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Abstract

The problem of optimal detection of orientation in arbitrary neighbourhoods is
solved in the least squares sense. It is shown that this corresponds to fitting an axis
in the Fourier domain of the n—dimensional neighbourhood, the solution of which
is a well known solution of a matrix eigenvalue problem. The eigenvalues are the
variance or inertia with respect to the axes given by their respective eigenvectors. The
orientation is taken as the axis given by the least eigenvalue. Moreover it is shown that
the necessary computations can be performed in the spatial domain without doing
a Fourier transformation. An implementation for 2-D is presented. Two certainty
measures are given, corresponding to the orientation estimate. These are the relative
or the absolute distances between the two eigenvalues, stating whether the fitted axis
is much better than an axis orthogonal to it. The result of the implementation is
verified by experiments which confirm an accurate orientation estimation and reliable
certainty measure in the presence of additive noise at high as well as low level.

1 Introduction

The problem of orientation detection of lines and edges arises in many applications in image
processing. One of the earliest approaches was to model the direction of a neighbourhood
in terms of the direction of the gradient of the image. A drawback of this method is its
noise amplification since the gradient operation enhances high frequencies of the image.
Another approach is to combine linearly the magnitudes of a number, 3 or 4, of quadrature,
directional filters, [1]. The coefficients in this linear functional are complex valued as well
as those of the filters. This results in a complex valued variable, the argument of which
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is an estimate of the orientation of the local neighbourhood and the magnitude is an
estimate of the certainty of this orientation estimation. There have also been solutions to
the problem of finding the local orientation by projecting the neighbourhood to a number
of fixed orthogonal functions. The projection coefficients are then used to evaluate the
orientation parameter of the model [2,3].

We will propose a new approach for local orientation detection which is based on the well-
known solution of the principal axis problem of rigid bodies in mechanics, but applied in
the Fourier domain [5, 6,10]. In Section 1, we will define linear symmetry and describe
the method for an n—dimensional Euclidean space. In Section 2 we will apply the results
for 2-dimensional images and in Section 3 the experiments and results for the 2-D case
will be presented. We predict that the experimental results of this approach for the 3—-D
case should be similar to those for 2-D. Since lines and edges are linear symmetric struc-
tures, this method can be used for detection of these structures by means of the certainty
parameters introduced in Section 2, as well as orientation estimation in applications.

2 Orientation detection in n-dimensional Euclidean
space.

Let E, be the Euclidean space with dimension n.

Definition 1 We will call a non—negative and bounded function f with real or complex
values defined on E, an image, and the values of f the gray values of the image. Further
we will call an image linearly symmetric if the isogray values constitute parallel hyperplanes
of dimension n — 1. That is if the image f can be expressed by a function g defined on Ey
for some vector k € E,, as f(¥) = g(k -7) for all 7 € E,.

Theorem 1 A linear symmetric image has a Fourier transform concentrated to a line
through the origin:

Fulf (ko)) (5) = Fi(f)(5'ko)d(5"11)8(5"us) - - 6(5"tn1)
ko, @1...Up_1 are orthonormal, and § is the dirac distribution.
Proof: Decompose E, in E; and E,_;
T = tho + usliy + Uslla....Un_1lin_1
for all ¥ € E,,, so that kg, @1, s ... U,_1 are orthonormal.
Fad ) = [~ o [ f#) exp(-g2mts'ho) x
exp (— j27r(§t121,_1z + ?1%222...gtan_lun_l))dtdul SRR

then the desired result follows immediately.



