lost from frame to
frame. The rotations and translations of the objects are not
constant due to the large accelerations/decelerations, while
severe light conditions are common between two frames
(e.g., imperfect flash synchronization). We first present the
spatial model of the crosses.

The cross pattern will be detected by applying Lemma 2

and using the harmonic function zð
n
2þ1Þ with n ¼ 2. Real and

imaginary parts of this function are � ¼ x2 � y2, � ¼ 2xy, and

can be used to build marker like images from any nontrivial

1D function sðtÞ through the substitution sða� þ b�Þ. By using
sðtÞ ¼ t, for example,we can obtain Fig. 3b, illustrating such a

synthesis. The isocurves of such images will be hyperbolas,

a� þ b� ¼ constant, which also include, a pair of orthogonal

lines (the asymptotes) if the constant approaches to zero. The

ideal cross markers constitute a subset of this family which

are generated by choosing sðtÞ as the step function 	,
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sðtÞ ¼ 	ðtÞ ¼ 1; if t > 0
0; otherwise;

�
ð31Þ

as shown in Fig. 3a. The rotation angle of the cross is steered
by the proportion of a versus b. Regardless s, the isocurves
of sða� þ b�Þ are parallel lines in hyperbolic coordinates,
which in turn yield a concentration of the power to a
common line in the frequency spectrum with regard to �; �
coordinates. Through Theorem 3 and Lemma 2, we can
“reverse” the synthesis process and see if a given image has
such a power concentration without actually knowing s. We
can measure the orientation of this concentration and the
goodness of fit of a line to it. Consequently, the choice of s
as a step function, a linear function, a cosine function, etc.,
does not influence the detection process, for which all of
these images belong to the same family because they have a
common isocurve family. The orientation of the orthogonal
asymptotes of the hyperbolas is encoded in the argument of
I20, whereas the goodness of the fit of a “line” in hyperbolic
coordinates is encoded in the magnitudes of I20 and I11.

We have used the rotation invariant certainty (see

Theorem 3)

Cr ¼ ð�max � �minÞð�max þ �minÞ ¼ ð�2
max � �2

minÞ
¼ jI20jI11=4;

ð32Þ

which has a maximum when �min ¼ 0. It is straightforward

to construct alternative certainty measures, e.g., the dimen-

sionless C0
r ¼ ð�max � �minÞð�max þ �minÞ ¼ ð�2

max � �2
minÞ ¼

jI20j=I11 that becomes maximum when �min ¼ 0. Our

particular choice of certainty was influenced by the desire

to have a measure with a dynamic range that is comparable

to that of the operator suggested by [17], discussed below.

The point having the largest certainty Cr will represent the

position of the cross marker in our tracking algorithm

which we state as follows:
Algorithm: Tracking consists of five steps and all steps

are carried out in a region of interest, the search window.
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Fig. 3. (a) The ideal model with ’ ¼ �
8 . (b) The gray tones in the disk change linearly with the function sinð2’Þðx2 � y2Þ � cosð2’Þ2xy, where ’ ¼ �

8 .

Upon thresholding its intensity (at 0), the image in (a) is obtained. (c) The first frame of an image sequence with the identified forward, “o,” (in white or

black, appearing as a thick curve due to overlap) and backward, “.” (appearing as a thin curve due to overlap), trajectory of one of the crosses,

attached to the head. The three arrows (two white and one black) illustrate corner points that are not crosses. (d) The identified crosses.



1. Compute the complex image h ¼ ðfx þ ifyÞ2 by
separable 1D convolutions, �f1;�1g � f , and pixel-wise
complex squaring.

2. Compute the complex image I20, (21), by convolving
the complex image h with the complex filter of
�fn;�21þ�22g, using separable convolutions.

3. Compute the scalar (nonnegative) image I11 by
convolving the magnitude of the complex image of
Step 1, with the magnitude of the complex filter of
Step 2 via separable convolutions, (22).

