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ABSTRACT 

New methods for feature extraction based on the spectral properties of local neighbourhoods 

is presented. The spectral behaviour of the neighbourhoods is investigated in the spatial 

domain using the Parseval relation applied to partial derivative pictures. Two types of 

such properties are considered for circular symmetric and linear symmetric neighbourhoods. 

These two properties are the existence of point concentration and line concentration in the 

spectra. For the circular symmetry investigation a new basis function set is introduced. To 

obtain a spectrum in the terms of these basis function sets, a scalar product is introduced 

for circular neighbourhoods. The same is carried out for linear symmetry spectra using the 

well-known basis set and the scalar product consisting of cosines and £ 2 (0) scalar product. 

Confidence parameters are introduced to measure the significance of the extracted features. 

These are basically different types of variance measures and they are shown to be specific 

for the desired information: The existence of point concentration or line concentration in 

the spectra of the local neighbourhoods. 
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CHAPTER 1 

MODEL BASED FEATURE EXTRACTION . 

The term feature extraction is widely used in computer vision. It is used in the sense of a 

neighbourhood dependent mapping of a picture to a function of it. The gray value of every 

point in the picture resulting from the feature extraction transformation is evaluated from 

the domain having a closed contour, as boundary in the original picture. 

A transformed picture point is associated with a point in the original picture. It is generally a 

point within the boundary where the transformed picture points originated. We will call this 

point "the examined point". This is the basis for the concept of neighbourhood dependence 

referred to earlier. This is what we mean by feature extraction in this paper, which is 

sometimes referred to as feature detection or even template matching in the literature. It 

should be mentioned that there exist various views different from ours on what is meant 

by feature extraction. Moreover we will assume that the closed contour constituting the 

boundary of the neighbourhood is not changed and is rigid relative to the examined point. 

The mapping itself characterizes of course, the result. It can be shape detection (two widely 

known shapes are lines and edges), statistical properties (mean, variance), center of gravity, 

etc. But we will concentrate on shape detection in the following sections. 

The extraction of features is necessary for all aspects of processing and analysis such as 

classification, segmentation, enhancement and coding. The experience in classification is 

that if the right features are used then the feature vector will cluster around a particular 

point for pixels belonging to the same class. The cluster points will be separable in this 

multidimensional vector space. The distance between the cluster points of different classes 

is a measure of the goodness of the separation ability of the vector used. Segmentation is 

a special case of classification in which the classes are natural objects. The features are 

used in enhancement applications as feedback information to remove noise, while in coding 

applications they are used as control information [ 9]. 

Now to the question of how to extract features connected with special shapes. The answers 

given are many. Many of the methods are based upon template matchings of the picture 

using target patterns. However, there are also methods projecting the local neighbourhood 

onto basis functions connected to target pattern spaces. [10] generalizes this idea to arbi­

trary shapes through Karhunen-Loewe expansion of the target pattern space. Yet another 

different method is presented by [5], [6], [8] for orientation and frequency features, based on 
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frequency plane filters. We will summarize the last two methods and present a third method 

based on expansion in basis functions, which are p.ot approximating the target pattern space 

with the least error (in the mean square norm) for a fixed number of basis functions, since 

they are not the basis functions of the Karhunen-Loewe expansion of target pattern space. 

But they are dense in a reasonably large space of local neighbourhoods, and thereby approx­

imating the gray values of any neighbourhood arbitrarily well upon increasing the number 

of approximating basis functions. This is a property which is lacking for the basis functions 

used in Karhunen-Loewe approach. The reason for this is that the Karhunen-Loewe basis 

functions only have the property of being dense in the space they are produced (a target 

pattern space) and not in any larger space (space of all patterns). Moreover the method is 

not intending to approximate the by neighbourhood by a finite number of basis functions, 

but the properties of the coefficient spectrum based on an infinite number of basis func­

tions. This is accomplished by the Parseval relation after carefully chosen operations in the 

neighbourhood. Neither the basis functions nor the chosen operations are intended to have 

a general derivation form. 

The methods, based on finite approximation of the neighbourhoods by basis functions suit­

able to target patterns, start with a selection of basis functions. This can be formulated 

mathematically as approximating a target pattern space with a finite number of basis func­

tions such that the approximation error to any target pattern will be small on the average. 

Indeed this problem formulated as above, is shown to yield a solution which results in a 

basis set, which minimizes the average approximation error and is not altered dramatically 

by increasing or decreasing the number of basis functions, other than addition or removal 

of new bases to the set. This set is the eigen functions of the integral operator having the 

auto correlation function of target patterns as kernel and can be found in most textbooks in 

statistics, (The Karhunen-Loewe expansion of random processes). Denote the target pattern 

space by S and assume that the index p, a finite dimensional real vector that exhausts S, 

then the eigenvalue problem is: 

f R(r, r')cf>i(r')dO = AicPi(r) 
lr'EO 

Where R(r, r') is E[xp(r)xp(r')] with Xp being a target pattern which is considered as a 

stochastic function with suitable probability distribution of p over the event space. The 

event space is of course the target pattern space S. 0 is the neighbourhood in which the 

examined point lies. The. infinite and complete basis set consists of the eigen functions { cPi}, 
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Figure 1.1) The figure illustrates the function spaces referred in [10]. 

which are orthogonal in the usual .C 2 ( 0) sense: 

(f, g) = l f* (r)g(r)dO 

Denote the space which can be linearly spanned by { ef>i} as X. 

All eigenvalues, Ai are positive since the kernel is an autocorrelation function and thereby it 

forms a positive definite compact integral operator, [ 4]. The required finite set with the least 

errors consists of eigen functions belonging to the largest eigen values and we will denote it 

by X'. The algorithm can be visualized as in Figure 1.1) and carried out as in the following 

steps: 

Let I be the set of all patterns which can occur in the given neighbourhood. 

1) Project I to X'; that is for a target pattern f in I find an f' in X' by calculating the 

coefficients Cm in the relationship: 

M 

f' = L Cmef>m 

m=l 
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as 

Cm= (f, </>m) = l J[r)</>m(r)dO 

2) Let S' be the projection of target pattern space S to the space spanned up linearly by 

the finite basis space, X'. Then find an element s' in S' such that lls' - f' II is minimized 

over S'. The norm is .C 2 (0) norm to utilize the advantages of the inner product space. [10] 
suggests to use lls' - f'\I as confidence parameter when it is large because of the inequality, 

lls' - !'II ::; lls - !II 

in which s is the member of S which minimizes the distance lls - !II, 

The s' found in step 2) is then close to the ideal one, s, if f is a pattern close to a target 

pattern. 

The approach is general but not possible to perform in practice easily because: 

1) Except in very special cases, explicit solutions to the integral eigenvalue problem are 

difficult to obtain. The problem, somehow, should then be approximated by a discrete one 

and solved numerically. 

2) Minimization of lls' - !'II is often nontrivial and too cumbersome to be performed for 

a large amount of examined points in the picture. To be performed, the method is highly 

dependent on low dimensionality of X', if at all possible to pursue. 

However, the above difficulties are passed by successfully for the orientation detection prob­

lem of edges and can be found in [10]. But great care and a large portion of chance is 

required to pass by 1) and 2) to successfully carry out the algorithm for feature detection 

of general target patterns. Alternatively the finite basis functions are chosen intuitively in­

stead of Karhunen-Loewe expansion of target patterns to find explicit or easily implemented 

implicit solutions to the minimization of lls' - f'\\. 

In another method, [8] solves the problem of finding orientation in real pictures by a different 

approach. One starts by assuming that the local neighbourhood is a part of a planar wave. 

Then one looks at the filter outputs of a number of quadrature filters. The answers from the 
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Figure 1.2) The filters used in [5], [8] are separable in polar coordinates. The figure illustrates 

the radial and angular parts of these together with the response of a pure sinusoid as input. 

/ 
f 

/ 
/ 

Figure 1.3) The figure illustrating the problem of finding the location of the sinusoid spikes 

in the fourier plane which is viewed from the top. 

filters are thus the amplitudes of frequency responses of the filters, at the frequency vector 

of the planar wave. 

The problem is then reduced to finding the location of the spikes from the filters. 
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This problem can be shown to be solved easily by a linear combination of the amplitudes of 

. the filter responses. The argument of the resulting complex number is the orientation of the 

wave, 2<p 0 . Finding w0 implies similar simplicity, involving a few sets (2 or 3) of filters, with 

different center frequencies. The point is that when the signals within neighbourhoods are 

not pure planar waves, for which we neither can nor will see an orientation (or frequency), 

the magnitude of the resulting complex number, obtained by a complex weighting of filter 

response magnitudes, decreases if the energy of the neighbourhood is not clustering in the 

frequency domain. By representing the obtained orientation vectors such that the magnitude 

corresponds to intensity and the argument to color of a TV monitor, one gets dark areas 

where the existence of a particular orientation in the vicinity of the examined point is not 

obvious. Where it is obvious one can see colored lines and edges since the geometry of nature 

is continuous. 

The main difference of the approaches described above for extracting orientation information 

is that the first one is a spatial domain method while the latter is a frequency domain method. 

The first one is more general in the sense that other features than orientation of edges can 

be handled. But in practice this generality often has a very high price. This is due to the 

fact that the minimization process of lls' - f' II over the set S', referred to above, is a non 

trivial task, if convergence ever exists. In both methods the evaluation of features is done 

entirely in the spatial domain. 

In the following we will introduce a new approach to certain types of vparameter extraction 

problems defined by a model. And in the following chapters we will give two such models: 

Circular symmetry and linear symmetry models. The purpose will be to find circular sym­

metry parameters and linear symmetry parameters if the vicinity of the examined point has 

such a property. The approach has a touch of both methods summarized above. 

The critical but not always fulfilled assumption is that there exists a Hilbert space X, with 

the orthonormal function set {</>m} spanning X, which is dense in the local neighbourhood 

space I, and fulfills either of the following: 

1) The feature to be extracted should be the basis functions <f>m that is the existence of <f>m 
or a scalar times it in the neighbourhood. However, this is a severe restriction, since the 

feature desired, or more correctly the functions through which the features are defined, may 

not constitute an orthonormal dense Hilbert space in the neighbourhood space, I, considered. 

