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The symmetries in a neighbourhood of a gray value image are modelled by con­
jugate harmonic function pairs. These are shown to be a suitable curve linear 
coordinate pair, in which the model represents a neighbourhood. In this rep­
resentation the image parts, which are symmetric with respect to the chosen 
function pair, have iso-gray value curves which are simple lines or parallel line 
patterns. The detection is modelled in the special Fourier domain corresponding 
to the new variables by minimizing an error function. It is shown that the mini­
mization process or detection of these patterns can be carried out for the whole 
image entirely in the spatial domain by convolutions. What will be defined as 
the partial derivative image is the image which takes part in the convolution. 
The convolution kernel is complex valued, as are the partial derivative image 
and the result. The magnitudes of the result are shown to correspond to a well 
defined certainty measure, while the orientation is the least square estimate of an 
orientation in the Fourier transform corresponding to the harmonic coordinates. 
Applications to four symmetries are given. These are circular, linear, hyperbolic 
and parabolic symmetries. Experimental results are presented. 

1 INTRODUCTION 

Describing events in neighbourhoods of a gray value image is an increasing need in Computer 
Vision. The most extensively studied event is the existence of lines and edges. Also circular 
patterns have been subject to investigation [9], [5], [4], [3]. The generalized Hough transform, 
[6], is general and accurate enough to find arbitrary curves with the drawback of being 
computationally demanding. In the following we will give a method for detection of a large 
class of symmetries in a gray value neighbourhood which is a generalization of the work 
done in [3], [4] for circular symmetry. 

By a neighbourhood of a point will be understood the image multiplied by a window function 
placed at the point. For its behaviour to be satisfactory in practical situations we will assume 
this window function to be a gaussian with a sufficiently large standard deviation instead of 
a sharp window. But the method is not restricted to this choice. In Section 2, a definition 
of symmetry will be given by means of a pair of conjugate harmonic functions in which the 
neighbourhood coordinates are represented. After this representation, the neighbourhoods 
with iso-gray value curves associated with a linear combination of these chosen coordinates 
constitute the family of neighbourhoods for which the detection is developed. 

The detection is based on minimization of an error function in the Fourier domain, but 
computed entirely in the spatial domain. In Section 3, this minimization process is shown 
to be a convolution of the complex valued partial derivative image with a complex valued 
filter. The result delivers an angle corresponding to a subclass of neighbourhoods within 
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the family of the neighbourhoods the a priori chosen function pair can handle. By changing 
this angle, all patterns in the symmetry model can be reached which is in analogy of a class 
of lines and edges with the same orientation. All lines and edges are covered by changing 
the orientation of the latter class. In fact, in Section 4 it is shown that lines and edges can 
be modelled in this general framework just as any other symmetry. 

Besides the orientation of the found symmetry, the minimization process delivers a certainty 
defined by the minimum and maximum error. The higher the significance of the found 
symmetry orientation for the neighbourhood, the higher this certainty becomes. Also a non­
energy dependent certainty measure is derived, which is useful for pictures with different 
light conditions in different parts of the picture. In Section 4 applications and experimental 
results are given. 

Four symmetry models are covered by using the general methodology given in Sections 3 
and 4. These are circular, linear, hyperbolic and parabolic symmetries. The conjugate 
harmonic function pairs are easily established by observing that all analytic functions' real 
and imaginary parts are such pairs. The analytic functions connected with the symmetries 
mentioned are the elementary functions: log z, z, z2 and viz. 

2 MODELING THE LOCAL NEIGHBOURHOODS BY HARMONIC FUNCTIONS 

Let u(x, y) be a harmonic function defined in the neighbourhood, that is, it is continuous 
together with its partial derivatives of the first two orders and satisfies the Laplace's equation: 

8 2u 8 2u 
.6.u = ax2 + ay2 = 0. (1) 

Due to the linear character of Laplace's equation, the linear combinations of the harmonic 
functions are also harmonic. If two harmonic functions u and v satisfy the Cauchy-Riemann 
equations: 

au av au 

ax By' By 
av 

ax 
(2) 

then v is said to be the conjugate harmonic function of u. The imaginary part of any analytic 
function is the conjugate harmonic function of the real part. In general v does not need 
to be a single valued function even if u is. Here we will assume both u and v to be single 
valued. By definition, (2), a curve pair defined by: 

e = u(x,y) 
T} = v(x, y) 

(3) 
( 4) 

are orthogonal to each other at their intersection points for any constants e and T/· For 
non trivial u(x, y) and v(x, y), (3-4) define a coordinate transformation which is reversible 
almost everywhere. 