4. Compute the certainty image Cr, (32), using the
images I20 and I11, obtained in the previous two steps.

5. Compute the maximum of Cr in the search window
to obtain the position of the marker.

Evidently, n ¼ 2 was utilized in �fn;�21þ�22g of Steps 2 and
3. All steps are applied to all search windows. The
maximum Cr in the search window was identified so that
the search window could be recentered around the found
maximum. Initially (in frame 1), the search windows,
containing one marker each, are found automatically, so
that the user only validates the results and starts the
tracking. That is Crs for the entire image are computed and
markers are suggested to the human expert by threshold-
ing. Later, to keep one marker per search window, the
window sizes are automatically reduced if they overlap
during tracking. The parameters determining the filters
were �1 ¼ 0:9 and �2 ¼ 1:3 in the convolutions devised by
Step 1 through Step 3.

Tracking results and comparisons: A primary motivation to
automatize the tracking of the moving objects has been to
save time for experts by minimizing their manual interven-
tions while offering them a good quantification of the
motion details. Consequently, the most important issue is

the robustness of the tracking with minimum manual
intervention in near real time execution over many frames.
For example, the cross-marker should not be lost from
frame to frame, i.e., the centers of the crosses must be well
identified, despite occasional but severe illumination
changes due to glitches in flash synchronization. Fig. 3d
shows a typical frame of the marker tracking process,
superimposed to the original frame in Fig. 3c. The found
trajectory of one marker (Point #1) throughout the image
sequence is superimposed the first frame, Fig. 3c. By its
continuity, the trajectory indicates that the marker was not
lost. That the found points were also accurately positioned,
were manually verified in that the distance between a found
and its corresponding true point was within a tolerance
threshold, which was a quarter of the radius of the currently
tracked cross-marker. The displayed cross marker (Point #1)
was 10 pixels in radius and its displayed motion was
tracked in 294 frames. Furthermore, 100 cross markers
coming from several crash tests were inspected with the
same criterion on positioning accuracy as Point #1, to test
the ability of tracking without losing the marker. The
symmetry tracker could track all but five cross markers of
100 throughout the sequences. The used test sequences
included very long image sequences (in the order of
thousands of frames) as well as medium long sequences
(in the order of hundreds of frames). The symmetry tracker
typically lost a marker when the contrast level of a cross
was extremely poor, usually due to a strong specular
reflection or poor illumination, caused by the imperfections
in flash light synchronization with the camera.

Fig. 4a illustrates the measurements (certainties), (32),
used by our symmetry tracker, whereas Fig. 4b represents
the alternative tracking measurement:
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Fig. 4. (a) The certainty parameter of the symmetry tracker. (b) The response of a “corner” detector. The arrows point to example points that are not

cross markers (also marked in Fig. 3c), but are “corners.”



Chs ¼ �max�min � 0:04ð�max þ �minÞ2: ð33Þ

Thismeasurewas suggestedbyHarris andStephens [17]with
the used eigenvalues being identical to those of the ordinary
structure tensor proposed by Bigun and Granlund, [6], to
quantify theCartesian linear symmetry, see Theorems 1 and 2.
We can write the identity

Chs ¼ ðI11 þ jI20jÞðI11 � jI20jÞ=4� 0:04I211

¼ ð0:84I211 � jI20j2Þ=4
ð34Þ

to represent this corner detector in terms of the ordinary
structure tensor. Consequently, the I20 and I11 measurements
used in Figs. 4a and 4b represent different things, i.e., the
second order spectral energymoments in the hyperbolic and
in the Cartesian coordinates, respectively. In other words, I20
and I11 are obtained through (21) and (22) with n ¼ 0 for Chs

and with n ¼ 2 for Cr. Since the inequality jI20j � I11 will be
fulfilled with equality for linearly symmetric images, the
Harris and Stephens scheme also includes a threshold to
prevent Chs from becoming negative.