As an example, ideal step edges in the usual £ 2 (0) scalar product with 0 being a rectangle 
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do not fulfill this requirement. 

2) The feature to be extracted is a property of the functions <Pm· For example orientation 

of edges in the neighbourhood can be connected to { eik.rh where the vector k is chosen to 

be (m irr, n irr) with integers m, n and rectangle side lengths Lx and Ly respectively. 
"' y 

Often in computer vision context it is not the existence of a robust template in the neighbour­

hood which is interesting, but the properties of it. In our approach this will be equivalent 

to investigate certain types of behavior in the coefficient plane. For example in the case of 

lines/edges one can talk about a definitive direction of the line in the neighbourhood. By 

investigating whether there exists an energy concentration along a specific direction, one 

should be able to find the direction of the line. We will call this property line concentration, 

since the portrait of lines and edges is characterized by a concentration of energy along a line 

in the Fourier plane. Another type of behaviour of the energy distribution is a concentration 

around a point in the coefficient plane. Experiments, [8], show that this type of concentra­

tion corresponds to regularity in the textures, which coincides with our intuition, since a 

pure point concentration of the energy to a specific point means existence of a sinusoid in 

the neighbourhood. In the following chapters we will only consider these two types of energy 

distribution. We will in the following give a summary of the feature extraction for point 

concentrations. The line concentration investigation is quite similar. 

Since perfect point concentration defines a pure sinusoid we will associate one of the functions 

{<Pm} to the neighbourhood and give a confidence parameter to the the success of this 

association in the following manner: By relating a <Pm which has the property of having 

a definite direction, through k, that is parallel lines as iso-gray values of <Pm, one should 

be able to define the local orientation of the neighbourhood. Furthermore if the feature 

to be extracted is a characteristic and inevitable property of the template by which it is 

defined, then it is possible to decide whether the neighbourhood matches the template. 

This can be done by deriving some type of confidence parameter starting the success of the 

assignment of <Pm to the neighbourhood. The proposed approach for feature extraction for 

point concentration can thus be summarized as below: 

1. Association of a <Pm' function to the neighbourhood, f, by expansion of the neighbourhood 

in <Pm and. choosing a <Pm' based on the coefficient configuration. 
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Figure 1.4) The proposed approach for feature extraction for point concentration considers 

an ON-base which spans all neighbourhoods. The cross illustrates the approximation of the 

position of the dominating basis function. The encircled point illustrates the position of the 

largest energy. 

J = L CmcPm where Z = {O, ±1, ±2 ... } 
mEZ 

The choice should be made in such a way that if there is just one term in the expansion such 

that the neighbourhood matches to one of the basis functions, then the choice is the correct 

one, (projection property ) . In other cases the choice should be close to the dominating term 

or the term which has the largest energy, icm\ 2
• In the circular and linear symmetry cases 

it is proposed to be a type of mean value. 

2. Association of a confidence parameter to the projection parameter explained in 1). The 

confidence parameter should assume large values when the feature exists in the neighbour­

hood. This existence may be modelled to be equivalent to the existence of unimodality in 

the spectrum of f. 

Here we are confronted by the very fact that we are trying to describe the shape of spectral 

density which has obviously the degree of infinity by a single parameter Com or Con We can, 

however, not hope to find a functional which manages this. What we can find is a functional 

which tells us whether the neighbourhood frees some prescribed hypothesis. In this case we 
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Figure 1.5) A point concentration has the property of unimodality. The basis functions with 

the largest energies are situated close to each other in the coefficient plane. 

will require that: 

a) it should be unique when match occurs 

b) it should respond monotonically when the degree of mismatch, measured in some manner, 

mcreases. 
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CHAPTER 2 

CIRCULAR SYMMETRY MODELING 

There is a long list of operators that detect the existence of linear symmetry in a local neigh­

bour hood. Most of them measure linear symmetry in the sense of lines and edges. But there 

is very little done to model circular symmetry. This is perhaps so because pictures of objects 

in nature are usually more irregular than circles. Nevertheless we believe that it is one of the 

symmetries which human beings utilize in early vision and we think that circular symmetry 

should be a complementary symmetry model to the linear symmetry model which has been 

exposed to extensive investigations in terms of line and edge detection in the last decades. 

The fact that circularly symmetric shapes like rotating fans, diverging rays, circularly prop­

agating water waves ... e.t.c. are observed as phosphenes when low frequency magnetic fields 

are applied to the temples, [1], [2], does not make this belief less probable. Moreover many 

manufactured objects are locally concentrated and have closed roundish boundaries. Many 

natural objects in low resolution pictures exhibit this property like cells seen under micro­

scope. Thinkable application areas are object counting, classification and image coding and 

enhancement for certain types of pictures, possessing local circular symmetry properties. In 

this chapter we will model circular symmetry keeping in mind the guiding principles we pro­

posed in the previous chapter for extraction of template based features. But first we should 

have a more precise statement about what kinds of patterns are called circularly symmetric 

in our terminology since it is quite a vague concept otherwise. 

DEFINITION: We will call local neighbourhoods circularly symmetric if the locus of iso-gray 

values constitute parallel lines in polar coordinates: 

r 2: 0 

with some constants k1 , k2 , and k3 • We will assume that the neighbourhood's boundary is 

a circle and origin is the center of this circle. 

DEFINITION: C2 (0) is the space of complex valued functions which have continuous second 

derivatives in 0. 0 is a circle with radius R except the origin. 

o = {lrl::; R}\{o}. 

DEFINITION: (!, g) is the scalar product for functions f, g E C2 (0) with 

(!, g)~ l~I lot f* (r)g(r)dO 
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with r = lrl and: 

101 = f !do. Jn r 
That this definition fulfills the scalar product axioms can be checked readily 

1) (f, g) = (g, f) for all/, g E C2 (0) 

2) (h,af + (3g) = a(h,f) + (3(h,g) for all f,g,h E C2 (0) 

3) (f, !) > O; (f, !) = 0 if and only if f = 0. 

Consider the functions 

(1) 

with w = 2
_; and m, n E Z. The completition of C2 (0) is a Hilbert space with the following 

scalar product 

1 12rr 1R -R f(r, 1.p )g(r, 1.p )drd1.p 
27r 0 0 

Moreover {Wmn}m,nEZ is dense in C2 (0), which follows from the Fourier series expansion 

theory on a rectangle, [3]. But this scalar product is the same scalar product defined earlier 

with, 0, being a circle. By that we can use the fourier series expansion theory of functions 

on a circle, as if we dealed with the usual expansion in sines and cosines on a rectangle. Now 

let us consider the neighbourhood 0, around an examined point in a picture. Assume that 

the polar coordinates, r = lrl and 1.p = arg(r), referred in the following are relative to the 

examined point, and the horizontal positive half line from the examined point, Figure 2.1). 

Let the real function f(r) express the gray values in 0, placed around the examined point, 

such that f is the local coordinate vector. Then one can expand f as 

with 

f(r) = L Cmn '11mn(r) 
m,nEZ 

Cmn = (f, '11mn) 

= _1_ { ! J (r)ei(mwr+ncp) dO 
27r R } 0 r 

(2) 

(3) 

because the completition of C2 (0) is a Hilbert space and {'11mn}m,nEZ constitute a complete 
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Figure 2.1) The figure illustrates the domain, 0, in which the gray value function f(r) is 

defined. f is coordinate vector relative to the examined point. Above, the polar version of f 

is indicated. 

orthonormal base in that space: 

and hence 

('iltmn, Wm 1 n1 ) = bmm'bnn' 

bmm' is the kronecker delta with the usual definition: 

bmm' = { l, o, 
if m = m'; 
otherwise. 

LOCAL NEIGHBOURHOOD MODELLING 

(4) 

We are gomg to model the local neighbourhood by means of a modified version of the 

expansion given in (2) and (3). It is simply an even expansion in the local radial coordinate, 

r of the neighbourhood.The reason for this is that we want to express real neighbourhoods in 

terms ofreal templates given by Wmn + 'ilt-m-n, which are easy to visualize and to interpret. 
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We wish to find some sort of mean value over all ( n, m) tuples (countable but infinite in 

number) weighted by their energy contribution to the total energy. By means of these mean 

values, which we will present in the following parts of this chapter, we will infere whether 

there exist circular symmetry property in the neighbourhood. For real pictures f, assuming 

the expansion given by (2) and (3): 

1 f 1 
Cmn =TOT 1

0 
;- f (r)Wmn (r)dO 

=-
1

- f
2

rr {R f(r,cp)cos(mwr + ncp)drdcp 
27rR lo lo 
+ _i_ f

2
rr {R f(r,cp)sin(mwr + ncp)drdcp 

27fR lo lo 
1 12rr JR =- f(r,cp)cos - (mwr - ncp)drdcp 

27r R o o 

- _i_ f
2

rr {R f(r,cp)sin(-mwr - ncp)drdcp 
27rR lo lo 

which is the hermitian property of the coefficients. Thus (5) gives 

lcmnl = \c-m-n\ 

(5) 

This means that an energy profile through origin in the coefficient plane is even and may 

look like in figure 2.2) 

and the mean values for m and n vanish for all real neighbourhoods. Because 

L mc;.n = 0 
m,nEZ 

L nc;.n = 0 
m,nEZ 

That is we can not get any information about which coefficient is dominating in the expansion 

by a straight forward mean value evaluation, due to the symmetry in the coefficient plane. 

In other words, we should carry out mean value evaluation in a half plane, figure 2.5). 

Before we propose some measures revealing the behavior of coefficients let us expand the 

local neighbourhood in an even manner. The only reason for this is technical as mentioned 

earlier. This implies that 0 defined as above should be changed to a somewhat more abstract 

one to comprise negative values of r as well. 
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Figure 2.2) k 1n + k2m = 0 axis in the coefficient plane for some integers k1 and k2. morn 

is swept through 0, ±1, ±2 ... 

