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A definition of central symmetry for local neighborhoods of 2-D images is given. A 
complete ON-set of centrally symmetric basis functions is proposed. The local neigh­
borhoods are expanded in this basis. The behavior of coefficient spectrum obtained 
by this expansion is proposed to be the foundation of central symmetry parameters of 
the neighbqrhoods. Specifically examination of two such behaviors are proposed: Point 
concentration and line concentration of the energy spectrum. Moreover, the study of 
these types of behaviors of the spectrum are shown to be possible to do in the spatial 
domain. 

INTRODUCTION 

There is a long list of operators that detect the existence of linear symmetry in a 
local neighborhood. Most of them measure linear symmetry in the sense of lines and 
edges. But there is very little done to model central symmetry. Perhaps it is because 
images of objects in nature, are usually more irregular than circles. Nevertheless, we 
believe that this is one of the symmetries which human beings utilize in early vision. It 
seems that central symmetry should be an additional symmetry model. The fact that 
circularly symmetric shapes like rotating fans, diverging rays, circularly propagating 
water waves ... e.t.c. are observed as phosphenes when low frequency magnetic fields 
are applied to the temples of a subject, [1], [2], supports this belief. Moreover many 
manufactured objects are locally. concentrated and have closed rounded boundaries. 
Many natural objects in low resolution images may exhibit this property like cells seen 
under a microscope. Conceivable application areas are object counting, classification 
as well as image coding and enhancement for certain types of images, possessing local 
central symmetry property. But first we should have an intuitive feeling about what 
kind of patterns are called centrally symmetric in our terminology, since it is otherwise 
quite a vague concept. 

DEFINITION: We will call local neighborhoods centrally symmetric if the locus of iso­
gray values constitute parallel lines in local polar coordinates: 

for some constants k1 and k2 • if the locus of iso-gray values are not curves, that is 
when they are regions then the borders of these regions are considered as ~)CUS. We will 
assume that the boundary of the neighborhood is a circle, and the origin of coordinates 
is the center of this circle. 

DEFINITION: C(O) is the space of complex valued functions which are continuous on 
0 except on a subset of 0 with zero measure. 0 is a circle with the radius R. 
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DEFINITION: (!, g) is the scalar product for f, g E C(O) with 

with r = \r\ and: 

(f,g)~\~l k ;r(r)g(r)do 

\11\ = r ~do. 
j o. r 

Consider the functions, see Figure 1), 

(1) 

with w = 2
; and m, n E Z. C(O) is a Hilbert space with the following scalar product 

1 12rr JR -R f(r, <p )g(r, <p )drd<p. 
21!" 0 0 

Moreover {Wmn}m,nEZ is dense in C(O), which follows from the Fourier series expansion 
theory on a rectangle, [3]. But this scalar product is the same scalar product defined 
earlier with, 11, being a circle. By that we have established that C(O) is a Hilbert space 
with the scalar product given in the definition. Now let us consider the neighborhood 
11, around an examined point in an image. Assume that the polar coordinates, r = [r[ 
and <p = arg(r), referred to in the following are relative to the examined point, and the 
positi~e x axis from the examined point. 

Let the real function f (r) express the gray values in 11, with the center at the examined 
point, such that r is the local coordinate vector. Then one can expand f as 

with 

f(r) = L Cmn Wmn(r) 
m,nEZ 

Cmn = (!, Wmn) 

= _1_ r ~ f(r)ei(mwr+n<p)do 
27r R } 0 r 

(2) 

(3) 

because C(O) is a Hilbert space and {Wmn}m,nEZ constitutes a complete orthonormal 
base: 

(4) 

with Dmm' being the usual Kronecker delta. 

POINT CONCENTRATION 

·DEFINITION: Let P be an operator from C(O) to the function set X, X C C(O). 
Then P is a projection from C(O) to X if 
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for al! f in C(O). 

Our goal is to find an algorithm based on operations done in the spatial domain which 
still gives some indication about whether the energy is concentated to a point in the 
frequency domain. The algorithm should posses the following properties: 

1) Whenever the neighborhood, f(r), is equivalent to one of the basis functions, '11mn' 
except possibly for a scale factor B, the algorithm should detect this particular basis 
function save a sign change of it's index tuple, (n,m). That is(!, '11m'n') = 0 for all 
tuples ( n', m') . except for 8: tuple ( n, m). In other cases it should give some sort of 
dominating tuple ( n, m). · Ii should be noted that W mn is complex valued. For real 
neighborhoods consisting of the real or imaginary part of a Wmn' this condition will be 
enough to identify the neighborhood except possibly a phase factor. Given the tuple 
( n, m), W mn is unique. Call the operator of finding the tuple ( n, m), and associating 
the function Wmn to that, as P then: 

P 2 f =Pf= Wmn 

for any f E C(O). This is equivalent to saying that the sought algorithm is a projection 
to the countable set {Wmn}, according to the projection definition above. 