Consider a neighbourhood around a point in a gray value image. Let this neighbourhood be 
represented by the real function / 1 ( x, y) which attains positive real values. For simplicity we 
will assume that the origin of the Cartesian coordinate system in which the neighbourhood 
is represented as being the considered point. Let r = (e,TJ) 1 be defined through {3-4). 
The representation of the neighbourhood is then possible in these coordinates and yields 
fi(x,y) = f2(e,TJ). 

Definition 1 The local neighbourhood f(x, y) represented in its local Cartesian coordinates, 
is said to be symmetric with respect to the coordinates (e, TJ) 1 if there exists a one dimensional 
function g so that f(x,y) = g(ae + bTJ) for some real constants, a and b. Here (e,T/) 1 = 
(u(x, y), v(x, y)) 1 and v is the harmonic conjugate function of u. 



Pattern Recognition by Detection of Local Symmetries 77 

This definition suggests that the iso-gray value curves of a neighbourhood, which is symmet­
ric with respect to a coordinate pair (c, '7) 1, are parallel lines in this coordinate system. In 
the following we will develop a method to select all neighbourhoods of an image, which are 
symmetric with respect to an a priori chosen local coordinate transformation given by the 
harmonic pair (c,7)) 1 = (u(x,y),v(x,y)) 1• It may be thought that every neighbourhood is 
first represented in its local Cartesian coordinates and then represented in the transformed 
coordinate system which in turn tested whether its iso-gray value curves are parallel lines. 
Of course we will not suggest doing all these time-consuming transformations in practice but 
rather their equivalents which are computationally easy to evaluate. In general a neighbour­
hood is not symmetric with respect to an a priori coordinate transformation. But when it 
is symmetric, we will observe that the energy of the neighbourhood is concentrated to a line 
through the origin in its Fourier transform domain corresponding to the new coordinates. 
Our approach will be to check whether there exists a line concentration in the local Fourier 
domain obtained by means of the new coordinates. But before doing this, we should specify 
what we mean by this special Fourier transformation and a line concentration in it. 

Let the local image be represented by f(E, '7), then the corresponding Fourier transformation 
is defined as: 

(5) 

Here we assumed that c and '7 have the range [-oo,oo]. For cases where either of the 
variables have a finite range, f is put to zero outside its value set. Then the corresponding 
transform variable ( w or I ) constitutes a numerable periodic discrete set (Fourier series 
expansion in that variable). In the following, all integrations in the spatial domain should 
be interpreted in this sense. The inverse transform is obtained through: 

f( e, '7) = (2'.ll")- 2 ;_: ;_: exp[i(wc + 1'7)]F(w, 1)dwd1. ( 6) 

where one of the integrations is changed to a summation over a discrete periodic set if e 
or 7) has finite range. In the following, all integrations in the Fourier domain should be 
interpreted in this sense. 

Theorem 1 A symmetric neighbourhood with respect to the coordinates (c,7)) 1, that is 
f(ac +bl)), has a Fourier transform, in these coordinates, which is concentrated to a line 
through the origin: 

1 !"" (.tf)(w, 1) = -o(bw - a1) f(t)exp(-it(aw + b1))dt 
2'.ll" -oo 

(7) 

where 8 is the dirac distribution, and the symmetry direction vector, (a,b) 1, has the modulus 
of unity: 

ya2 + b2 = 1. (8) 

The proof of the theorem is straight forward and will be omitted here, [1]. As already 
mentioned, the initial position for determining the symmetry is the corresponding Fourier 
domain. Any neighbourhood in the image will then have a Fourier transform which is 
not necessarily concentrated to a line through the origin. We will fit the best line to the 
corresponding Fourier domain in the least square sense. If there exists a symmetry according 
to an a priori model then the error will be low. The greater the size of the minimum error, 
the more degradation from this symmetry will be observed. To any neighbourhood, a line 
through the origin of its Fourier transform, or rather its orientation, will be given together 
with the minimum error expressing the significance of the found symmetry. The degradation 
of F( w, 1) from a line tk1 = t · (cos Ii, sin 11) 1 with t E R, or the error in the least square 
estimation, will be given by: 

(9) 
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d(k, ke) 

k 

Figure 1: The figure illustrates the Euclidean distance in the special Fourier domain, d(k, k8), 

between the coordinate point k and the axis denoted by k8 • 

Here d2 (k, k8) is the squared Euclidean distance between the vector k = ( w, I) 1 and k8 = 
(cos 0, sin 0) 1, of which the former symbolizes the transposed coordinate vector in the special 
Fourier domain, Figure 1. Without proof, [2], we mention the following theorem. 