~ ... I . .. 
4'!( 1;7{ 

I 
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f f " I 
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r f f t I 
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Z7r . .. 
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.. f r f ... f f f_ 
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-
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-
f f f 

r -tf 0 ,f I .3R 
I 

f_ f f I f --Z'l( -?'/( i 

... . .. 

Figure 2.3) Function f is originally defined on [O,R] © [0,27r] and naturally periodized in <p 

direction with period 27f, figure to the left, we extend f's definition domain to comprise even 

negative values of r. The basic rectangle becomes [-R, R] ® [O, 27f], figure to the right. f­
is defined through f ( -r, -<p) = f ( r, <p). In both illustrations basic rectangles are marked by 

bold lines. 
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Figure 2.4) Figure shows a sampled version of <Pmn with R = 15 and different m, n. The 

parameters m and n are orders for the frequencies of sinusoid waves in radial and angular 

directions respectively. 

It is thus: 

0 = {(r,cp) E R. 2
: r E [-R, R] , cp E [O, 27r]} 

and the image is defined on those parts of 0 which were not defined, as: 

f(-r,-cp) = f(r,cp) (r,cp) E [o,R] ® [0,27r] 

by doing this we do not, of course, affect the behavior off in [O, R] ® [O, 27r] since this is a 

subset of 0 and f is the same in this subset as before. Hence 

· f(r, cp) = L Cmn Wmn 

m,nEZ 

with an ON-basis function set differing slightly in w compared to (1): 

tTt - ei(mwr+ncp) 
~mn - where 

like IOI and Cmn which are 47rR respectively(!, Wmn) 

with the scalar product defined as: 

7r 
w=-

R 

1 {2rr JR 
(f,g) = 47rR Jo -R f(r,cp)g(r,cp)drdr.p 

18 
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' 
i7 . . . . . . . • • • Cl 

Figure 2.5) Figure showing, the members of H which is the subset of Z, consisting of all 

points in the ( n, m) plane. 

Then Cmn will be real and even 

1 12rr !R 
Cmn =-R f(r,ip)cos(mwr + nip)drdcp 

47r O -R 

+ _i_ f(r,ip)sin(mwr + nip)drdip · 12rr !R 
47rR o -R 

1 12rr 12R 
=-- f(r,ip)cos(mwr + nip)drdtp 

47r R o o 

since f is even . ( 6) establishes also 

with 

Thus 

f = ~ Cmn('11mn + '11-m-n) - Coo 

m,nEH 

H={m,n: {m,n: m 2 O}\{m,n: m = O,n < O}} 

f = L amn<f>mn 

m,nEH 

can be written with <f>mn being: 

cos(mwr + ncp) 
<f>mn = -------

1\cos(mwr + ncp)ll 

19 
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also ef>mn defined above with (n, m) E H constitute an ON base for functions which are 

periodic, with periods 2R and 271" in the radial and angular directions, To see this let us 

construct: 

( ef>mn, ef>m 1 n1 ) = 

('11mn, Wm 1 n1 ) + (Wmn, W-m 1 -n1 ) + (W-m-n, Wm 1 n') + (W-m-n, W-m'-n') 

\IWmn + W-m-nlll[Wm 1 n1 + '11-m 1-n1 \I 
8mm1 0nn 1 + 8m-m1 8n-n1 + O-mm 1 8-nn1 + 8-m-m1 0-n-n1 

J(8m-m8n-n + 8-mmO-nn + 2)(8m'-m'8n1-n1 + 8-m'm'8-n'n' + 2) 
8mm1 8nn1 + 8m-m1 8n-n1 

since the kronecker delta is an even function, Only the following three cases occur for (n, m) 

and (n', m') EH: 

a) m # 0 

b) m=O n#O 

Omm'8nn1 

( ef>mn, ef>m1 n1 ) = = Omm1 Onn1 

y8m1 -m1 n1 -n1+l 

8om 1 8nn' 
~======== = 8om1 8nn' 
J8m 1 -m 1 8n1 -n1 + 1 

because 8n-n' = 0 for (n,m), (n',m') EH, 

c) m = 0 n = 0 

( ) 
8om 1 8on 1 + 80-m 1 80-n 1 

ef>oo,ef>m1 n1 = -============== 
y(8oo8oo + 1)(8m'-m'8n'-n' + 1) 

28om1 8on1 

~========= = 8om1 8on1 

J2(8m'-m'8n'-n' + 1) 
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Hence 
(9) 

Thus amn will be 
(10) 

since (6) is valid so is (8): 

N2 M 

lim [\f(r,<p) - L L amn<f>mn[[ = 0 
M,N1 ,N2--+oo 

n=-N1 m=O 

for (r,<p) E [o,R] ® [0,27r]. 
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POINT CONCENTRATION SEEN AS PPROJECTION TO A COUNTABLE SET {<Pmn} 

DEFINITION: Let P be an operator from C2 (0) to the function set X, X c C2 (0). Then 

P is a projection from C 2 ( 0) to X if 

for all f in C 2 ( 0). 

Our goal is to find an algorithm based on operations done in the spatial domain but still 

giving us some understanding about whether the energy is concentated to a point in the 

frequency domain. The algorithm should posses the following properti.es: 

1) Whenever the neighbourhood, f(r), consists of just one of the basis functions, <Pmn, except 

possibly an amplifiying scalar A, the algorithm should detect this particular basis function. 

That is (f, <Pm' n') = 0 except for the tuple ( n, m). In other cases it should give some sort of 

dominating tuple (n,m). Given the tuple (n, m), <Pmn is unique. Call the operator of finding 

( n, m), and associating the function <Pmn to that, as P then: 

P 2 J = P J = <Pmn 

for any f E C2 (0). This is equivalent to saying that the sought algorithm is a projection to 

the countable set { <Pmn}, according to the definition above. 

2) The projection parameter should be rotation and radial phase invariant for pure inputs of: 

f(r,<p) = A<Pmn(r,<p) 

with some scalar A. That is 

Pf(r+ro,<p+<po) =Pf(r,<p) =<Pmn 

fullfilled. 

3) Whenever the local neighbourhood differs from a circular symmetric pattern a confidence 

parameter should reflect that. By attaining high values, for example, this parameter could 

be used to highlight the relevance of the projection parameter, and conversely to suppress it 

if the neighbourhood differs from a circular symmetric pattern. 
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The use of confidence parameters is due to [5]. One combines the confidence parameter and 

projection parameter together in every point of the picture to form a vector, in such a way 

that the magnitude of this vector becomes confidence parameter and argument of it becomes 

projection parameter. The magnitude can then be allowed to modulate the intensity of a 

point in a color TV monitor and the argument of it, representing the projection parameter, 

to modulate the color of same point. The result is a color picture representing a decision in 

every neighbourhood of the original picture. The projection parameter and the confidence 

parameter values evaluated in every point in the picture can be thought to be as two separate 

pictures influencing each other. A point with low confidence level in the resulting picture 

looks dark no matter what the color of the point or the projection parameter .A point with 

high confidence level is illuminated to reveal it's color. 

The algorithm consists of doing the computations described by (11)-(15) and finding: 

a) a dominating radial frequency measure, m and an associated confidence measure, Com, 

which is the degree of match between the model and the neighbourhood. 

b) a dominating angular frequency measure, n with it's associated confidence measure Co.n· 

A
6

llfii (11) 

6[\Drf\\ (12) md= 
Aw 

6 [[D'Pf\\ (13) nd= 
A 

c2 6\\D;f1\ 2 
_ 4 

om- A2w4. md (14) 

2 6 \ID~f\\ 2 

Co.n= A2 
4 - nd (15) 

There are some difficulties with directly ass1gnmg md and nd to m and n, smce all the 

members of the projection set, { <Pmn}, have integer valued m and n. Moreover, n can take 

positive as well as negative integer values. We will simply assign to m and n the closest 

integer to md and nd with proper sign: 

m = round(md) 

n =sign x round(nd) sign E {-1, 1} 
(16) 
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Figure 2.6) Radial frequency is thought of as being the sum of all angular energy contributions 

at a given frequency m: a~ 2 = Ln a~n for (n, m) E H. Then md should point out a location 

close to the largest radial frequency component. 

It will later be shown that the decision of sign, which determines whether the spirals are 

twisted clockwise or counterclockwise, does not affect an extra computation other than a 

comparison. 

Let us see what (11)-(15) does to a neighbourhood : 

We get through (11) 

f = L amn<f>mn 

m,nEH 

A2 = L a~n 
m,nEH 

(17) 

That is the energy of the neighbourhood in terms of the circularly symmetric function </>mn 

( 8)-(10) together with ( 17) yields: 

\\Drf\[ = [\ ' imCmn Wmn\\ 
Aw L A 

m,nEZ 

2 2 

= ( L c;2nm2)i = ( L a;2nm2)~ 
m,nEZ m,nEH 

(18) 
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Figure 2.7) Picture of a <Pmn + <P-m-n neighbourhood 

Hence md is the weighted root mean square of all radial frequency measures, m. It should be 

obOBserved that a particular radial frequency number, m, is weighted by the uniform sum 

of all angular frequency energies, figure 2.6). The weights constitute the energy distribution 
2 

of the input function. The higher the energy share of <Pmn, that is a.At, the more md will be 

to the favor of m. (18) fulfills obviously the projection requirement after rounding md to the 

closest integer, m. Similarly, nd will be the weighted mean square of all orders of angular 

frequency: 

(19) 

The latter is insensitive to the sign changes inn. A "left twin", say with the order n, is equally 

treated with a right twin", with the order -n. The consequence of this is a neighbourhood of 

f = <Pmn + <P-m-n, figure 2.7), is decided to be a ¢mini input. The decision is to the favor 

of one of the equally strong candidates, while an alternative weighting taking the twisting 

direction into account would see <Pmn and <Pm-n as competitors and deliver the answer </>mo· 
Even this would satisfy the projection demand, earlier. However it is more difficult to realize. 