To detect linearly symmetric objects is consequently the same as to check the existence
of energy concentration to a line in the Fourier domain. This theorem further states
that the function f(ki7), which is in general a ”spread” function, is compressed to a
line. This is a property which supports the idea of checking the linear symmetry in the
Fourier domain rather than in the spatial domain. But the Fourier transformation of every
local neighbourhood is very cumbersome. We will show that the fitting of a straight line
through the origin in the Fourier domain of an image with the least square error is possible
to accomplish in the spatial domain. If we define the infinitesimal energy of the Fourier
transform, | f(7)|2?dE,, as the mass distribution, then we have the variance (or the inertia)
with respect to the axis tk

= / P Fo)dm(7) (1)

for the Fourier transform of the image, f. Here d(7, ko) is a real valued function which
gives the Euclidean distance between the point 7 and a candidate axis, defined by the axis
tko, where [|ko|| = 1. The problem is to find such an axis minimizing V7:

min V2 = min / &2 (7, ko) | f () [2dE, 2)
En

where dF, is dx,dz,---dx, when © = z,.21 + Z5...x,%, for all ¥ € E,. The distance
function is given by the usual Euclidean distance:

(7, ko) = (7 — (7Pko)ko) (7 — (7tko) ko)

where ||ko||? = kiko = 1 is assumed. In combination with (1)

V2 = Rt 3k (3)
is obtained with:

Ji —Ji ... —Ji

—Jn1 —Jdne oo

where R
Ji= [ S @l f(r)PdE, (4)
E,
J#i
for diagonal elements and
Jy= [ @l f()PdE, (5)

for off-diagonal elements except for a sign change. The minimization problem formulated
in (2) is solved by ko corresponding to the least eigenvalue of the inertia matrix J of the
Fourier domain, [4]. All eigenvalues are real and the smallest eigenvalue corresponds to
this minimum. This matrix contains sufficient information to allow computation of the
optimal ko in the sense given by (2)



Lemma 1 The inertia matriz of the energy of the Fourier domain is possible to compute
in the spatial domain by the following relation:

1 of .o
Yi= ga 2 ), (G P )
J#i J
for the diagonal elements and
1 of of
iy = 4r? JE, Ox; 0} " (@)

for off-diagonal elements. Here xé 1S the spatial domain coordinate corresponding to the
Fourier domain coordinate x; and dE, = dz'dz},...dx],

Proof of the lemma is immediate by applying the Parseval relation and the fact that
a differentiation in the spatial domain corresponds to multiplication by the respective
coordinate in the Fourier domain, (4) and (5).

Using the previous lemma we have the tools to find an optimal orientation of any image
f- The obtained orientation will be unique if all the eigenvalues differ from the least
eigenvalue. Moreover the variance given by (1) would be exactly zero if and only if f is
a linear symmetric image. When the multiplicity of the least eigenvalue is larger than 1,
there is no unique axis tky, by which the image can be described as g(k§F) for some one-
dimensional function ¢g. Instead, the energy in the Fourier domain is distributed in such
a way that there are plenty of such axes which give the least square error. More exactly
these axes are any axes given by a linear combination of the eigenvector space belonging
to the least eigenvalue. Here it should be observed that the dimension of this space is
equal to the multiplicity of the eigenvalue it corresponds to (the least one). This is due to
the fact that J is positive semi-definite and symmetric by definition, (1) and (3). In other
words, there is no unique and optimal axis passing through the origin but an optimal and
unique hyperplane passing through it in the Fourier domain when the multiplicity of the
least eigenvalue is greater than one. How shall we interpret the case when the least two
eigenvalues of the inertia matrix J are equal? If they are equal and vanish?

Since the matrix J is symmetric and positive semi-definite, it can be diagonalized by a
similarity transformation to J’

J =P'IP

This corresponds to a rotation of the coordinate axes (both in the Fourier and the spatial
domain). Let the coordinate axes of the spatial domain after rotation be 4y, ts... @,. Then
by using lemma 1) and Jj, = Jj; = A¢ we obtain

2L

E, aUO

g, = [ (2Lyag, ®

E, 5u1

We will call such images perfectly balanced images with respect to @y and %; coordinate
axes due to a similar definition in mechanics when Ao = A;. When Jj;, = Ji; = 0 we obtain
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through lemma 1)

Z/n auz n=0

1#£0

Z/n auz n=0

1#£1
Since all elements in the sums above are positive we have

Jo e

for all 7, which in turn leads to the fact that

of
8ui

Il
o

=0

for all allowed i. But this is the same as saying that f is a constant image. If only one
eigenvalue is zero then we have
of

3ui
for all 7 except the one corresponding to the zero eigenvalue. That is, it is constant in
the directions perpendicular to the axis belonging to the least eigenvalue. Thus when two
eigenvalues of the matrix J are zero, so are all the others, and by this we have established
the following lemma.