Apart from the used curve families, there is also another
rationale by which the two certainties, Cr and Chs differ.
Noting that the certainty for existence of linear symmetry in
theimagewasdefinedby[6]as thecondition�min ¼ 0, it canbe
concluded that theHarris and Stephen contribution provides
ameasure for the lack of linear symmetry in the image. This is
because Chs attains its maximum when �min is farthest away

from 0, i.e., when �min ¼ �max, which becomes evident when
attempting to maximize Chs with regard to �min and �max

when the contrast energy is fixed, ð�max þ �minÞ ¼ Constant.
All harmonicpatternswithn 6¼ 0, Fig. 1, are thenvalid stimuli
forChs because they lack linear symmetry. For this reason, the
classofpatternsdetectedbyChs includes,butnotonlyconsists
of, cross-markers. Consequently, Chs has an elevated risk for
false acceptance of noncross-markers in comparison withCr.
Examples of such points that are falsely accepted upon
accepting the Point #1 based on the strength ofChs, are shown
by the three arrows in Fig. 4b and in Fig. 3c. Because the
symmetrytracker ismorespecificaboutthecornertypesthat it
responds to, the spreadsof thedetectedpositions inFig. 4aare
also smaller than those in Fig. 4b. This conclusion is fair
because I20 and I11 used in these results were obtained by
using identicalparameters for�1 and�2 inbothcases.As faras
the dynamic range is concerned, both certainties were given
similarconditions, in that, theywereboth functionsofsecond-
order polynomials in jI20j, and I11.We could not use the same
certaintymeasure, becauseChs represents a lack of a property
(linear symmetry in Cartesian coordinates), whereas Cr

represents the presence of a property, (linear symmetry in
hyperbolic coordinates). Because of the missing focus to a
precise “corner” type, themethod suggestedby [17] couldnot
beconsideredasanalternative inthecrash-testapplicationwe
reported here.

Bycontrast, analternativemethodthatwasconsideredwas
correlation using an image of a typical cross marker as a

BIGUN ET AL.: RECOGNITION BY SYMMETRY DERIVATIVES AND THE GENERALIZED STRUCTURE TENSOR 1599

Fig. 5. The “+” and the “ut” represent the Delta and Core (parabola like) points that have been automatically extracted in several fingerprint images.
Top-left and bottom-left are two fingerprints of the same finger but differing significantly in quality. The certainties are 0.84 (at +) and 0.64 (at ut) in
top-left. The certainties are 0.73 (ut), 0.22 (at +) and 0.10 (at “�)” in bottom-left.



template. The position accuracy was inferior to that of the
symmetry tracker when the rotation was considerable
between two frames. This is explainable because the correla-
tion isminimum(0, insteadofmaximum)whenacross rotates
�=2. On the other side, using an iterative approach to
correlation, e.g., [7],wasnot permissible because of hardware
and time restrictions requiring 1) the number of the iterations
be known and 2) more intervention demands of the iterative
methods to find the searchwindows for each cross in the first
frame since there are numerous body parts that move
independently in the images. The increased manual inter-
vention in the first frame is due to the fact that the motion is
onlypiecewiseaffine (aroundeachmovingobject) so that first,
the moving objects must be identified. In turn, this requires
motion segmentation. By contrast, the symmetry tracker
identifies the crosses without the use of motion, i.e., by using
only the information in a single frame. Therefore, we only
compared the symmetry tracker which can be viewed as
orientation field correlation,with the ordinary correlation.As
expected, in terms of robustness, the correlation algorithm
performed poorly. It has lost the marker during tracking in
46 cases of 100.

5.2 Fingerprint Alignment

In biometric authentication, alignment of two fingerprints
without extraction of minutiae3 has gained increased
interest, e.g., [19] since this improves the subsequent person
authentication (minutiae based or not) performance sub-
stantially. Besides improved accuracy, this eliminates the
costly combinatorial match of fingerprint minutiae. Re-
cently, silicon-based imaging sensors have become cheaply
available. However, because sensor surfaces are decreasing,
in order to accommodate them to portable devices, e.g.,
mobile phones, the delivered images of the fingerprints are
small too. In turn, this results in fewer minutiae points that

are available to consumer applications which is an addi-
tional reason for why nonminutiae-based alignment tech-
niques in biometric authentication have gained interest.