When f = <Pmn then md = m and nd = In! which in turn reflects the necessity of the variable 

sign referred earlier (16). We will come back to decision of the sign later. 
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Confidence parameter Com is proposed to be as in (14), and yields through (8), (10), (18) 

\\D; J\\2 - m4 -c'!:..m = d -.. A2w4 

2 
amn 4 --m -
A2 

m,nEH 

2 L a;2n (m2 - m~)2 
m,nEH 

which can be viewed as a weighted variance for the integers m 2 • Con yields a similar 

expression. The confidence parameter attains it's minimum at the case when 

2 a;2n (m2 - m~)2 = 0 

for all (n, m) EH. This occurs if and only if 

2 

L amn 
-=1 
A2 

n 

for some m = m'. Thus if Com is zero then there exists one unique radial frequency in the 

neighbourhood. And it is given by the estimation, md. Since Com is a variance it also reveals 

some information about the shape of spectral density, figure 1.5), of the neighbourhood. If 

Com is small then it is likely to think that the neighbourhood is a degraded version of a 

wave with a well defined radial frequency, md. Conversely it is unlikely to think that the 

neighbourhood will have an interpretation, in the term of delivered radial frequency md, if 

Com is large. 

Thus far we have dealed with spectrum concentration around a point. We have obtained 

parameter estimations of the neighbourhood in terms of a model and found confidence mea­

sures for the'se estimations, working as reliable (in the sense that they were unique when 

match existed) match detectors. However one can be tempted to find out if it is possible 

to detect other types of energy concentrations in the coefficient space. In other words: is 

it possible to find confidence measures for clustering in a given pattern, like we found for 

clustering around a point? If the answer is yes, can we be certain about the uniqueness of 

the indication? The answer is yes, for many patterns. Let us investigate clustering of the 

energy to a line. It is an important case because it corresponds to orientation detection in 

spatial domain. 
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• y 

n 

Figure 2.8) Figures showing a coefficient domain and spatial domain pair, with line concen­

tration in the coefficient domain. v is the length measure in the lines direction. 

LINE CONCENTRATION OF ENERGY 

Let the line we look for be 

n = cot(O)m for m ?_ 0 (20) 

we assume that the line goes through origin. In general if a real 2-D function has a definite 

dfrection then it's energy spectrum is concentrated to a line. Since the real functions Fourier 

coefficients should be Hermitian, their energy spectrum is even, forcing the line to pass 

through origin. This explains the model in (20). A real neighbourhood f can be evenly 

expanded in polar coordinates as before yielding: 

f = L Cmn '11 mn = L amn </>mn 

m,nE:Z m,nE:H 

real coefficients Cmn, amn. The neighbourhoods energy concentration in general degrades 

from a line through origin, Figure 2.9). Let us measure this by: 
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Figure 2.9) The least square fit of a line through origin to the spectrum of the input. The 

input is assumed to be real. Such an input should have a line concentration if it has a definite 

direction in polar spatial coordinates. 

6 a2 a2 

Coe= L (n - cot(O)m) 2 sin2(0) ;
2
n = L (nsin(O) - mcos(0)) 2 ;; 

m,nEH · m,nEH 

a2 a2 
= sin2(0) L n2 ;2n + cos2(0) L m2 ;2n 

m,nEH m,nEH 

(21) 

a2 
- sin(20) L mn ; 2n 

m,nEH 

We want to find a 0 which minimizes Coe. This is the least squares estimation of 0 and it is 

straight forward to find it: 

dCoe 2 2 . -;JO= (nd - md) sm(20) - 2pcos(20) (22) 

where 
a2 

p = L mn ;2n 
m,nEH 

If n~ - m~ # 0 or p # 0 then 

(23) 
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where B0 is such that 

sin(Bo) = 
2

p v(na - ma)2 + 4p2 

n2 - m2 
cos(Bo) = d d 

v(n~ - ma)2 + 4p2 

The fact that d~0 8 = 0 when B = 8~ concludes the search of minimum together with 

dCoe 
--<O 

dB -
dCoe 
-->O 

dB -

for 

for 

Bo 7r Bo ---<B<-2 2 - - 2 

Bo Bo 7r -<B<-+-2 - - 2 2 

Thus choose B as 8~ and call it Bd. This is delivered through 

(24) 

(25) 

(26) 

which is equivalent to the formula to ( 24) and ( 25): The error or the confidence measure 

is given by substituting (26) in (21) and observing the trigonometric half angle formulas in 

connection with (24) and (25): 

Coe= t(n~ + m~ - j(na - ma)2 + 4p2). (27) 

The angle given by (26) gives the axis around which the moment of inertia is minimum and 

the moment of inertia is given by (27) if aA~ 
2 

is seen as a point mass, [7]. The omitted 

case when both p = 0 and n~ - ma = 0 corresponds to the local neighbourhoods with no 

specific orientations. Because d~{J 8 vanishes according to (22) indicating any B would work 

as minimizing argument to (21). This case implies that 

2 L m2~2n = 
m,nEH m,nEH 

m,nEH 

2 
amn 0 mn--= 
A2 

For example one class of functions having this property in their spectrums is the class of 

functions with equal masses at grid points with equal distances from origin in their spectrums. 

Neighbourhoods of ¢.oo, </>mn + </>-m-n are examples of such functions. As an observation we 
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conclude that m~ = 0 and nJ = 0 implies that the neghborhood contains a constant function 

and we consequently have no orientation. Because if mJ = nJ = 0 then: 

11:~11 = o ~ :~ = o 

II Bf II= 0 ~Bf= 0 
Bcp Bcp 

proving the statement. Thus to keep the consistency of the meaning of Coo in the case when 

n~ - m~ = p = 0, we should define Coo = oo and leave {) undefined. na, ma, p which are 

needed to calculate {) d and Coe according to ( 26) and ( 27), can easily be found in the spatial 

domain to be: 

2 = """"" a:nn =~II Bf 112 
md ~ A2 A2 Bcp 

m,nEH 

""""" n2 a:nn = _1_ 11Bf112 
~ A2 A 2w2 Br 

m,nEH 

Once we have a neighbourhood with the property of having a definite direction in polar 

coordinates, it is quite natural to try to render the behavior in this direction. We propose 

to depict the behavior of the spectrum by rendering it's point concentration, Vd, in this 

direction: 

(28) 

we assumed that if there is a line concentration, then Vd will give the position of it's point 

concentration. When we are interested only in the significance of the position of point concen­

tration given by Vd above without taking account to directionality existence the confidence 

measure, 

Cow = Com + Con (29) 

should work for this purpose. Because Cow = 0 if and only if Com = Con = 0. But Com = 0 

if and only if the total energy is concentrated on a horizontal line and Con = 0 if and only if 

the total energy is concentrated on a vertical line. The only chance for the neighbourhood 

to fulfill these requirements is being an input possessing total point concentration in it's 

spectrum, with location on the intersection of the lines m = md, n = nd. 

The set of the inputs with energy spectrum exhibiting concentration to a line and in addition 

exhibiting energy concentration to a point within this line is, a subset of the inputs with 
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Figure 2.10) Two different types of point concentrations a) with directionality preference b) 

with non directional preference 

energy concentration around this point, with no direction preference for the positions of 

the next largest components. Although the estimation of the position of the cluster, vd in 

(28) would work for both sets the confidence in the estimation, Cow, given in (29) should 

be different when we check the point concentration along a specific direction than when 

we check the point concentration. In the light of this discussion we propose the following 

expression for the confidence measure of direction specific point clustering, Gov : 

(30) 

Cow :S Gov since Coe, Cow 2': 0. This reflects the observation we made earlier: If the 

energy of an input is point concentrated on a line then it is also point concentrated, with no 

specific orientation preference. For the uncertainty increases by Coe, the uncertainty of line 

concentration, when we claim that Vd is the position of point concentration in direction of(). 

When Coe = 0 then Gov = Cow which means that the energy distribution on the line with 

angle () sums up to total energy and the measure for energy variation within the line is 

the same as global variation, which is true. When Coe = Cow = 0 then Gov = 0 which 

reveals that we have a perfect concentration to a point and we are sure about the angle and 

magnitude of the position vector. This is in turn consistent with Com= Con = 0 including 

the case when we have only a constant input. Because we have ( md, nd) = (0, 0) with total 

certainty. 
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With the propositions above, we have presented an additional measure for point concentra­

tion, this time it's position given in polar coordinates: (}d and vd.· The confidence parameter 

for (}d is CofJ. We have two choices for confidence parameters of Vd influenced by whether we 

claim that the neighbourhood has direction specific point concentration or not. These are 

Cov and Cow respectively. In connection with these two choices, it is satisfactory to note 

that for a pure constant as input we get Cov = oo while Cow = 0. 

32 



CHAPTER 3 

DESIGNING FILTERS FOR CIRCULAR SYMMETRY DETECTION 

In this chapter we will propose methods for evaluating the neighbourhood dependent key 

numbers, necessary for the calculations of confidence and projection parameters mentioned 

in the previous chapter. Those key numbers were: (!, f), ( ~:, ~n, ( g~, g~ ), ( ~:, g~ ), 
a2 f a2 f a2 f a2 f 

(ar2' ar2), (a~2l a~2) 

The qualities these quantities share are 

1) They are dependent upon the neighbourhood, 0 , in which the examined point lies. 

2) They are operating upon the neighbourhoods belonging to C2 (0) 

3) They are applicable to every point in the picture. 

For practical purposes, these properties introduce immense difficulties to the computational 

tractability of the evaluation of the key numbers if the following requirements are not ful­

filled: 1) The key numbers should be possible to approximate with reasonable error by a 

discrete version off. 2) Since these quantities are neighbourhood dependent and calculated 

in a similar manner for every point in the picture, they make considerable demands on com­

putational throughput. Therefore the cost for mathematical operations involved should be 

low in the sense that the product time demand x storage demand for them is small. 

We should remember, that f is the gray value function of the local neighbourhood, expressed 

in local coordinates. Moreover, it is also defined evenly for negative values of the radius 

through: 

f(-r,<p) = f(r,-<p) (1). 

It is easy to show that if a function h is even in polar coordinates as described in ( 1) then 

1 /7r JR 1 /7r lR (1,h) = -R h(r,rp)drd<p = - h(r,<p)drd<p 
47r -71' -R 27rR -7r 0 
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This is nothing but the scalar product defined in chapter 2) with 

0 = [O, R] 0 [O, 2?r] (2). 