2) The projection value (or parameter) should be rotation and radial phase invariant 
for pure inputs of: 

f(r,<p) = BWmn(r,<p) 

with some scalar B. That is 

Pf(r + ro,<p +<po)= Pf(r,<p) = Wmn 

should be fullfilled. 

3) Whenever the spectrum of the real valued local neighborhood differs from a pattern 
with a point concentrated spectrum, an uncertainty parameter should reflect that. By 
attaining low values, for example, this parameter could indicate the relevance of the 
projection parameter, and conversely to suppress it if the neighborhood differs from a 
central symmetric pattern. 

The use of the uncertainty parameters is indicated in [4]. The uncertainty parameter and 
the projection parameter are combined in every point of the image to form a vector, in 
such a way that the magnitude of this vector becomes inverse proportional to uncertainty 
parameter, (the confidence in the projection parameter) and the argument of it becomes 
the projection parameter. This can be visualised by allowing the magnitude to modulate 
the intensity of a point in a color TV monitor and the argument of it, representing 
the projection parameter, to modulate the color of the same point. The result is a 
color image representing a decision in every neighborhood of the original image. The 
projection parameter and the confidence parameter values evaluated in every point in 
the image can be thought of as two separate images influencing each other. A point 
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Figure 1) The image illustrates some of the basis functions W mn. The real parts of W mn 

are mapped linearly to the gray values of the monitor. 

with a low confidence level looks dark in the resulting image, no matter what the color 
of the point is. A point with a high confidence level is emphasized by illumination, and 
it's color is revealed. 

The algorithm we propose consists of the computations described by (5)-(9): 

A6
J1111 (5) 

611Dr/ll (6) md= 
Aw 

6 llD'P/ll (7) nd= 
A 

0
2 611n;111 2 

4 (8) nm- A2w4 -md 

02 6 llD~/IJ 2 
4 (9) on- A2 -nd 

md and nd are radial respectively angular frequency measures. Com and Crin are 
the uncertainty measures associated with md respectively nd. Denote the projection 
parameters by the tuple (n, m). That is (n, m) points out the location of an eventual 
point concentration in the spectrum. To produce m and n from md and nd, we observe 
that m and n should be integers. Moreover they take positive as well as negative values. 
However since we assume ·real valued images, the requested point concentration will 
consist of two concentrations symmetrically located around the origin of the coordinates 
in the spectrum. This is due to the Hermitian property of the coefficient transformation. 
Hence we need only give the position of one of these concentrations. Thus we can assume 
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that m is allways positive. We will simply assign to m and n the closest integers to md 
and nd with proper sign: 

m = round(md) 

n =sign x round(nd) sign E { -1, 1} 
(10) 

sign is the sign of Lm,nEZ mn jc'A.~1
2

, the calculation of which is given in next section. 
Let us see what (5)-(9) does for a neighborhood : 

We get through (5) 

f = L Cmn Wmn 

m,nEZ 

A
2 

= L lcmnl 2 

m,nEZ 

(11) 

This is the energy of the neighborhood in terms of the centrally symmetric .function set 
{Wmn}· (4) together with (6), (11) yields: 

(12) 

Hence md is the weighted root mean square of all radial frequency measures, m. It 
should be observed that a particular radial frequency number, m, is weighted by the 
uniform sum of all angular frequency energies. The weights constitute energy distri­
bution of the input function. The higher the energy share of Wmn in the:total energy, 
the more md will be close to m. (12) fulfills obviously the projection requirement after 
rounding md to the closest integer, m. Similarly nd will be the weighted mean square 
of all angular frequencies of different order: 

(13) 

The latter is insensitive to the sign changes in n. The consequence of this is a real 
neighborhood of 

is projected to a Wjml!nl input. The decision is to the favor of one of the two equally 
strong candidates. When f = Wmn + W-m-n then md = lml and nd = In\ which 
in turn reflects the necessity of the variable sign referred to earlier ( 10). Uncertainty 
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parameters Crim and Crin are proposed to be as in (8) and (9), and Crim yield through 
(4), (8), (11), (12) 

m,nEZ 

(14) 

_ ~ lcmnl
2 

( 2 2)2 
- L.....t A2 m - md 

m,nEZ 

which can be viewed as a weighted variance for the integers m 2 • It attains it's minimum 
in the case when 

lcmnl
2 

(m2 _ m2)2 = 0 A2 · d 

for all n, m E Z. This occurs if and only if 

for some m = m' since m~ is constant. Thus if Crim is zero then there exists one unique 
radial frequency in the neighborhood. And it is given by the estimation, md. When 
this is the case the energy is concentrated to a horizontal line through m = md. Since 
Crim is a variance it also reveals some information about the shape of spectral density 

· of the neighborhood. If Crim is small then it is likely to think that the neighborhood 
is a degraded version of a wave with a well defined radial frequency, md. Conversely 
it is unlikely that the association of md to the neighborhood will be relevant, if Crim 
is large. Interpretations of nd and Crin are similar to md and Co.m's. Given md, nd, 
and the sign parameters the tuple (n, m) is computed according to (10). We adopt the 
uncertainty parameters Crin and Crim for n respectively m. We propose Co.v, 

(15) 

to be the uncertainty parameter for the tuple (n, m). Co.v = 0 if and only if Crim = 
Crin = 0. But Crim = 0 if and only if the total energy is concentrated on a horizontal 
line and Crin = 0 if and only if the total energy is concentrated on a vertical line. The 
only possibility for the neighborhood to fulfill these two requirements is being an input 
possessing total point concentration in it's spectrum, with location on the intersection 
of the lines m = md, n = nd. 