A high automation level of accurate fingerprint alignment
is desirable independent of which matching technique is
utilized. For robustness and precision, we suggest to
automatically identify two standard landmark types: Core
and Delta, see Fig. 5a. These can bemodeled and detected by
symmetry derivative filters in a scheme based on Lemma 2
that is similar to the five steps scheme presented in the
previous section. Naturally, we used coordinate transforma-
tions which are different than the one modeling the cross
marker. Furthermore, the detection was performed within a
Gaussian pyramid scheme and by using the certainty

C0
r ¼

�max � �min

�max þ �min
¼ jI20j

I11
ð35Þ

to improve the signal to noise ratio. The real and imaginary
parts of the analytic functions z

1
2, i.e., n ¼ �1, and z

3
2, i.e.,

n ¼ 1 were used to model Core and Delta, respectively,
compare Figs. 1 and 5. The details are given in the
Algorithm and the postprocessing paragraphs below.

Algorithm: The following steps are applied sequentially.

1. Obtain the square of the derivatives via a convolu-
tion with a 5� 5 separable filter and complex
squaring: hk ¼ ð�f1;�1g

k � fkÞ2. Then, build a Gaussian
octave pyramid of hk image (level 1 corresponds to
the original size) up to level 3. The pyramid is built
to improve the signal to noise ratio.

2. Convolve the highest level of the pyramid with the
filters �f�1;1:5g for Core detection, and �f1;1:5g for
Delta detection, (both filters 9� 9) to obtain I20 for
each landmark type.

3. At the top of the pyramid and for each landmark,
compute the (positive) image I11 by convolving the
magnitude of the complex image of Step 1, with the
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Fig. 6. Alignment errors measured as a fraction of the image width. The solid graph corresponds to the symmetry tracker. The circles correspond to
the difference of the symmetry tracker error and that of the model based motion tracker with negative difference indicating inferiority of the model-
based motion and vice-versa.

3. Typically, a minutia point is the end of a line or bifurcation point of
two lines.



magnitude of the complex filter of Step 2 via
convolutions, (22).

4. At the top of the pyramid and for each landmark,
compute the certainty image, C0

r, by pixel-wise
division according to (35) using the images, I20 and
I11, obtained in the previous two steps.

5. At the top of the pyramid and for each landmark
type, compute the maximum of C0

r in the image to
obtain the position of the two candidate landmarks.

Postprocessing: Once the landmark positions and orien-
tations were estimated at the top of the pyramid, the position
parameters were fine-tuned by projection to a lower level. In
that level, by carrying out computations analogous to those in
Steps 2-5 of the Algorithm, but applied in a 13� 13 window
centered around the position to be fine-tuned, the maximum
C0

rswere found to update the positions of the two landmarks.
Theprocesswas repeateduntil level 1,whereweobtained the
final positions of the landmarks, was reached. The same
procedure was applied to the second fingerprint image to be
aligned. The translation parameter between the two images
to be aligned is obtained by the difference of the positions of
the corresponding landmarks. The rotation parameter was
obtained via the arguments of the complex scalars, I20, at the

refined (maximum certainty) positions. This was done by
subtracting the thus obtained two angles. If both of the
landmarksweredetected in both fingerprintswith certainties
above 0.5, we have used the translation and orientation
parameters of the landmark having the highest certainty of
the two.