Hence, when we calculate the scalar products in key quantities, we need to consider them as if 

0 was given by (2). So we do not worry about the even periodization of local neighbourhood 

when we calculate(!, f) = (1, f2). We can pretend f to be the whole picture as long as 

the integration is carried out over the right part of the picture. We will come back to this 

translation problem soon. From now on we will assume that f is a 2-D continuous gray level 

function expressing the entire picture. 

In the following it will be shown, that the referred quantities are possible to approximate by 

linear functionals operating on the sampled version off, called J under certain circumstances. 

This leads us, naturally enough, to compute the key quantities through convolutions with 

fixed FIR-filters. These can preferably be computed on special machines capable of convolv­

ing sampled and digitized images with large kernels (GOP-300 for example) fast. Then one 

function, taking these quantities as arguments, can be constructed to deliver the confidence 

and projection parameters. Since this function is not neighbourhood dependent, one can 

allow a high degree of complexity relatively to neighbourhood dependent operations. 

CALCULATION OF THE KEY QUANTITIES 

Let us assume that f is sampled and that we omit the digitization errors caused by limited 

word length of the computers. Then we should somehow have access to information about 

the behavior of the image between the sampling points. To be reasonably general, and 

at the same time not run into undesirably heavy reconstruction problems, we assume that 

we are dealing with band limited images, which are sampled with sufficiently high degree 

of over sampling ratio. The latter is the ratio between sampling frequency and twice the 

maximum frequency of the image, e.g. Nyquist frequency. By this assumption we have, in 

fact, introduced one more error, because the patterns we are intending to detect and express 

are not band limited even though their Fourier transforms decay fast. We have to assume 

that they are band limited by some sort of filtering. Consequently, we will never, at least 

theoretically, be able to recognize any pattern we are trying to detect with zero uncertainty, 

but we can come very close to zero. We can decrease the amount of error caused by this 

source by sampling densely, hoping that this error is small compared to other sources we 

. will mention below. Consequently we neglect this error type as well. 
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Figure 3.1): F(f) is assumed to vanish outside of the square, r. This allows us to sample f 
with the over sampling rate J:, causing the dashed repetition pattern. 

Since f is band limited, one can reconstruct f, from it's sampled version J 
f (r) = L f (rif)o(r - rii) (3) 

i,fEB 

B is the set of integers labelling the sampling points, Tif , of the continuous picture f. 
B is assumed to be a square grid. 8 (r) is the Dirac distribution. Since a rectangular 

sampling corresponds to repetition of the Fourier transform in a rectangular manner, the 

reconstruction can be carried out by convolving J with the inverse Fourier transform of the 

function 

yielding 

A(u) = { ~: if u E f; 
otherwise. 

f(r) = f * [1- 1 (A)] (4) 

where u is the coordinate vector of the Fourier transform domain, r is the closed domain in 

which 1(!) does not vanish, within the repetition zone, figure 3.1). 

For the sake of simplicity, we will assume a square r, centered in the repetition square. uq is 

the maximum allowable frequency in vertical and horizontal direction, not causing sampling 
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distortion. Um is the actual limit for maximum frequencies of the picture f in horizontal and 

vertical direction. But by assuming r being completely in the repetition zone, we can write: 

.\(r) = J-l(r) = /_~ J_u~ ei2rr(u,.x+uyy)dUxUy 

q q 

_ sin(27ruqx) sin(27ruqy) 
(5) 

7rX 7rY 

As the maximum allowable frequency is fq we get the sampling period as (Nyquist criteria) 

1 
T=-

2uq 

For simplicity we put T = 1 and this causes uq to be ~· The reconstruction off from it's 

samples yields through (3), (4), (5): 

i,jEB 

= 2= t(rij).x(r- - fij) 

i,jEB 

i,jEB 
(6) 

In the previous chapter we have modelled operations delivering scalar values at the exam­

ined point. The scalar product and neighbourhood 0, were connected to this point. In the 

following we propose methods for computing key quantities at a number of points. Conse­

quently we need to attach a variable f to the examined point, which is assumed to have the 

coordinate vector r and dependent quantities: 

1) Evaluation of (f, f) 

!::, 
O,..={r': Ir' - rl ::; R} 

(f,g),.. = { 1-11 _lf*(r')g(r')dO,.. 
Jm r - r 

(f, !), the energy of the local neighbourhood in terms of the scalar product defined in the 

previous chapter, can be found by using the reconstruction formula in (6) for f 2 , provided 

that ~: > 2. Because 1(!2 ) = 1(!) * 1(!), which implies that the non vanishing area of 

1(!2 ) is quadrupled. Thus, to guarantee non distorted image retrieval, we should impose 

the condition ~ > 2 , resulting in: u,,. 
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(f,J)r = (1,f2
)r = (1, L f 2 (r"ii).A(r' - fij))r 

i,jEB 

= L f 2
(fij)(l, A(r' - fij))r 

(7) 

i,jEB 

We have now transformed our scalar product to an ordinary scalar product between two 

vectors in a finite dimensional Euclidean space. As the version of f is sampled, the picture 

is assumed to have finite extent. The vectors, call them J2 and a(r) have the components: 

- 6. 2 
(J2)ij= f (fij) 

6. 
(a(r))ii=(l, A(r' - rif))r 

Having these definitions in mind we establish that (!, f)r can be evaluated through an 

ordinary scalar product in the Euclidean space made by the sampled images: 

(!, J)r = (J2)t a(r) (8) 

(8) suggests to carry out the computation through a weighted sum of a new picture, f2 but 

the weighting coefficients are dependent of the examined point. The fact that they are as 

many as the picture samples does not make the computation of all (!, f) r;J for i', J. E B, 

easier. 

We are going to approximate (8) on the basis of the following observation: The weighting 

coefficients, ( ii(r) )ij, in general will decrease when Ir - fij I increases, due to fix potential ~ 

and decaying A. 

Thus (7) can be approximated by taking only those coefficients with f closest to f 

Let this approximation be done by the vector &(r): 

&(r) +Ea (r) 

where 

(&(r))ii = { (a(r))if, 
o, 

iflr-f··i<R'· tJ - ' 
otherwise. 

(9) 
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Figure 3.2) To the left we have the grid of the discretization points. The cross marks the 

examined point f , the circle marks the location where .\(r - fij) is centered, 7\j· Then 

( a(r) )i"j is evaluated by integrating .\(r - fij) at O,. with a factor of~· To the right we have 

the profile of the damped sine, .\(r - fij), together with the integrating factor lr-
1
r,i I 

Thus &(r) is nonzero inside a circular mask, call it O', centered at f. Since the components 

of a(r) are integrals over translated functions we can write: 

1 j 1 (a(r))ii = -R 
1

_, _

1

.\(r' - fij)dO,. 
271" rir r - r . 

= _l_ (
2

rr (Rsin(7r(r1 cosrp1 -xi-x))sin(7r(r'sinrp'-yi-Y))dr'd<p' (10) 
27rR}0 } 0 7r(r1 cos<p1 -Xi-x) 7r(r'sin<p1 -yi-Y) 

= (1,.\(r' - rii- r))o 

If f is chosen as one of {fij}ijEB we can write: 

Since fij = ( i, j). This leads to 

(!,!),.= L (&(o)){k+i),(l+j)(f2)ijT :L (E'(o)){k+i){l+j)(f2)ij (n) 
iJEB iJEB 
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R R' Oa R R' 013 

6.0 g 0.005 6.0 g 0.004 

7.0 10 0.003 7.0 10 0.004 

8.0 11 0.004 8.0 11 0.003 

Table 3.1): The relative errors made by truncating 0: and~. 

which is a discrete convolution by fixed coefficient vectors. The error we do when we put: 

u,n"kl ~ 'L (&(o))(k+i)(l+j)(12)ij (12) 
i,jEB 

is naturally dependent on /2. But the error in approximation of 0:(0) is €(0) and we choose 

ll·lloo to express the norm of both vectors, because it is easy to compute: 

\la(o) lloo = I a(O)i'i' I 

where a(o)i,3., is the component of a(O) with largest magnitude. Define a relative error aa 

as 

Oa = 
llE"a(O)lloo 
lla(O)lloo 

The maximum norm is found by inspection of ( 0:(0)) ij for which the required integrations 

are computed numerically only at some critical i, j's thanks to the symmetry of ( 0:(0)) ii' We 

have also used the knowledge of decaying behavior of ( 0:(0) L
1
. to avoid to compute these at 

very large i,j's, table 3.1). The numerical computation for the double integrals are carried 

out by assuming the inner integral as a new integrand to the outer one. The obtained one­

dimensional integrations are carried out by using subroutines from the SLATEC subroutine 

package using adaptive quadrature schemes on a VAX computer. 

2) (Bf il) 
Br'' Br' r 

Since we have access to only rectangular sampling we should transform the partial deriva­

. tives with respect to r, to be derivatives with respect to local cartesian coordinates. The 
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inconvenience of partial derivatives with respect to local polar coordinates is seen by con­

sidering a point r' belonging to two overlapping neighbourhoods 0,.
0

, 0,.
1

• Then the radial 

partial derivative ~~ is changed from 0,.0 to 0,.1 , whereas ~~ and ~~ remain unchanged, 

leading to shift invariance of the partial derivatives under a shift of the neighbourhood, a 

property which is essential for convolution based realizations. Thus we consider the following 

well-known transformations in local coordinates: 

x' = r' cos ( <p1
) 

y1 = r1 sin(<p 1
) 

Here r' and <p 1 are polar coordinates of any point in the picture relative to the examined 

point, while x' and y' are the corresponding cartesian ones. 

af af af . 
- = -a cos(<p') +-a sm(<p') ar1 r' y' 

(13) 

yielding: 

( af af) ( 2( ') (af)2) (. 2( ') (af)2) (. 2( ') af af) 
ar'' ar' r = cos <p ' ax' r + sm <p ' ay' r + sm <p ' ax' ay' r (14). 