Theorem 2 The double angle minimizing E(O), e.g. 20min is given by the formula: 

20min = tan- 1 (w~ - IJ,2pd) 

where 

w~ 1_: 1_: w2 IF(w,1)1 2 dwd\ 

d 1_:1_:12 IF(w,1)l 2 dwd1 
Pd 1_: 1_: \W IF(w,1)12 dwd\. 

The error corresponding to the line given by Omin is obtained through 

E(Omin) = ~[w~ + d - V(w~ - 1Jl 2 + 4p~]. 
2 

(10) 

(11) 

Moreover, the line corresponding to the angle maximizing the error E( 0), is orthogonal to 
the line minimizing the error. The maximum error is given by: 

E(Omaz) = ~[w~ + IJ + V(w~ - IJ)2 + 4p~]. (12) 

Since we know that the least square error line passes through the origin, it is possible 
to specify it by a single real variable. We will choose the label 20 for a line given by 
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t · (cos Ii, sin Ii) 1• Labelling a line by the angle of 20 instead of (} is more suitable since 20 
maps (} and Ii + 7r to the same angle. This is a desirable property, since we do not want to 
claim that we have found two different lines when we obtain two angles differing by 7r. 

The least square error E(limin) is a positive number which we really cannot interpret if it is 
not related to another quantity, since we should know what is a large error and what is a 
small one. One way to do that, is to consider the quantity: 

(13) 

which can be used as a certainty measure for the found symmetry. This is simply a quantity 
which measures how much better a best fitted line is compared to the worst line. It is non­
negative and is large for neighbourhoods possessing the symmetry under consideration and 
it decreases smoothly for the neighbourhoods degrading from this type of symmetry. This 
definition allows us to consolidate the obtained orientation and the corresponding symmetry 
to a complex number z1 , [8]: 

(14) 

Another way to interpret E(Omin) is to use 

(15) 

as a certainty measure. Unlike c,1 , it is not energy dependent and C12 = 1 if and only if 
E( (}min) = 0 which is the condition for a truly symmetric neighbourhood. Moreover it varies 
between 0 and 1. The closer this measure is to 1 the more significant the found symmetry 
is. If desired, C12 and 20min can be consolidated to a complex number z2 = C12 expi20 as 
before. 

If the two symmetry models specified by the local coordinate transformations 

(16) 

are given, then can we relate the two certainty measures obtained for a neighbourhood? 
That is can we say that one symmetry model describes the neighbourhood better than the 
other when the certainty for one of them is higher? Since equality occurs for C 12 :::; 1 only 
when we have a truly symmetric neighbourhood and the right hand side is independent of 
the chosen transformations describing the symmetries, the two certainties of type C12 can 
be related to each other. The following theorem will help us to answer the question when 
the certainties are of C 11 type. 

Theorem 3 (Energy Conservation) The sum of the maximum and the minimum error 
is independent of the coordinate system chosen for symmetry investigation of a given neigh­
bourhood f: 

(17) 

(18) 

(19) 

The Fourier transform off in the new coordinates is F as before. 
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Proof:The first equality is obtained by theorem 2 the second is provided by the Parseval 
relation. To prove the third relation we utilize the chain rule: 

at a1ax afay 
ae = axae + ayae 

and then utilize the fact that the Jacobian 

is given by 

'!..{) au 
!!!/_ 
ay 

a(e,17) _ ( ~ *) 
axay - -* ~ 

since e = u(x, y) and 77 = v(x, y) constitute a harmonic pair fulfilling the Cauchy-Riemann 
equations (2), almost everywhere. Remembering the relation 

we obtain 
BJ 1 a1ae a1ae 
ae (m 2 + (*) 2 (ax Bx - By ai 

Similarly 

is obtained. Thus 

_'!..{) 
8y 

ae 
a;: 

together with the variable substitution according to (3) and ( 4) concludes the proof. 

It follows from the theorem even the certainties of type C11 , can be related to each other 
since 

(20) 
and the right hand of the inequality is independent of the choice of the transformation for 
description of symmetry. Equality occurs only when the neighbourhood is truly symmetric 
with respect to the chosen coordinates. The closer C11 is to this common upper bound, the 
better the chosen transformation describes the underlying symmetry. 