Alignment results and comparisons:We report results on the
publicly available FVC2000 fingerprints database, collected
by [30] for benchmarking. The FVC2000 contains a total of 800
fingerprints, many having a poor quality since they were
capturedusing a low cost capacitive sensor from100 persons,
e.g., see Fig. 5, top-left and bottom-left for two fingerprints of
the same finger. The significant quality changes that can be
observed in this database correspond to the actual systems in
use, and stem from external variations, e.g., significant
pressure variation between the imprints, humidity variations
in the fingers, foreign particles such as dirt, fat, and dust, etc.
The found positions of Delta and Core points are illustrated
by the two images of Fig. 5, top-left and bottom-left. The
example also shows the performance in case of severe noise.
TheDelta in thepoor quality fingerprint is difficult to identify
even for human observers. TheCoreswere detected correctly
in both images whereas another (false) point was suggested
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Fig. 7. The top row shows the certainty images C0
r of (35), for core patterns, at three resolutions, decreasing in octaves from left to right for Fig. 5, top

left. The bottom row shows the same, but for the Delta patterns.



instead of the correct Delta in the poor quality fingerprint.
However,despitebeingmaximum, the certainty for thispoint
being a true Delta point was low, 0.22. The false as well as the
truepoint arebelow theused thresholdof 0.5 so that thispoint
was rejected by the system and only the point marked with
“ut” has been used to estimate the position and orientation
parameters. Four typical detections, for average quality
fingerprints, are shown in other four images of Fig. 5 as
performance illustration. In Fig. 7, the refinements of Core
and Delta positions within the pyramid scheme are shown.
The low resolution images are resized to the original size. The
images correspond to the fingerprint in the top-left of Fig. 5.

The fingerprints of FVC2000 have been translated and
rotated with the parameters computed by our method
toward one of the fingerprints automatically. For each such
fingerprint pair (same finger), an arbitrarily chosen strong
minutia point other than the automatically found landmark
(Core and/or Delta) was manually identified in the
reference as well as in the aligned image. To quantify the
registration errors, we used the translational distance
between the manually identified points in the automatically
aligned image pair. In Fig. 6, these registration errors of our
symmetry aligner, esa, are plotted in solid. The horizontal
axis is the index of the fingerprint image pairs. The vertical
axis is the error measured as the distance between the two
manually identified minutiae in the automatically aligned
image pair. The used distance unit was the fingerprint
image width, 256 pixels. The images had the the height of
364 pixels. The errors at the minutiae are important to
reduce since such neighborhoods are later used to perform
person authentication, e.g., by means of a fine-tuned
correlation and/or minutiae extraction. The displayed error
includes a linear amplification of the error which increases
with the distance of the manually identified point from the
core/delta point used when rotating the test image to
achieve the alignment. In other words, a fine tuning
reducing these errors significantly in the person-authentica-
tion phase but obscuring a comparison with another
technique that is presented here next, is not included.

We have also tested another method which employs
(affine) model-based motion estimation and robust statistics
to find the alignment parameters between two images. For a
description of robust motion parameter estimation techni-
ques, we refer to [7]. Here, we have used a similar technique
to the one presented in [7] using the M-estimator as
regressor. Other tested regressors (LS, LMS, and LTS) were
worse and are omitted here to save space. In an attempt to
improve the graphical comparison, we have avoided to
draw a curve for the error of this technique. Instead, we
have drawn the circles in Fig. 6 at data points representing
the difference of the alignment errors, esa � eme, where esa,
drawn in solid, is the error of the symmetry aligner whereas
eme is the registration error of the motion aligner. Conse-
quently, when the circles are in the negative territory of the
vertical axis, the esa is smaller than eme. The figure shows
that nearly all reported alignment errors (0.93 percent of the
total N = 371 fingerprint pairs in the graph), were
significantly lower with the symmetry tracker than with
the model-based motion tracker. As the figure shows, in
those cases, the improvement factor of the alignment, ðeme �
esaÞ=esa is, on average, close to 3. To the best of our
knowledge, other results on alignment are not available on
publicly available databases.