Remembering that the product of two band limited functions has an increased band width 

(due to the convolution in the frequency domain), and partial derivations with respect to 

horizontal and vertical components do not enlarge the nonzero areas, we should be able to 

write: 

af af 
( cos 2 (<p1),(-a )2 )_= '(-a )2 1-.. (cos 2 (<p'),,\(r'-rii))-x' r ~ X r,J r 

i,jEB 

(15) 

with the special requirement for our square non vanishing area, r, in the frequency domain: 

(16) 
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as before. Similarly under the condition (16) the other two components involved in (14), 

necessary for evaluation of the energy of ~~ can be written as: 

(17) 

(18) 

where!\,. .. means the value off at the point fij· (15), (17) and (18) are then reduced to three 
•J 

ordinary scalar products between two vectors in a finite dimensional euclidean space, since 

( ~;) 2 , ( ~~) 2 , ~; ~~ are band limited and the samples off have limited extent. The three 

vectors originating from the pictures of cartesian partial derivatives with the component 

indexes iJ: 

are all independent of the examined point. However, the other three vectors ;3(r), ;y(r), ~(r) 
with component indexes iJ: 

(19) 

(20) 

(21) 
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are not. They are dependent on the difference f-fij. In analogy with the (f, f) r computation 

we observe that (19), (20) and (21) decay when lfij - rl increases. We will utilize this 

property to approximate, (14), : 

through the equation: 

Here we have split up ;3(r) to two vectors, where ,B(r) components are 

(~(r)) .. = { (;3(r))ii' if Ir- ~iii~ R'; 
tJ 0, otherwise. 

in such a way that 

i](r) = ~(r) + €13 (r). 

The same is carried out for 1 and ~· This leads us to 

and 

as before. If we define a/3"1~ as 

(,B(rkz))ii = (,B(o))(i-k)(i-1) 

(1(rkz))i1 = (1(o))(i-k)(j-1) 

(f(rkz) L1 = (f(o)) (i-k)(i-1) 
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(24) 

(25) 
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we can use this as a norm for the error made in the operations of ( 22). This will express 

how well we have managed to do our total approximation through separate approximations 

when we adopt: 

(z;,, z;,),.kl ~ I: (~(rkz))(k+i)(l+j)(J;)iJ + ('1(rk1))(k+i)(1+j)U;)ij 
i,jEB (27) 

+ (f(rk1))(k+i)(l+J°)(Jxfy)ij 

3 ) ( _E__L _E__L ) 
B<p' ' 8<p' r 

As in the previous case, through the partial derivation: 

of of . of 
- = --r' sm(<p1

) + -r' cos(<p1
) 

o<p1 ox' oy' 
(28) 

we get 

( of of) ( ,2. 2( ') (of)2) ( ,2 2( ') (0/)2) ( ,2. ( ') of of) ~, , ~, _ = r sm <p , ~, _ + r cos <p , ~ _ - r sm 2<p , ~ ~ _ 
u<p u<p r uX r uy1 r ux1 uy1 r 

(29) 

We use the band limitation assumption for the involved pictures and find: 

(r'2cos
2

(<p
1),(;:,) 2),.= .~ (~~) 2 l,.,i(r 12 cos 2 (<p 1 ),,\(r'-rii")),. (30) 

i,1EB 

(r'
2 

sin(2<p
1)i ;:, ::1 ),. = .~ ( ~~ ~~) l,.,i (r' 2 

sin(2<p'), -\(r' - fij)),. 
i,3EB 

We define the vectors 'ff(r), it(r), p,(r) through their components as 
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R 
6.0 

7.0 

8.0 

R' <JI R R' (J '7 

7 0.001 6.0 11 0.015 

10 0.004 7.0 11 0.021 

8 0.004 8.0 11 0.028 

Table 3.2): The relative errors made by truncating~ and fj. 

(iJ(r))i3 ~(r'
2 sin2 (<p'),A(r' - fi3))r 

(K(r))i3
6 

(r'
2 

cos 2 (<p'), A(r' - fi3))r 

(µ(r))i3 ~(r'
2 sin(2<p1

), A(r' - fi3))r 

---t2 --t2 --t af af) - - -
(a'P'' a'P' f - 11(r) fx + ~(r) fy - µ(r) fxfy 

(31) 

(32) 

We approximate iJ(r), K(r), µ(r) by ry(r), k(r), fl(r) with the errors E",,(r), €K(r), Eµ(r). The 

approximation technique is the same as before, that is iJ(r), K(r), µ(r) are put to zero when 

lrij - ti> R' to obtain ry(r), k(r), P,(r) resulting in convolutions: 

( :~,' :~,) ri.1 ~ .~ ( r](rki)) (k+i)(l+i) (!;)if + (k(rkz)) (k+i)(l+i) (!J )ii 
i,3EB (33) 

+ (fl(rkz))(k+i)(l+i)(fxfy)ij 

with the error definitions 

6 llE",, (o) lloo 
(J ----

,,- lln(o)lloo 
6 llE"K(O)iloo 

(J ----

K- llK(O)lloo 
6 llE"µ(O) lloo 

aµ= llp,(o)lloo 
6 

<J17Kµ..=<Y17 + (JK + <lµ 

(34) 

The approximation errors are only given for ~and i] in the table 3.2) and table 3.3), because 

of symmetry. 
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We have in the previous chapter referred to a variable sign telling us whether the proposed 

point concentration measure nJ is in the left half plane or the right half plane of H. We will 

do that by checking the sign of 

P _ 1 (of of) = ~ 
- A2w or ' o<p rk1 L...t 

m,nEH 

2 
amn mn-­
A2 

telling us which half plane is more dominant. We will evaluate this quantity, which was 

necessary also for the line concentration case. 

4) (Bf _!ll_) 
Br'' Brp' f 

The approximation is based on the equation obtained by (13) and 28): 

of of 1 ( of ) 2 , • ( ') 1 ( of ) 2 , . ( ') of of , ( ') - - = - - - r sm 2<p + - - r sm 2<p + - -r cos 2<p 
or' O<p1 2 ox' 2 oy' ox' oy' 

(35) 

yielding 

of of 1 . of 1 . of of of 
(-, -)- = - -(r' sm(2cp'), (-;- )2

) _ + -(r' sm(2cp'), (-) 2
) _ + (r' cos(2cp'), --;-)­or' O<p 1 r 2 ux' r 2 oy' r ox' uy' r 

after discussions appearing earlier in 1), 2), 3) one obtains: 

with 

of of ) 1 t- 1 t- t-
(-, - _ = --D(r) ft+ -D(r) fy2 + r(r) fxfy or' o<p1 r 2 2 

(v(r)) ii~(r' sin(2cp'), A(r' - rii)),. 

(r(r))i1 ~(r' cos(2cp'), A(r' - ri1)),. 

Then the approximation is immediate with the error performance given in table 3.3) as 
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R R' a,.,, R R' Gr 

6.0 11 0.004 6.0 11 0.012 

7.0 13 0.004 7.0 11 0.018 

8.0 8 0.004 8.0 11 0.025 

Table 3.3): The relative errors made by truncating fl and f'. 

where the z/(5), f(O) are analogous to similar vectors given earlier. 

We will express the partial derivatives with respect to polar coordinates in partial derivatives 

with respect to cartesian coordinates and use the chain rule in 13): 

a2 f a af , Bf 
--2 = cos <p

1 -a (cos <p
1 -a + sin <p -a ) + or' x' x' y' 

a af Bf 
sin <p'-( cos <p

1 
-
0 

+ sin<p'-) 
oy' x' oy' 
2 I 02 f • 2 I 02 f • I 02 f 

=cos <p --2 + sm <p --2 sm2<p a a ox' oy' x' y' 

Thus 

02 f a2 f 02 f 2 

(8r'2' or'2)r = (1, (or'2) )r 

( 4 I ( a2 
f) 2) ( . 4 I ( 8

2 
f) 2) ( . 2 I ( 8

2 
f ) 2) = cos <p ' --2 - + sm <p ' --2 - + sm 2<p ' a a -ox' r By' r x' y' r 

1 ( . 2 I a2 f a2 f ) ( 2 I • I 0
2 f 0

2 f ) = + - Slil 2<p , --2 • --2 _ + 2 COS <p Slil 2<p , --2 O IO I -
2 ox' oy' r ox' x y r 

( 
• 2 I · / 0

2 f 0
2 f ) + 2 sm <p sm 2<p ' --2 a a -oy' x' y' r 

(40) 

(41) 

The straightfoniard application of the band limited functions theory, as before, produces: 
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R R' (J PI R R' (J V2 

6.0 g 0.005 6.0 11 0.020 

7.0 10 0.005 7.0 11 0.026 

8.0 11 0.004 8.0 11 0.035 

Table 3.4): The relative errors made by truncating p1 and v2. 

(!
2

,~, !
2

,~),. ~ :L (P1(o))(k+i)(l+j)u;x)ij + :L (P2(o))(k+i)(l+1·)uiY)ij+ 
r r i,jEB i,jEB 

L (p3(0))(k+i)(l+1·)(f;Y)ij + ~ L (p3(0))(k+i)(l+j)(Jxxfyy)ij 
i,jEB i,jEB 

+ 2 L (,54(0))(k+i)(l+j)(Jxxfxy)ij + 2 L (.Os(O))(k+i)(l+i)(JYYfxy)ij 

with th (o)-p5(0) as: 

i,jEB i,jEB 

(P1(o))ii = ( cos4 cp', .\(r' - fii)),. 

(i52(0))ij = (sin4 cp',.\(r' - Tif)),. 

(p3(0)) ii = ( sin2 2cp', .\(r' - fij)),. 

(p4 (0)) if = ( cos2 cp' sin 2cp', .\(r' - Tij)),. 

(!is(O))ij = (sin2 cp'sin2cp',.\(f' - Tif)),. 

( 42) 

(43) 

The number of kernels seems to be 5, but this number can be reduced to 2 by rewriting 

the trigonometric functions above as functions of cos 4cp, sin 4cp, cos 2cp, sin 2cp. The filters 

connected to case 2) and given in the equations (19)-(21) can also be rewritten to be functions 

of cos 2cp and sin 2cp. Hence the two filters become 

(ii; (o)) if = (cos 4cp', .\(r' - rif)),. 