The certainties and the orientation above are evaluated in the Fourier domain corresponding 
to the a priori chosen coordinate transformation. By using the Parseval relation it is possible 
to transfer these evaluations to the spatial domain: 

w2 
d 

[" [" at 2 (27r) 2 _
00 

_
00 

(ael ded77 (21) 

d (27r) 2 r: r: (~~) 2ded17 (22) 

Pd 
2 loo loo Bf Bf 

(27rl -oo -oo a17 aeded77 . (23) 
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3 DETECTION OF LOCAL SYMMETRIES 

In the previous section we have presented a model by which we could test the symmetry 
with respect to a fixed coordinate system in the entire image. Although (21-23) presents a 
way to evaluate the quantities necessary for the symmetry test of a neighbourhood in the 
spatial domain, it is still cumbersome to evaluate these integrals for every neighbourhood. 
The chain rule applied to these formulas along with the Cauchy-Riemann equations, (2), 
establishes: 

100 100 (Bf .Bf)2 [ . (BE .BE)]d d 
z1 = -B + i-B exp -i2 arg -B + i-B x y. 

-oo -oo x y x y 
(24) 

By this result, z1 the unit incorporating the certainty and the found symmetry orientation, 
is ready for aproximation by discrete image data. Assume that f is a bandlimited function, 
that is, its Fourier transform in the Cartesian coordinates is such that it vanishes outside a 
bounded region. Then it is possible to reconstruct f from its discrete samples. The same 
is true for f's partial derivatives with respect to x and y, the functions obtained by f's 
products and sums with other bandlimited functions, etc. 

Assume that the local neighbourhood is such a bandlimited function. Then for sufficient 
dense discretization 

z1 = L Uxi + ifyj) 2 l: £:µAr) exp [ - i2arg(:! + i:~)]dxdy (25) 
J 

is evaluated from the samples fxj and fvi· The latter are the values of the functions U and 
* at the discrete image position 'fj. The image given by Uxi + ifyj) 2 will be referred to as 
the partial derivative image. The analytic function Jli will be called the interpixel function 
since it is the function which makes it possible to evaluate values between t.he image pixels. 
It is the function obtained by inverse Fourier transforming a region function which is 1 inside 
of a region and 0 outside of it. The region itself is the region in which the Fourier transform 
of the bandlimited function (U + i*) 2 does not vanish. Even if a gaussian is not an ideal 
inter pixel function in the strict sense it is proposed to utilize as Jli to obtain reasonable 
filter sizes. 

Consider (25), which is a convolution with a filter with the coefficients: 

wi = f 00 Jli(r) exp [ -i2arg(BBE + iBBE)]dxdy. 
~00 x y 

(26) 

The filter coefficients decrease rapidly as II rill become large when Jli is chosen as: 

(27) 

Here a controls the size of the neighbourhood and f3 controls the low pass character of 
the filter. The image should be multiplied by the gaussian term containing a to define a 
neighbourhood, but for convenience it is incorporated to the interpixel function, resulting 
in the same effect. 

Since z2 = z1/[E(Omax) + E(Omin))] and the denominator is independent of the chosen co­
ordinate system it is easy to obtain z2 from z1 . We will not consider the derivation of the 

error sum in detail. We will only mention that it is a ga:ussian filtering of JU+ i*J 2 and 
refer to [ 4] for further details. 
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Figure 2: The figure illustrates the iso-gray value curves of a)-b) the circular symmetric 
harmonic function pair c)-d) linear symmetric harmonic function pair. 

4 APPLICATIONS AND EXPERIMENTS 

To apply the method derived above, a model for the symmetry in terms of harmonic functions 
and a partial derivative image, 

(28) 

are required. A special technique is not required to obtain fxj and fvi· Many methods 
exist in the literature for this purpose. However an efficient and easily implemented one is 
to convolve the image by the partial derivatives of a gaussian even though this has some 
drawbacks. In the experiments we have made this choice to obtain the partial derivative 
image. 

For test purposes we define a one dimensional function g as 

g(x) = (1 + cosx)/2 (29) 

which is positive. The parameter x of this one dimensional function is replaced by a~+ b1] 
to illustrate the different symmetries given below. 