LINE CONCENTRATION 

We will examine whether the energy spectrum has line concentration. Let the line we 
look for be 

m = tan(B)n (16) 
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we assume that the line goes through the origin of the coordinates in the coefficient 
domain. Since the real functions coefficient transforms should be Hermitian, their energy 
spectra are even, forcing an eventuall line concentration to pass through the origin of 
the coordinates of the coefficient plane. A real neighborhood f can be expanded in the 
basis functions as before, yielding: 

f = L Cmn Wmn 

m,nEZ 

with the Hermitian coefficients Cmn· The energy concentration of the neighborhoods in 
general degrades from a line through the origin of the coordinates. Let us measure this 
degradation by Coo, which is the average sum of the squares of the distances of the 
spectrum points to the line given by ( 16): 

Coo~ L (m - tan(O)n) 2 cos2(0) ic~;l
2 

m,nEZ 

= sin2(8) L n2 jc~~j2 + cos2(8) L m2 lc~~j2 
m,nEZ m,nEZ 

(17) 

- sin(20) L mn jc~;l
2 

m,nEZ 

We want to find a 0 which minimizes C0 o. This is the least square estimation of 0 and 
it is straight forward to find 0: 

dCoo 2 2 • 
~ = (nd - md) sm(20) - 2pcos(20) (18) 

where 

P 
= ~ mnlcmnl2 

L; A2 
m,nEZ 

If n~ - m~ # 0 or p # 0 then choose the minimizing 0 as: 

1 -1 ( 2 2 od = -tan nd - md, 2p). 
2 

(19) 

The degradation or uncertainty measure is given by substituting (19) in (18) and using 
the trigonometric half angle formulas: 

(20) 

The angle given by (19) gives the axis around which the moment of inertia is minimum 

and the moment of inertia is given by (20) if lc'A.~1
2 

is seen as a point mass, [5]. The 
omitted case when both p = 0 and n~ - m~ = 0 corresponds to local neighborhoods with 
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no specific orientation. Because d~~e vanishes according to (16), any () would work as 
minimizing argument to (17). This case implies that 

The class of functions having this property in their spectra is the class of functions 
with coinciding principal axes in the coefficient domain. Neighborhoods of Woo, Wmn + 
W-m-n + Wm-n + W-mn are examples of such functions, we observe that m~ = 0 
and n~ = 0 implies that the neghborhood is a constant function and consequently have 
no orientation. Thus to keep the consistency of the meaning of Cno in the case when 
n~ - m~ = p = 0, we should define Cno = oo and leave () undefined. p which is needed 
to calculate ()d and Cno according to (19) and (20), can be easily found in the spatial 
domain to be: 

_ ~ lcmnl 2 
_ _ l_(Bf Bf) 

P - ~ mn A 2 - A2w Br' a 
m,nEZ <p 

Implementation of the scalar products given above for every neighborhood of a digitized 
image is straight forward after the usage of the chain rules: 

Bf Bf Bf . . 
Br = Bx cos(cp) + By sm(cp) 

Bf Bf Bf . - = -rcos(cp) - -rsm(cp) 
Bcp By Bx 

By that we can transfer the scalar products to be valid for functions defined in cartesian 
coordinates. At this point we can use either the band limited signal theory or some 
quadrature rule to evaluate the resulting integrals, given that we know ¥z. and ~~ at a 
rectangular net of points. It can be shown that the scalar product evaluations at every 
point is obtained by convolutions with FIR-filters. 

CONCLUSION 

Both the point concentration parameters md, and nd and the line concentration param­
eter ()d are best fits of a point or a line respectively through the origin of coordinates of 
the coefficient domain. The best fit is in the sense that the two variance measures given, 
which are adopted as uncertainty measures, are minimized. It is interesting to note that 
the approach lends itself to linear symmetry parameter extraction as well, with a minor 
change. By linear symmetry we mean the neighborhoods with iso-gray values being . 
straight lines in cartesian coordinates. Parallel lines belong to such neighborhoods. 
Hence it is possible to find the dominating frequency and the dominating orientation of 
a neighborhood, [6], with the least error variance in the fourier domain in a similar man­
ner. The only difference is the soalar product and the shape of the neighborhood. The 
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scalar product of the lirH~~r symmetry case becomes the usual L'. 2.(0) scalar product with 
n being a rectangle. The complete ON-basis set is of course {ei(mw,,x+nwyy)}m,nEZ· 
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