6 CONCLUSION

We have suggested a complex derivative operator that we
called symmetry derivative. Through theorems and lem-
mas, we have revealed its invariance properties. Via two
applications, we have illustrated the interest and the usage
of the theorems in practical situations. We conclude that the
symmetry derivatives of Gaussians are simple to obtain on
a Cartesian grid analytically and in a closed form since the
polynomial factor is the same as the one given by the
derivation polynomial. Furthermore, they are invariant
under Fourier Transform and Convolution which make
them unique when designing separable FIR filters because
1) they do not introduce orientation bias or other artifacts
on digital images (isotropic) and 2) they are concentrated in
both spatial and frequency domains. The invariance of the
symmetry derivatives of Gaussians to Fourier transform,
together with the preservation of the scalar products
(Parseval-Plancherel) allows interpretation of their quad-
ratic forms as second-order moments of the power
spectrum. In turn, this interpretation makes them an
effective tool (the generalized structure tensor) for fitting
an “axis” to the power spectrum directly in the spatial
domain in the least square error sense.

The symmetry derivatives used in conjunction with
Gaussians revealed that monomials and their square roots
areparticularlyefficient tomodelanddetect intricatepatterns
almost as efficiently as detecting lines. This is because, an
estimation of the position, orientation, and error difference
parameterswith a fixed number of 1D filters, andwith a fixed
number of arithmetic operations has been achieved.

The presented results show the usefulness of symmetry
derivatives 1) as an analytical tool having convenient
invariants, 2) a tool with which we revealed unknown
properties of steerable filters, and 3) as a way to represent
and compute tensor fields, in particular the generalized
structure tensor fields, for pattern recognition applications.
Other potential benefactors include the theory and practice
of texture analysis. Efficient texture features can be obtained
by use of local spectral complex moments with orders
higher than 2, which hitherto have been implemented by
the use of Gabor power spectrum [5]. These higher-order
features could be computed in the spatial domain more
efficiently by use of symmetry derivatives.

APPENDIX A

PROOF OF THEOREM 4 AND LEMMA 1

We prove the theorem by induction.

1. Equation (14) holds for p ¼ 1.
2. Assume (induction) that (14) is true for p ¼ p0, for

some p0 	 1.
3. Then,

�fp0þ1;�2gðx; yÞ ¼ 1

2��2
ðDx þ iDyÞðDx þ iDyÞp0

exp �x2 þ y2

2�2

� �
ð36Þ

¼ 1

2��2
ðDx þ iDyÞ

h �x

�2
þ i

�y

�2

� �p0
exp �x2 þ y2

2�2

� ��
; ð37Þ
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where we indicated by brackets ½ � the terms on

which the differential operators act is obtained by

applying the induction assumption (Point 2). Con-

sequently, and by using the chain rule as well as the

linearity of the partial differential operators we

obtain,

�fp0þ1;�2gðx; yÞ ¼ 1

2��2
ðDx þ iDyÞ

�x

�2
þ i

�y

�2

� �p0h i
exp � x2 þ y2

2�2

� �

þ 1

2��2

�x

�2
þ i

�y

�2

� �p0�
ðDx þ iDyÞ

exp �x2 þ y2

2�2

� ��
:

By repeated applications of the algebraic rules that
govern the differential operators, we obtain

�fp0þ1;�2gðx; yÞ ¼ 1

2��2
Dx

�
�x

�2
þ i

�y

�2

� �p0

þiDy

�x

�2
þi

�y

�2

� �p0�
exp �x2 þ y2

2�2

� �

þ �2 �x

�2
þ i

�y

�2

� �p0 �x

�2
þ i

�y

�2

� �
exp � x2 þ y2

2�2

� �

¼ 1

2��2

�
p0

�1

�2

� �
�x

�2
þ i

�y

�2

� �p0�1

þ i2p0
�1

�2

� �
�x

�2
þ i

�y

�2

� �p0�1
�

� exp �x2 þ y2

2�2

� �
þ 1

2��2

�x

�2
þi

�y

�2

� �p0þ1
exp �x2 þ y2

2�2

� �

¼ 1

2��2
�x

�2
þ i

�y

�2

� �p0þ1

exp �x2 þ y2

2�2

� �
:

Consequently, when it holds for p ¼ p0, (14) will also

hold for p ¼ p0 þ 1.