1. The function log z, except for the origin, is analytic and single valued if one defines 
the principal branch as the value set. Since the imaginary part of an analytic function 
is the conjugate harmonic function of its real part, then 

log z = In r + i<p (30) 

where r = /z/, <p = arg(z) and z is the complex variable x + iy. Thus 

~ lnr 

1'/ 'P 
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Figure 3: The figure illustrates some neighbourhoods included in the circular symmetry 
model. The orientation of the model corresponds to the "twistedness" of a neighbourhood 
and is well-defined. 

is obtained. The only singularity is at the origin and does not cause any problem 
since (21)-(23) are not affected by the values of the integrands at enumerable points 
(Lebesgue integrals, [12]). 

Figure 2 a) illustrates a neighbourhood described by g(ac) and Figure 2 b) illustrates 
g(bry). According to the previous sections all neighbourhoods, with iso-gray values 
being ac + bry with any real constants a and b, are included in the symmetry model 
associated with the coordinates c = lnr and 'f) = 'P· We will call this type of neigh­
bourhood circularly symmetric . Some of the neighbourhoods in this model are given 
in Figure 3. Figures 4 and 5 illustrate the result of the convolution proposed by (25) 
with the filter coeficients vi which are obtained by (26), 

roo (2" 
vi= lo lo µi(r) exp(-i2'P )rdrdip. (31) 

A plot of these complex valued coefficients is given in [4]. The intensity of the picture 
in Figure 4 is the certainty in the symmetry, while Figure 5 indicates its orientation 
at sellected points in the c, 'f/ domain. By using colour TV monitors it is possible and 
by far, more convinient to render complex variables. For publishing technical reasons 
we chose to present the results by means of two images. 

The certainty at the borders of the test blocks is approximately half the amount of 
the block centers, Figure 4. A vertical line in Figure 5 represents circles, while a 
horizontal line represents star-shaped neighbourhoods. These two neighbourhoods are 
represented by two different complex variables: the first one has the argument zero, 
the latter the argument 7r. The fan-shaped neighbourhoods are mapped to z1 with 
im z1 > 0 or im z1 < 0 in accordance with the direction of rotation. The amount of 
"twistedness" that is double the inclination angle of ac + bry, is continuously mapped 
to the argument of z1 , which can be represented hue in a TV monitor. The dark areas 
do have an orientation estimate but since the certainty level is too low in these areas, 
the visibility is automatically suppressed due to the low intensities. An experiment 
with natural images has been made. The circular symmetry detection is utilized in 
the classification tasks. Figure 6 illustrates a sea bottom image with sea anemones 
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Figure 4: Result of circular symmetry operation on the circularly symmetric neighbom 
hoods. The intensity represents the certainty. 

Figure 5: The figure illustrates orientations of the lines in ~, 1J domain corresponding to 
the circular symmetry at selected parts of the original image. The lengths of the bars are 
proportional to the obtained certainties. 
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Figure 6: The image is a sea bottom photograph. The objective is to identify the sea 
anemones. The labels are obtained as a result of box classification. 

and their identification only by the circular symmetry image and the original image. 
Box classification is used. 

2. Another pair of harmonic functions, the simplest one, is obtained by the analytic 
function z: 

z = x + iy = E + i17 (32) 
This is simply a model of neighbourhoods having edge or line forms. It delivers the 
orientation of these lines together with a certainty, [l]. The iso-gray value curves 
generating these symmetries, {linear symmetries}, are given in Figure 2 c) and d), 
that is g(aE) and g(b17). The necessary filter turns out to be real and a gaussian, [l]. 

3. Choose the analytic function z2 to generate the harmonic pair 

z2 = x2 - y2 + i2xy = E + i17 (33) 

generating a symmetry which is given in Figure 7 a)-b). We will call this type of 
symmetry hyperbolic symmetry.The corresponding filter coefficients are given by: 

{"" {2" 
v1 =lo lo µ1(r) exp(i2'P)rdrd'P. (34) 

which is the complex conjugate of the filter obtained for circular symmetry, (31). A 
number of the neighbourhoods which are included in this model are given in Figure 
8. The function generating these is g(aE + b17) where E = x2 - y2 and T) = 2xy. The 
neighbourhoods are generated by changing a and bas before. The orientation obtained 
in this symmetry obviously corresponds to the angle of rotation of the asymptotes. The 
two asymptotes are orthogonal and make this operator useful for detection of crosses 
in the natural images. The result of the symmetry detection is given in Figures 9, 10 
and 11. The line orientations in Figure 10 uniquely correspond to orientations of the 
assymptotes of hyperbolas. Figure 11 illustrates the found assymptotes. 