(!i~(o))ii = (sin4cp',.\(r' - fif)),. 
(44) 

Here we give the error bounds due to the approximations of p1 (0), table 3.4). The truncation 

error bounds for {i2 (0) is the same as ih (0) for symmetry reasons. 
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( a
2 f a2 f ) 6) 8rp'2' 8rpl2 f 

Like in case 5) we will apply the chain rule to (28) and get: 

a 2 f 2 . a 2 f 2 a 2 f 2 . a 2 f 
-- = r' s1n 2 cp'-- + r' cos 2 cp1-- - r' sm2cp1

-­
acp12 ax12 ay12 ax1ay1 

This will provide us with: 

Then we get 

(:;~, :;;2)f~ .~ (v1(0))(k+i)(l+j)(f;x)ij+ .~ (D2(0))(k+i)(l+j)(fiY)ij+ 
i,JEB i,JEB 

L (v3(5))(k+i)(l+i)(f;Y)if + ~ L (v3(0))(k+i)(l+i)(fxxfy11)ii 
i,jEB i,jEB 

(45) 

(46) 

-2 L (v4(0))(k+i)(l+i)(fxxfx11)ii - 2 L (v5(0))(k+i)(l+i)(fYYfx11)ij 
i,jEB i,jEB 

(47) 

with 
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R 
6.0 

7.0 

8.0 

R' Ov 8 R R' Ov4 

10 0.003 6.0 14 0.003 

11 0.003 7.0 14 0.003 

11 0.003 8.0 12 0.001 

Table 3.5): The relative errors made by truncating v3 and v4 . 

(v1(o))ii = (r'4sin4'P',..\(r' - rii))r 

(v2 (o))ij = (r' 4
cos4 'P',..\(r' - Tif))r 

(v3 (o))ij = (r' 4
sin2 2'P',..\(r' - fij))r 

( - (0-)) ( 14 • 2 I · 2 I '(-f - )) V4 ij = r sm 'P sm 'P , " r - Tij r 

( D5 (0) Li = (r' 4 
cos 2 'P1 sin2'P', ..\(r' - fij)),. 

The errors associated with D2 ... D4 are given in the table 3.4) and table 3.5). 

In the cases 2)-6) the discretized versions of the following pictures were assumed to exist: 

We propose to evaluate these pictures and store them before computations proposed earlier. 

One might be tempted to use a reconstructed band limited picture as before to evaluate these 

partial derivative pictures. But the problem with this is the slow decay of the coefficients 

for 2-D case. In 1-D cases one can accelerate it by taking derivatives in midpoints, x = ~; 

a f = ~ f (xi) 7r(x - i) cos 7r(x - i~ - sin 7r(x - i) 
ax ~ 7r(x - i) 2 

i 

(48) 

(49) 

which is a quadratic decay. But for 2-D cases one can not evaluate ~ and ~~ at the same 

point with the same decay rate at all directions. 
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0 f = 'f(r· ·) 7r(x - i) cos 7r(x - i) - sin 7r(x - i) sin 7r(y - j) 
ox ~ iJ 7r(x - i)2 7r(y - j)2 

t] 

of _ (-1)i 
~\z=k = ~ f(rij)-k -. 
UX y=O ~ - Z 

ij 

(50) 

This would result in a very large mask to give acceptable truncation error. Instead we will 

adopt schemes offered by numerical methods, [13]. The derivative of a function is computed 

by means of it's values on a grid according to [14]: 

where 

fo = f (fkt) 
o 

Dx=­
ox 

1 -1 

ox= (EI - ET) 
1 !. =..!_ 

µx = 2 ( Ei - Ex2 
) 

Here Ex is the translation operator, which defines the operators Ox and µx: 

for 

Since (51) contains only even exponents of 

(51) 

(52) 

and µxOx = ~(Ex - E; 1 ) the evaluation corresponding to (51) will only include the values 

off at the grid points. This is what we wanted. We approximate Dxfo by truncating (51): 
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N-1 ( ')2 
' ( )n n. 2n Dxfo=µxOxf:'o -1 (2n+l)!/jx fo (53) 

Both (51) and (53) can be thought of as ordinary scalar products a~f and B~f as before. 

It should be observed that Bx is not a simple truncation of ax. The components of ax and 

Bx are found by inserting (52) in (51) and (53) and using the binomial expansion. The 

truncation error of ax defined by 

(54) 

can be found to yield: 

(55) 

A similar expansion to (51) exists for n;Jo, [14]. 

D2f =2~(-l)n-1[(n-l)!]f 
x o ~ (2n)! o 

(56) 

(82 o; 15~ 15~ o;0 012 ) 
/ x - 12 + 90 - 560 + 3150 - 16632 ... 0 

Approximation is obtained by truncation of this sum, resulting in a scalar product between 

two vectors. By using (51) twice we get: 

(57) 

with m, n i'n{O, 1, 2 ... }. Up to now we were only concerned with errors made by replacing a 

large vector : with a smaller vector : for individual quantities and did not worry about the 

composite truncation error made. 

For example in 
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(58) 

we based our truncation error for ,B(r) on the assumption that we had access to an error 

free picture n. Later (51), we have given an approximation to J;,. How do these two errors 

influence the final error of (58) originating from truncating two vectors? In the following 

paragraph we will try to answer this question. 

Let us denote the finite dimensional vector space, containing the finite dimensional discretized 

version of the picture f as X. Moreover, let g be a transformation from 

Y=X®X®X®X 

to X defined as: 

for 

where * is the convolution: 

(T1 * T2)kl = L (T1)(k+i)(l+j)(T2)ij 
ij 

and o represents component wise multiplication: 

(59) 

(60) 

(61) 

(62) 

It is obvious that T1 * T2 EX and T1 o T 2 EX, if the dimension of Xis sufficiently larger 

than T1 and T2's. We adopt 11·11= as norm for X and Y. All key quantities can now be 

expressed by sums of g, for example 
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(63) 

which is obtained through (15), (19), (54) as we have T1 = f, T3 = T4 =Bx, T4 = /3(0). 
That g is continuous in T = (T 1 , T 2 , T 3 , T 4 ) E Y is obvious, because g can be expressed as 

ordinary finite sums and products of real variables. Thus 

l!?J(T + h) - g(T)lloo :SE (64) 

for T, h E Y, where E --+ oo as 11h11 00 --+ 0. This leads to that there exists a 8 for any E such 

that: 

!l?J(T + h) - g(T) !loo < 
- E ll?J(T)!loo -

as soon as llhl1 00 < 8 and g(T) are non vanishing. This simply means th&t g(T) can be 

approximated by g(T + h) as well as desired by decreasing 1lhl1 00 • In the following we will 

show that the rourid off errors due to word length limitation in picture representation will 

not allow us to do this as much as we wish. 

We will set h = (h 1 , h2 , h3, h4) since h E Y and try to approximate by that the variation in 

g(T) as: 

g(T + h) - g(T) = L(h) + a(T, h) (65) 

where £ is a linear operator and llaf~l~~\1 00 --+ 0 as llhlloo --+ 0. This would allow us to see 

g ( T + h) - g ( T) as a linear variation with respect to h: 

g(T +th) - g(T) 1 - - ( - - - - - - - - ) 
t = t(T4 + th4) * ((T3 + th3) * (T1 + th 1 )) o ((T2 + th2 ) * (T1 + thi)) 

- T4 * ((T3 * T1) o (T2 *Ti)) 
(66) 

This can be shown to be equal to 
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µx8xfo µxo; fo µx8~ fo µx8Jfo 

0.5U 1.5U 5U 17.5U 

Table 3.6): The round off error made by truncating Dxfo at various levels. 

T4 * ((T3 * T1) o (T2 *hi))+ T4 * ((T3 * T1) o (h2 * T1)) 

+ T4 * ((T3 *hi) o (T2 * T1)) + T4 * ((h3 * T1) o (T2 * T1)) 

+ h4 * ((T3 * T1) o (T2 * T1)) + a(T, th) 

after a straight forward usage of the additivity property of * and o; 

T1 * (T2 + T3) = T1 * T2 + T1 * T3 

T1 o (T2 + T3) = T1 o T2 + T1 o T3 

a(T, th) is a function for which 

1
. a(T, th) 
im = constant 

t->O t 

(67) 

(68) 

(69) 

yields. The operator given in (67) is linear in h because * and o have additivity property 

according to (68). Since only * and o are involved in (67), it is also continuous leading to 

the fact that g(T) is differentiable in T and the linear operator in (67) becomes unique, [4], 

and can be identified as L in (65). In all key quantity evaluations T1 is the picture. We 

see that errors in picture values, h1 , caused by digitization appears twice in (67). Only this 

fact alone suggests not to be too diligent in trying to decrease the truncation errors h2 , h3 , 

h4 too much. The other argument for not being too diligent in decreasing the truncation 

errors llli211 00 and llh3 lloo is that these in almost all key quantity evaluations, correspond 

to truncation errors made in connection with partial derivative approximations. Decreasing 

llli2l\ 00 and l\h3 1\ 00 means that one takes more and more terms, for example in (51). If the 

smallest positive number representable in the data structure of the picture is U, then the 

discretization error is 1/2 U. The approximation of 8
81 \- yields the round off error bound: 

x rk1 

RxF = ~ L \(ax)J (70). 
t 

This sum is given below for the approximations done by truncating at the following terms. 
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The table shows that RxF increases with decreased truncation error. Usually it does not 

pay to take more than a few terms to the sum, before RxF becomes the dominating error 

source. In fact, if any of the approximations to T 2 , T 3 , T 4 has diverging absolute sums of 

their components, we will have this phenomenon. As a conclusion to this chapter we should 

not expect to decrease the total amount of error to arbitrarily low levels by decreasing the 

truncation error, because this has the effect of not only increasing the size of masks, but also 

directly increasing the round off error, due to inaccurate picture representation. To have a 

qualitative comprehension of how different types of errors effects the total error (67) can be 

used. This tells us that for small errors in approximation off', all errors originating from 

different vector approximations affect the total error linearly and separately. 
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CHAPTER 4 

LINEAR SYMMETRY MODELLING 

In this chapter we will describe local neighbourhoods in terms of linear symmetry. Even 

though a quite direct application of this is to detect lines and edges, our approach will not 

be to model these properties directly. As it was announced earlier in chapter 2, we will follow 

the ideas developed there. 