Now, we turn to the general case, Lemma 1.

QðDx þ iDyÞ
1

2��2
exp �x2 þ y2

2�2

� �
¼ 1

2��2

"XN�1

n¼0

an

ðDx þ iDyÞn� exp �x2 þ y2

2�2

� �

¼ 1

2��2

XN�1

n¼0

an½ðDx þ iDyÞn exp �x2 þ y2

2�2

� �#
¼ 1

2��2

XN�1

n¼0

an
�x

�2
þ i

�y

�2

� �n
exp �x2 þ y2

2�2

� �
ð38Þ

¼ Q
�x

�2
þ i

�y

�2

� � 1

2��2
exp �x2 þ y2

2�2

� �
ð39Þ

in which the linearity of derivative operators and (14) have

been used. tu

APPENDIX B

Proof4 of Theorem 6
Convolution in the Fourier transform domain reduces to an

ordinary multiplication:

�fp1;�21g � �fp2;�22g $ F½�fp1;�21g�F ½�fp2;�22 : ð40Þ

By using (19), we note that

F½�fp1;�21g�ð!x; !yÞ ¼ 2�
�i

�21

� �p1

�2
1�

fp1; 1
�2
1

g
ð!x; !yÞ:

Due to (14), we can write:

F½�fp1;�21g� � F ½�fp2;�22g� ¼ 2�
�i

�2
1

� �p1

�2
1�

p1;
1

�2
1

� 	

ð!x; !yÞ � 2�
�i

�2
2

� �p2

�2
2�

p2;
1

�2
2

� 	
ð!x; !yÞ

¼ 2��2
1

�i

�2
1

� �p1

ð��2
1Þ
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1
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1

exp ��2
1

!2
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y

2

 !
�2��2

2

�i

�2
2

� �p2

ð��2
2Þ
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1

2��2
2

exp ��2
2

!2
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y
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�2
1
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2
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ð��2
1Þ
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2Þ

p2ð!x þ i!yÞp1þp2

exp �
!2
x þ !2

y

2 1
�2
1
þ�2

2

 !
:

Canceling the redundant terms allows us to write the

product as

F½�fp1;�21g� � F ½�fp2;�22g� ¼ ðiÞp1þp2ð!x þ i!yÞp1þp2

exp �
!2
x þ !2

y

2 1
�2
1
þ�2

2

 !

¼ 2�ð�21 þ �2
2Þ

2�ð�21 þ �2
2Þ
ðiÞp1þp2ð!x þ i!yÞp1þp2 exp �

!2
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y

2 1
�2
1
þ�2

2

 !

ð��2
1 � �2

2Þ
p1þp2

ð��2
1 � �2

2Þ
p1þp2

¼ 2�ð�21 þ �2
2Þ

i

��2
1 � �2

2

� �p1þp2

�
p1þp2;

1

�2
1
þ�2

2

� 	
ð!x; !yÞ: ð41Þ

Remembering (40), we now inverse Fourier transform (41)

by using (19) and obtain

�fp1;�21g � �fp2;�22g ¼ �fp1þp2;�
2
1þ�22g:

ut
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4. We can ignore nearly all steps to conclude that the theorem holds,

provided that the following, which is what is proven, are granted: 1)

convolution and symmetry derivatives are distributive, i.e., ðDx þ iDyÞ½f �
g� ¼ ½ðDx þ iDyÞf � � g ¼ f � ½ðDx þ iDyÞg� and 2) the Gaussian convolutions

are variance additive, i.e., �f0;�21g � �f0;�22g ¼ �f0;�21þ�22g.