4. Yet another symmetry will be generated by the real and the imaginary part of the 
analytic function vz, (the principal branch of the log is utilized): 

vz = vr exp(i'E) = vr cos('E) + ivr sin('E) = E + i17. (35) 
2 2 2 
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Figure 7: The figure illustrates the iso-gray value curves of a)-b) the hyperbolic symmetric 
harmonic function pair c)-d) parabolic symmetric harmonic function pair. 

Figure 8: The figure illustrates some neighbourhoods included in the hyperbolic symme­
try model. The orientation of the model corresponds to the orientation of the orthogonal 
asymptotes and is well-defined. 
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Figure 9: Result of hyperbolic symmetry operation on the hyperbolically symmetric neigh­
bourhoods. The intensity represents the certainty. 

Figure 10: The figure illustrates orientations of the lines in c, 'Y/ domain corresponding to 
the hyperbolic symmetry at selected parts of the original image. The lengths of the bars are 
proportional to the obtained certainties. 
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Figure 11: The figure illustrates the assymptotes of hyperbolas corresponding to the orien­
tations of hyperbolic symmetry. The sizes of the crosses are proportional to the obtained 
certainties. 

The symmetric neighbourhood pair generating this symmetry model is given in Figure 
7 a)-b). The corresponding filter coefficients are given by: 

f"" r2 .. 
vi= lo lo µ;(r) exp(-irp)rdrdrp. (36) 

This operator is observed to be useful in finger print images to detect patterns having 
parabolic symmetries. The linear combinations of these coordinates, ac + brJ, result in 
rotated versions of the parabolas shown in Figure 7 a)-b). 

The list of symmetric patterns detectable by the formula (25) can be made long. It is 
sufficient to know one of the coordinate curves or its gradient, to be able to construct a 
symmetry model for the family of curves associated with this curve. In fact, since the the 
coordinates are assumed to be harmonic and one is the conjugate of the other makes it 
possible to use the theory developed for harmonic and analytic functions. For example if a 
coordinate curve function c = u(x, y) is known on a circle with radius R and is harmonic 
within the circle then the other points on the disc are possible to obtain by Poisson's formula, 
[7]: 

1 l R2 - [zo[2 
u(zo) = - 2 u(z)drp. 

21f lzl=R [z - zo[ 
(37) 

We have already used the fact that the real and imaginary parts of an analytic function are 
harmonic and the imaginary part is the harmonic conjugate of the real part. 

The results of experiments with energy independent certainty, c,2 , are deliberately left out 
since these are very similar to the results in [1], [4]. However we can comment on the 
implementation of equation (15)should be made. A threshold value should be specified for 
the entire image, telling the level below which numerator is considered zero. For values 
below this threshold the obtained certainties are set to zero. This effectively eliminates the 
division by zero problem as well since the denominator is greater than the numerator. 
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5 CONCLUSION 

A method to model symmetries of the neighbourhoods in gray value images is derived. It 
is based on the form of the iso-gray value curves. It is shown that it is possible to check 
in a special Fourier domain whether all iso-curves in a neighbourhood can be described by 
an a priori chosen harmonic function pair. However, it is also shown that the equivalent 
procedure can be performed in the spatial domain without performing a local Fourier trans­
form, which is computationally demanding. For every neighbourhood a complex number 
is obtained through a convolution of a complex valued image with a complex valued filter. 
The magnitude of the complex number is the degree of symmetry with respect to the a 
priori chosen harmonic function pair. The degree of symmetry has a clear definition which 
is based on the error in the Fourier domain. The argument of the complex number is the 
angle representing the relative dominance of one of the harmonic pair functions compared 
to the other. 

Since the a priori chosen harmonic function pair is such that the curves associated with 
these, intersect in right angles (except for some singularities), it is possible to represent 
a neighbourhood in this curvilinear coordinate system. And hence the problem becomes 
an edge detection problem in another coordinate system. The obtained orientation cor­
responds then to the orientation of an edge and therefore has a geometric interpretation. 
An advantage of using harmonic functions in symmetry descriptions, beside their ability to 
lead to easily implementable methods, is that one can use many powerful results obtained 
for analytic functions. The fact that the sum of the maximum and minimum errors for a 
given neighbourhood is invariant under different tests of symmetry models has potential 
advantages which can be used to prefer one symmetry model to another in updating the 
description of the neighbourhoods. 
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