=0

Lemma 2 If one of the eigenvalues of the inertia matriz J of the Fourier transform of the
image [, has value zero then this eigenvalue has multiplicity of either 1 or n. It is equal to
1 if and only if we have a linearly symmetric image, and equal to n if and only if we have
a constant image.

To illustrate the concept of perfectly balanced images we have such a Fourier domain in
Figure 1 a). It can, for this image, be shown that any axis through the origin in the Fourier
domain will give the same least square error:

4
> mid® (7, k) = 2a°m®

This is a perfectly balanced image. Thus the 2-D inertia matrix J of this case has one
eigenvalue 2a?m? of multiplicity 2. The spatial domain corresponding to this Fourier
domain consists of two planar waves (sinusoids) in the directions of the coordinate axes.
Interpreting Figure 1 a) in 3 dimensions would give a hyperplane as in Figure 1 b). In the
3-D spatial domain this corresponds to an image as the one in Figure 1 a), in every 2-D
plane perpendicular to the axis defined by the vector, Z3. In Figure 1 a) we obtain both
eigenvalues equal namely 2m?a?, while in the 3-D case, Figure 1 b), we obtain eigenvalues
2m?2a?, 2m%a® and 4m%a®. Thus we can say that the image is perfectly balanced with
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Figure 1: a) and b) illustrate perfectly balanced images in the Fourier domain for 2-D and
3-D respectively. m is energy. A spatial domain image corresponding to both a) and b)
is given by: Asin(2mwau,) + Asin(2waus), where A is a constant and u; and us are spatial
domain coordinates corresponding to z; and Zo. It should be observed that the spatial
domain image is constant for all us.



respect to any axis perpendicular to Z3. One is tempted to infer that the image should
have its iso-gray values as parallel lines, when the least eigenvalue has multiplicity 2 for
the 3-D case. However, this is not always true. A counter-example is when we have
equal masses (energies) at the Fourier sites: (+1,+1,0), (0,0,+1). The eigenvalues are
proportional to g, g, 4, but this corresponds for instance to three sinusoids in the spatial
domain: .

Asin(uq) + Asin(us) + Asin(éu;),)

where wuy, ug, uz are coordinates in the three orthogonal spatial domains corresponding to
the Fourier coordinates, and A is some constant.

3 2-D implementation of finding the minimum va-
riance axis

To test the theory above we have implemented two algorithms evaluating local orientation
of the 2-D images. Both of the algorithms rely on finding the eigenvalues and eigenvectors
of the inertia matrix of the Fourier domain. The direction measurements for both of them
are the same and based on the eigenvector(s) of the least eigenvalue. They differ on the
certainty of the direction estimation. What has been referred to as image in the theory
above, becomes a local neighbourhood of the total image in the following discussion. To
represent this local image at the point 7; we multiply the larger image f(7), by a window
function w(7, r;):

hi(r) = f(r)w(r,75). (9)
For simplicity we choose w a gaussian:
_ 4
w(r,7j) = exp (= —[IF = 74[°) (10)

with || - || being the Euclidean norm: ||7||*> = 77 and d,, being a constant controlling the
"diameter’ of the local neighbourhood. The algorithm fits a least square error axis in the
Fourier domain of the local image h; corresponding to the least eigenvalues of the inertia
matrix of the Fourier domain, J. The computation is pursued in the spatial domain by
means of equations (6) and (7). The axis found, tky is possible to represent by ko. Since
this is an axis, —kg is an equivalent representation as well. For this reason the orientation

of an axis tko can be defined as 2y, if @ is the direction angle of ko = kyi1 + kyZo:
¢o = tan™" (ky, k,) (11)

Consequently both —k and & will be mapped to the same angle, through 2¢,. It can easily
be shown that the eigenvalues of J for the 2-D case, corresponding to h; are:

1
Ao = §(J22 +Ji £ \/(J22 — Ju)? +4J%) (12)
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The eigenvector corresponding to the least eigenvalue can be found to be ky = ky &1 + kyZo
satisfying:
(JH - )‘O)kx - Jlgky == 0 (].3)

with the Euclidean norm of unity. Thus the orientation becomes:
2¢p = 2tan ' (kg ky) (14)
By using! (12), (13), and (14)
209 = tan " (Jag — Ji1,2J12)
is obtained. Define the complex variable z as:
z = Jog — J11 + 92J19 (15)

thus
2¢9 = arg z

The certainty in this approximation of the local orientation depends on the behaviour of
the eigenvalues Ay and A, according to the discussion in the previous section. A linear
symmetry of the neighbourhood is probable if )y is small relative to A;. An ’ideal’ linear
symmetry occurs when Ao = 0 and A; >> 0. A certainty measure, Ct;, incorporating these
properties is

LR

NN e ez M
Joo + J11

C p— pr—
n ()\1 + Ao Jog + J11 ] (

(16)

Here c is a positive constant, the purpose of which is to control the dynamic range of the
certainty. Cy; is defined to be 0 when Jy; 4+ Ji; = 0. According to the previous section we
then have a constant image and there is not a unique orientation for such images. It attains
the maximum value 1 if and only if Ay = 0, because both Ay and A; are non-negative. Cy;
decreases when the difference between the eigenvalues decreases. This property effectively
tests whether the multiplicity of Ag is 2, in which case there is not a unique orientation
minimizing the variance.

An alternative certainty measure is:

sz = )\1 - )\0 = |Z| (17)

In this measure we do not get a unique certainty value when Ay = 0. Rather the confidence
varies due to the largest eigenvalue when this happens. A consequence of this is that when
the neighbourhood is linear symmetric with small energy, it is considered as less reliable
even though the orientation measurement is correct. This is justified when it is desired
that the certainty decreases continuously as the image becomes constant. Both of these
certainty measures are considered.

!see Appendix B at the end of this chapter



Thus the task is reduced to express either of the certainty parameters C's; or Cyp and the
orientation estimation 2¢o. The evaluations of these are governed by the equations (17),
(16) and (15), which in turn rely on the efficient computation of the elements of the inertia
matrix. Computation of these parameters for every neighbourhood in a discrete image is
accomplished as follows.

Consider a discrete representation of the 2-D, bandlimited image f(7). The continuous
image can be reconstructed from its discrete samples, f; by

= Zfiﬂ(f_fi) (18)

where p(7) is an analytic function governing the behaviour of the continuous function
between the discrete values. We will call it the interpixel function. p can be assumed to
be known since it is theoretically the inverse Fourier transform of a function which is 1 at
the passband of the considered image and 0 at the outside. For its concentration in both
Fourier and spatial domains we choose i as a gaussian as well:

() = exp (— 17lP) (19)

even though it is not an ideal interpixel function, since it is not strictly bandlimited. Under
these conditions an approximation to Ji; yields:

. 1 oh; F7) o
] _ E
T = 472 /152(8x2) dbs = 472 8:62 )
4
[ — r _. —_ _~ 2 —_
/E2 exp ( dg||r+rj Al dWHZ)dEn (20)

Here (aa_:g;)2 is reconstructed from its samples

Dy~ 5 Ay

p(F — 7) (21)

since it is bandlimited as well when f is. This requires that we have a version of aa—f
oversampled by at least a factor 2 in every dimension. This is due to the fact that squaring
a bandlimited function doubles its passband in every dimension. This is an effect which
can be removed easily by resampling, if necessary. Jfl corresponding to a neighbourhood,
characterized by the coordinate vector 7; and a window function of ”diameter” d,,, is then
computed as

= 22
11 47T2 Z 8.T2 Z ( )

where m! is given by (20)
j 4 4
ml = [ exp(- gl + 7~ Rl — lIFI)aE,
p w
T df,dfu 4 I
iz+a P gyl (23)