APPENDIX C

PROOF OF LEMMA 2

We use Theorem 3 to estimate I20, for which ðDx � iDyÞ� is

needed.5 We write the coordinates as a complex variable

z ¼ xþ iy and establish a relationship between symmetry

derivatives and complex derivatives as follows:

ðDx � iDyÞ<½gðzÞ� ¼ Dx½<gðzÞ� � iDy½<gðzÞ� ¼ <½DxgðzÞ�
� i<½DygðzÞ�;

¼ < dg

dz

dz

dx

� �
� i< dg

dz

dz

dy

� �
¼ < dg

dz

� �

� i< dg

dz
i

� �
;

¼ < dg

dz

� �
� i< i< dg

dz

� �
�= dg

dz

� �� �
¼ < dg

dz

� �

þ i= dg

dz

� ��
¼ dg

dz
:

But, dg
dz ¼ z

n
2 so that we can obtain the complex exponential

as:

ei argð½ðDx�iDyÞ��2Þ ¼ ei argð½
dg
dz�

2Þ ¼ ei argðz
nÞ ¼ zn

jznj ¼ ein argðxþiyÞ:

Consequently, the expression I20 in (7) of Theorem 3

reduces to

I20 ¼
ZZ

ððD� þ iD�ÞfÞ2d�d�

¼
ZZ

ein argðxþiyÞ½ðDx þ iDyÞf �2dxdy:
ð42Þ

We assume that ½ðDx þ iDyÞf �2 is discretized on a Cartesian

grid and use a Gaussian as interpolator6 to reconstruct it

from its samples:

hðx; yÞ ¼ 2��2
1

X
k

hk�
f0;�21gðx� xk; y� ykÞ: ð43Þ

Here, hk represents the samples of hðx; yÞ ¼ ððDx þ iDyÞfÞ2

and the constant 2��2
1 serves to normalize the maximum of

�f0;�21g to 1. We incorporate the window function

Knjxþ iyjn�f0;�22gðx; yÞ, where Kn is the constant7 that

normalizes the maximum of the window function to 1, into

½ðDx þ iDyÞf �2, to estimate (42) in a neighborhood.

I20¼
ZZ

Knjxþ iyjnein argðxþiyÞ�f0;�22gðx; yÞ½ðDx þ iDyÞf �2dxdy:

ð44Þ

By assuming 0 � n and substituting (43) into (44), we obtain

I20ðx0; y0Þ
ð2��21ÞKn

¼
ZZ

jxþ iyjnein argðxþiyÞ�f0;�22gðx; yÞ

X
k

hk�
f0;�21gðx� xk; y� ykÞ

" #
dxdy:

Noting that

jxþ iyjnein argðxþiyÞ�f0;�22gðx; yÞ ¼ ðxþ iyÞn�f0;�22gðx; yÞ
¼ ð��2

2Þ
n�fn;�22gðx; yÞ;

where we used the definition of �fn;�22g in (13) and applied
Theorem 4, we can estimate I20 on a Cartesian grid:

I20ðx0; y0Þ
ð2��2

1ÞKnð��2
2Þ

n ¼
X
k

hk

Z Z
�fn;�22gðx; yÞ�f0;�21g

ðx0 � x� xk; y
0 � y� ykÞdxdy; ð45Þ

¼
X
k

hðxk; ykÞð�fn;�22g � �f0;�21gÞðx0 � xk; y
0 � ykÞ;

¼
X
k

hðxk; ykÞ�fn;�21þ�22gðx0 � xk; y
0 � ykÞ: ð46Þ

Here, (46) is obtained8 by utilizing Theorem 6. Equation (46)
can be computed on a Cartesian discrete grid by the
substitution ðx0; y0Þ ¼ ðxl; ylÞ yielding an ordinary discrete
convolution of h with a sampled symmetry derivative of a
Gaussian, i.e., �fn;�21þ�22gðxl; ylÞ

I20ðxl; ylÞ ¼ Cnðh � �fn;�21þ�22gÞðxl; ylÞ ð47Þ

with Cn ¼ ð2��21ÞKnð��22Þ
n.

The result for n < 0 is straightforward to deduce by
following the steps after (45) in an analogous manner.
Likewise, the scheme of I11 is obtained by following the
same idea as for I20. tu
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