The characteristic property of lines and edges is that the locus of their iso gray values are 

parallel lines in cartesian coordinates. The natural complete basis functions on a rectangle 

with this property are sine and cosine functions. Here we will denote this rectangle by 0. 

The completition of C2 (0) becomes a Hilbert space with the scalar product: 

(!, g) = l~I Jo f* (r)g(r)dO (1) 

where 

IOI= l dO. 

The functions {Wmn}m,nEZ 

(2) 

where Wx = ~: and Wy = ~: with Lx and Ly being the side length of the rectangle in 

horizontal respectively vertical direction, x and y are local cartesian coordinates. Actually 

these functions are orthonormal and dense in £ 2 ( 0). 

Consider a square shaped neighbourhood with sides L. A function, f, which is assumed to 

be in C2 (0), can be expanded evenly as in chapter 2. 

For this purpose we define f outside of the square, in which it is well defined as: 

f(-x, --y) = f(x, y) (x, y) E [o, L] 0 [O, L] 

Then_ we impose periodicity in x and y directions with L respectively 2L: 

56 



f (x + L, y) = f(x, y) 

f(x, y + 2L) = f(x, y) 

Thus we have extended f's basic rectangle from [O, L] ® [O, L] to [O, L] ® [O, 2L]. Call the 

latter 0. Using (1) and (2) together with (3) we find 

with 

f(r) = L Cmn Wmn(r) 
m,nEZ 

Cmn = (!, W mn) 

= ~ { f(r)Wmn(r)dO 
2L Jn 

Using the fact that f is even we arrive 

with 

f = L amn4>mn 
m,nEH 

2?T cos(mwxx + nwyy) 
4>mn = --------

1\cos(mWxX + nwyy) II ,Wx= L' 

amn = (f, 4>mn) = 2~2 l f 4>mnd0 

71" 
Wy = -

L 

. (4) 

(5) 

(6) 

(7) 

(8) 

The functions { 4>mn}m,nEH are orthonormal. This means that every function f(x, y) E C2 (0) 

can be approximated arbitrarily well. by a weighted sum of trigonometric functions, 4>mn, 

everyone of which possessing a definite direction. That is every function f(x, y) E C2 (0) will 

have a unique portrait (spectrum) in H. We will try to conclude whether there is some sort 

of concentration to certain areas of H as in chapter 2. 
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POINT CONCENTRATION 

We approximate the location of point concentration as in the circular symmetry case: 

2 
2 _ L amn 2 md- --m A2 

m,nEH 

where 

A2 = ~ a2 
~ mn 

m,nEH 

These can be computed through the Parseval relation with the given scalar product: 

A
2 

= 11!11 2 

2 _ 11Dxfll 2 

md - A2w2 
x 

The confidence measure looks also identical as before 

2 
c2 = ~ amn (m2 - m2)2 

Om ~ A2 d 
m,nEH 

The only difference is the scalar product. Without further motivation we state: 

2 _ ~ a:nn 2 _ llDyfjj 2 

nd - ~ A2 n - A2w2 
m,nEH Y 

2 
c2 = ~ amn (n2 - n2)2 

On L..t A2 d 
m,nEH 

llD~fil 2 

A2w4 
y 

n 4 
- d 

(9) 

(10) 

(11) 

(12) 

The decision concerning in which half plane of H the concentration is, is determined by a 

. sign variable which will be determined by-the sign of the w~ighted mixed product: 
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p= 
m,nEH 

which we will come back to later. 

2 
amn 
--mn 
A2 

LINE CONCENTRATION 

(13) 

The line concentration in the H plane simply means existence of a definite direction in the 

function f, which is our local neighbourhood in the picture .. As in [5], this information 

together with a confidence parameter should be an alternative method to extract lines and 

edges efficiently. However, the main purpose is not to detect lines and edges as such but to 

extract a very well defined property of lines and edges, that is their orientation. A neigh­

bourhood with iso-gray values having a definite direction will give rise to line concentration 

in H plane. The direction, (}, minimizing the degradation: 

6 a2 

Cno= L (nsin(O) - mcos(0)) 2 
;; (14) 

m,nEH 

is given by 

1 -1( 2 2 ) (}d = - tan nd - md,2p. 
2 

(15) 

which is the least square fitting of a line through origm m the transform plane. Since 

orientation of a line structure is unaltered upon 180° rotation of the neighbourhood it is 

possible to define orientation as twice the argument of the directional vector. This leads us 

to a continuous representation of orientation by the argument of a vector [5] & [8]'s algorithm 

provides this vector naturally. including the factor two, guaranteeing the continuity of the 

argument. It is interesting to note that the complex number (vector) 

z - (n 2 
- m 2 + i2p) 

1 

- d d v(n~ - mJ)2 + 4p2 
(16) 

also possesses this property: 

59 



arg(z) = 20d 

\z\ = 1 

The estimated Od, put in (14), provides the confidence measure: 

(17) 

(18) 

Thus, if one uses the GOP representation, the complex number representing local orientation 

becomes 

zg(Coe) (19) 

where g is any suitable decreasing real function of Coe scaled to fit the gray value depth. The 

argument of a vector in GOP representation stands for class representation and magnitude 

for class membership certainty. 

60 



CHAPTER 5 

DESIGNING FILTERS FOR LINEAR SYMMETRY DETECTION 

When we considered the local neighbourhoods as the even expansions in 

{ cos(mwxx + nwyy }m,nEH 

h d 1 d d h d d (! !) (Bf Bf) (Bf Bf) (Bf Bf) (B
2

f B
2
f) (B

2
f B

2
f) we a cone u e t at we nee e , , Bx, Bx , By, By , Bx, By , Bx2, Bx2 , By2' By2 

for the determination of point and liRe concentration properties in the spectra. The image 

represented by f was an even expansion of the local neighbourhood and 0 was [O, L] ® [O, 2L]. 

As in chapter 3) it can be shown that all key quantities mentioned above can be calculated 

without even expansion of the local image. Then the scalar product definition will be: 

(!, g) = l~l l f* (r)g(r)dO (1) 

with 0 being [O, L] ® [O, L]. 

Assuming that f is bandlimited and oversampled at least twice, {f (fij )}m,nEB, then f is 

retrievable from it's samples through 

f (r) = L J(rii ).\(r - 1\j) (2). 
i,jEB 

This can be inserted in any of the scalar products above and we end up with a convolution 

by a simple filter, l, where coefficients are given by 

(3) 

where the index, f, of the scalar product symbolizes the examined point. To see this we 

carry out the calculations only for (f, f). 

u, n = I: 12 (ri3)(1, >..(r' - t'ij)) (4) 
i,jEB 
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L L' C1e 

6.0 11 0.003 

7.0 11 0.003 

8.0 11 0.003 

Table 5.1): The relative errors made by truncating l. 

Since partial derivatives with respect to cartesian coordinates are unchanged by shifting the 

examined point we get 

(5) 

As before we approximate l by truncating it. We propose a square truncation, 

(t)i. = { (l)if, if fij E O'; 
1 0, otherwise. 

(9) 

such that the largest component left out divided by the largest component of £, call this 

ratio C1t, is small enough. O', is the truncation square with side length L'. In table 5.1) we 

give L' and C1e for some L's. 
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CONCLUSION 

In the previous chapters we have defined two types of symmetries. The behaviour of the 

spectrum was crucial for the feature parameters presented. The local neighbourhood was 

well defined by it's boundaries and the image was expanded locally by means of two basis 

function sets. As a result of these Fourier series expansions, the pattern of the periodic 

repetition of the neighbourhood influences the behaviour of the spectra. 

To illuminate some effects of this phenomenon, let us consider the linear symmetry case. 

An edge found in a local neighbourhood has a definite orientation when it is not periodized. 

However, Fourier series expansion will not give a perfect line concentration in the spectrum 

due to periodization. Instead we get a concentration around a line because the stated 

approach in the previous chapter will take all edges into account, possibly including some 

eventuel extra edges obtained by periodization. What we get from the line concentration 

algorithm is the least square orientation fitted to this periodized neighbourhood. 

We get a perfect line concentration in the spectrum, if the neighbourhood consists of a 

function whose repetition in the vertical and horizontal directions gives rise to a function 

with the linear symmetry property. That is, the iso gray values of the extended function are 

parallel lines. 

The frequency (point concentration) and the orientation (line concentration) properties of a 

local neighbourhood are proposed to be measured in the spectral domain. These properties 

are easily defined in this domain. It is noted that some neighbourhoods may lack the orien­

tation peoperty, that is, a line concentration in the spectrum in the least squares sense is not 

observable. For such neighbourhoods any orientation is equally dominating. It is considered 

very important to give a confidence measure for the extracted features, since the measured 

properties are more reliable for some neighbourhoods compared to others. It is shown that 

the variance from a point respectively a line concentration works for this purpose. 

The feature extractions proposed are all carried out in the spatial domain thanks to the 

P arseval relation. Moreover, they are "second level" operations, since they are carried out 

on the partial derivative pictures and not on the original picture only. This is intuitively ap­

pealing since the investigated properties are direct consequences of the gray value variations 

of the neighbourhoods. 

In the point .concentration case the DC-level contributes to the mean-value of the location 
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of a possible point concentration. In most cases, we deal with non-negative digitized inputs. 

This has the consequence in the spectrum that the DC-energy becomes the dominating 

energy and the zero frequency is obtained from the majority of the neighbourhoods as a 

result of the point concentration investigation. The DC-level effects can be removed easily 

by subtracting the DC-energy from the total energy of the neighbourhood: 

As an alternative to this subtraction one can use a locally high pass filtered version of the 

picture. The method remains unchanged in principle. Only the input signal is modified. 
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