(22) is nothing but a convolution of the discrete version of the (%)2 by a gaussian. Since

the gaussian decreases rapidly outside of a circle with the radius |/d2 + dZ,, we can truncate
it when it is sufficiently small. In our experiments this is done when it has decreased to
about 1% of its maximum. Similarly J?,, JJ, and J7, can be approximated by averaging
the discrete images:

j 1 of(Ti)\2_;
J J
oy = 42 & ( o7, ) m
' 1 of (r:) 0f(1i)
J J
N = 472 ; 0x1 0z i (24)
Thus z for the point 7; becomes:
Of(7i) 2 of () 0f (1),
i — _Z _ j
? 472 [ 8:U ( Oy )+ 0r, 0o I
— }: ) — E m? 2
47r2 8.%2 ym; 4m? 4 il (25)

where u; is the complex valued image obtained by taking the square of the gradient of the
image, interpreted as a complex number instead of a real vector:

of (7:) n jaf(Fi)

2
. 2
8951 6332 ) ( 6)

Similarly
. . 1 .
Jh + T3y = ) Z |ug|m] (27)

is obtained. Thus calling the discrete image defined by (26) as u and the filter defined by
(23) as m we have:

2¢09 = arg(uxm)

|u x m|
C L ] N
T (ulem)e
1
Cr = 4—7T2\u*m\ (28)
where the symbol * represents the usual convolution operation. Here arg(-), |- | and (-)¢

operations are assumed to be applied pointwise to their arguments and thus 2¢,, Cy; and
C'y2 become images representing local orientation and certainties. The first algorithm is to
evaluate 2¢y and C'; and the second algorithm to evaluate 2¢, and Cy,.

The discrete partial derivatives necessary for the evaluation of w can be produced by
convolution with various filters. For the sake of completeness we just mention the technique
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used before: Expansion of the image in its interpixel functions and application of the
derivative operation.

0f () o .
= 7 - 29
()= X figuon(ry —7) (29)
As before this gives us a filter which decreases rapidly outside of a small region close to the

examined point 7;. The evaluation of (29) and (28) is easily computed on hardware with
support for convolution. In the experiments below a GOP-300 computer has been used.

4 Experimental results

In the experiments, the implementation proposed in the previous section has been tested
for detection of the linear symmetric neighbourhoods. This is carried out in two steps:

1) Evaluate a partial derivative picture. In reality the complex variable u; of the neigh-
bourhood at the point 7,

01(r) . 94(r)
8951 J 8332

is computed by using (29) and then this complex number is squared.

2) Estimate local orientation, 2¢y, and the certainty of this estimation, either of Cy; or
C2 according to (28) based on the image obtained in step 1).

Figure 2 shows an image containing all possible directions for sine waves with exponentially
increasing frequency in the radial direction of the circles. Gaussian uncorrelated white noise
is added to the right half of the image with the proportion 1:3 that is 0.25f; +0.75Y; where
fi is the image intensity and Y; is the stochastic variable with the distribution of N(0,32). In
the experiments this proportion is varied and the local orientation is examined for different
sizes of filters in the two steps mentioned before. In general it could be observed that the
filter size of the first step affects the accuracy of the orientation detection more than the size
of the neighbourhood given by the gaussian, (23), in the second step. This is not surprising,
because the probability that the energy at a high frequency is erroneous is higher than the
same probability for a low frequency. The reason is that most of the natural errors are
composed of high frequencies like aliasing error, discretization error, measurement error,
etc. A squaring of the gradient image causes these errors to propagate to lower parts of the
local frequency spectrum.This makes it difficult to remove the noise by increasing the filter
size, i.e. low pass filtering. Figure 3 shows the orientation estimation of the profile of the
test image cut along the line passing through the origin of the circles shown in Figure 2.
The profiles at the left part of the test circles demonstrate these phenomena. Both profiles
should have constant levels, since the orientation of the profile is constant. The shown two
profiles are due to two different filter configurations of two estimations. Profile 1 is due to
a 9 x 9 filter in the first and a 15 x 15 gaussian averaging filter in the second step. The
second profile shows the result of a 5 x 5 gaussian derivative filter at the first step and
21 x 21 at the second step. It can be observed that in the latter filter configuration the
effect of the noise is removed at low and medium frequencies while at high frequencies the
orientation estimate is not as good as at the lower frequencies.

11



Figure 2: The test image used in the experiments. The straight line is the line along which

the profiles of results are presented at the proceeding figures.
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ORIENTATION ESTINATION PROF ILES

SOT
PROFILE AXIS

Figure 3: Orientation estimation with two different filter configurations. Graph 1 illustrates
9 x 9 and 15 x 15 configuration at the two steps of the algorithm, while 2 is due to 5 x 5
and 21 x 21 configuration.
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cTaINTY PROFILES IN ORIENTATION ESTIH
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GRAPH OF PROFILE

s07
PROF ILE AX1S

Figure 4: Certainty measures for the profile 1 in Figure 3 Graphs 1 and 3 are due to Cp;
with ¢ = 6 and ¢ = 1 respectively, while 2 corresponds to Cys.

Control of the certainty in the presence of noise without disturbing the certainty in the
less noisy parts is a desirable feature for many applications. Profiles in Figure 4 show the
certainty measures Cy; and C, of the estimation given by profile 1 in Figure 3. Profiles 1
and 3 correspond to Cy; with c=6 and c=1 respectively. C}, is given by profile 1. Since this
measure is not a relative measure like Cy, it has a high degree of frequency dependence.
It is considerably more 'suspect’ outside of the pass band, compared to the one given by
profiles 1 and 3. A natural consequence of this is that the fluctuations in the noisy part
of the image are small with a low level certainty. The frequency sensitivity band of the
certainty parameter Cpy is due to the derivation in the first step, and averaging in the
second step. In the Fourier domain this corresponds to a multiplication of an increasing
and a decreasing function at low frequencies. The center frequency can thus be varied by
varying the scale of the filters at the two steps, Figure 5. This certainty measure can be
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CERTAINTY PROFILES IN ORIENTATION ESTIN.

gRaPW OF PROFILE

SOT

PROF ILE AXIS

Figure 5: Frequency dependence of Cfp. Graph 1 corresponds to 15 x 15 and 21 x 21
configuration at the two steps of the algorithm. 2 corresponds to 5 x 5 and 19 x 19
configuration.

15



used when it is desirable to control the orientation measurements for the neighbourhoods
with a priori known frequencies.

5 Conclusion

It is experimentally verified that the problem of orientation detection within a local neigh-
bourhood is possible to solve in the Fourier domain for the 2-D case. The problem for the
3-D case is possible to solve in a similar way. The first section is sufficiently general to
handle the 3-D problem, while Section 2 uses some fundamental properties of the 2-D case
and its relation to the complex z—plane to accomplish the representation of orientation and
the certainty of the estimation. The proposed certainties Cy; and Cyy and the orientation
2¢y are shown to be computable by averaging the complex valued image u which is the
square of the gradient represented in the complex form. For the first algorithm producing
Cy1 and 2¢yg, 5 real convolutions are required, while in the second algorithm producing
Cys and 2¢, 4 real convolutions are required. In both cases the algorithms can, under

* * 2
m * (V * f)? with V being the complex gradient filter given by D,, + 7D,,, and m the
averaging filter. The resulting complex image can be seen and interpreted directly on a
colour TV monitor, if the magnitude of the image corresponding to the certainty controls
the intensity, and the argument corresponding to the orientation controls the colour [7].
One of the reasons for first evaluating a 2-D implementation, apart from it having less
data compared to 3-D, is the difficulty of displaying the orientation of 3-D images together
with the certainties of the given orientation estimation. The experimental work indicates
clearly that, for higher dimensions, it is possible to evaluate the local orientation accurately
together with its certainty with controllable behaviour when noise is present. The first
section shows that even though there is no obvious linear symmetry in the neighbourhood
considered, the estimation found is optimal in the least squares sense.

the condition that f is bandlimited, be summarized in the compact forms: and
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