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Chapter I

INTRODUCTION AND
PRELIMINARIES

That 1s why a senstble man never ventures
to trust his thoughts to these inadequate
linguistic means, particularly not to so un-
changable a form as that of written letters.

Plato



INTRODUCTION AND PRELIMINARIES

1 Introduction

The term feature extraction is widely used in computer vision. It is often used in
the sense of a neighbourhood dependent mapping of a picture to a function of feature
extraction. The result is a transformed picture, in which every point is associated with
a point in the original picture which we will occasionally refer to as an examined point.
The extraction of features is necessary for all aspects of processing and analysis such as
classification, segmentation, enhancement and coding.

To decide whether a neighbourhood consists of a line has been subject to exten-
sive research during the last decades. Much physiological and psychophysical evidence
has indicated the importance of these structures and contributed to the extent of the
research efforts. In the course of developing models to describe images, a need arises
for description of more complex structures than lines. This need does not reject the
importance of line structures but indicates the need to complete and utilize them in a
more systematic way.

2 Summary

The concept common to all chapters is as follows. The problem of detecting certain
structures is formulated in terms of a specific local coordinate transformation corre-
sponding to these structures. Then the problem is reduced to be a line/edge detection
problem, or rather the orientation of these together with the “strength” of the edges in
the new coordinates. A closed form solution is proposed which is based on the principal
axis analysis of the special frequency domain associated with the new coordinates. Uti-
lizing this solution, compact computer algorithms are constructed evaluating “strength”,
or rather certainties as they will be referred to, of line/edge structures together with
orientation estimates. The evaluated orientation estimates are shown to be optimal in
the least square sense, and the certainties have well defined meaning in terms of the
least square error.

In the following chapters we will present some new methods for extraction of local
symmetry features as well as experimental results and applications. It is widely believed
that observation of symmetries in images is an important part of human vision. Local
symmetries in images in different scales can of course originate from large as well as small
neighbourhoods depending on the scale. Originally the motivation to study structures



between the obtained error and the error we would obtain if the translation was carried
out in a direction perpendicular to the optimal direction. Continuing this analogy in
the circular symmetry case we mention that the iso gray value curves proposed are
the invariants of the infinitesimal operators corresponding to rotation and scaling with
respect to a fixed point. The obtained orientation corresponds to the proportion of
rotation versus scaling which changes the local image minimally. This analogy can
easily be extended to other general symmetries described by iso gray value curves of the
harmonic functions. To every such curve there is a corresponding infinitesimal operator
which performs translation in a specific direction in the parameter space describing the
curves.

The question whether these proposed symmetry structures play a critical role in
human vision is more difficult to answer, not to say impossible, with our current knowl-
edge of the mechanisms of mammal vision. We will confine ourselves to saying that
the human perception of the world is perfectly able to judge its visual environment
and compensate for the ego-motion, the motion of the world, as well as the confusion
stereo vision might cause. To these compensation processes some symmetric patterns
obviously fit well. The significance of one of these symmetries, linear symmetry, which
is intimately connected to infinitesimal translations, is confirmed by neurophysiological
experiments. Similarly there is support for the existence of areas in the central neural
system where rotation and scaling compensation takes place, indicating the importance
of circular symmetry analysis. However, we can only testify to the skill and perfection
of our visual perception in innumerable difficult situations, admire it and admit that
our knowledge of its mechanisms is incomplete.
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other than lines arose from attempts to decide whether a local image was “circular”,
“like a star” or “like a set of parallel lines”. Such questions, and answers to these, are
important when considering finger print images, X-ray images of cancer tumours, cross
junctions and buildings in aerial images; on the whole, in many object/event descriptions
in image processing.

To be able to give a concrete formulation to the rather vague concept of symmetry,
we have utilized the iso-value curves of images. Iso gray value curves, as they will also
be called, can be imagined to be the curves joining the points of a landscape map having
the same altitude representing a certain gray value intensity. These curves originating
from the local images are then examined with respect to how much they fit to an a
priori chosen symmetry model.

e In Chapter II, circular symmetries, which originally motivated the study of other
structures than lines, are considered.

e In Chapter III it is shown that the approach embraces line structures, which
are also referred to as linear symmetries. Moreover, in Chapter III, a method
extending the linear symmetry concept to finite, arbitrary dimensions is developed.

e Having shown the applicability of the symmetry approach to circular structures
and linear structures in the previous chapters we proceed in Chapter IV to de-
rive the fundamental conditions which extend the symmetry approach to much
larger classes than circular and linear symmetries using the same unified approach
Examples are given together with experimental results.

e In Chapter V the optical flow problem is formulated in terms of linear symmetries
in three dimensions and the results of the standard solution given in Chapter III
are presented.

3 General remarks

One can ask what the obtained estimates of orientations based on the frequency domain
of different coordinate systems refer to? Are these estimates relevant for vision?

From the following chapters it is evident that the iso gray value curves corresponding
to different symmetries are invariants of infinitesimal operators with two parameters.
Such an operator is possible to utilize for performing translation of a class of functions
in the parameter space of iso gray value curves. To make things less complicated, we
consider the well-known linearly symmetric structures. The obtained orientation for
a local two dimensional image is the direction along which the neighbourhood can be
translated with minimal error (in the least square error sense). In the case of an edge
this error is zero for a translation parallel to the direction of the edge. That is, the local
image is invariant to a certain infinitesimal operator performing a specific translation
in the usual Cartesian coordinates. In the case when a neighbourhood degrades from
an edge the obtained orientation corresponds to the direction along which a translation
changes the local image minimally. One of the proposed certainties is the difference

5



Chapter II

DETECTION OF CIRCULAR
SYMMETRY PARAMETERS

Don’t move my circles!
Archimedes



DETECTION OF CIRCULAR SYMMETRY
PARAMETERS

Josef Bigiin
Computer Vision Laboratory
Linkoping University
Department of Electrical Engineering
S-581 83 Linképing Sweden

Abstract

A model for circular symmetry is used to describe a local neighbourhood. A de-
finition of circular symmetry is given which implies detection of one-dimensionality
of a 2-D image after a coordinate transformation. The coordinate transformation
is such that Archimedes’ spirals map to straight lines. The Fourier transform of a
circularly symmetric image, in these coordinates provides an energy concentration
to a line in a certain direction. Local neighbourhoods consisting of one circle or sev-
eral concentric circles show a concentration of energy to a line. This is also the case
for lines with a common intersection point. These two types of circularly symmetric
images map to two orthogonal lines in this special Fourier domain. Archimedes’
spirals map continuously to lines with directions between these two orthogonal lines
incorporating circles, half lines and spirals into the same model. Fitting a line in
the least square sense in this special Fourier transform domain is shown to be pos-
sible to accomplish in the spatial domain as a convelution carried out on the partial
derivative image. The necessary filters are derived. Two algorithms based on inter-
pretation of the error of the fitted optimal line and its orientation are implemented.
One is dependent on the energy of the variation of the local image, the other is
not. Both use the same optimal estimate of the orientation of the fitted line. Ex-
periments are carried out utilizing the implemented algorithms showing very good
detection properties for spirals, circles, concentric circles, line ends and intersection
point of a set of lines.

1 Introduction

There has been an increasing need to detect neighbourhoods with complex circular struc-
tures in computer vision. Extensive work has been done in low level vision, analysing
statistical properties of neighbourhoods. Also structural properties of neighbourhoods,
mainly in connection with edge and line detection, have been the subject of study for
a long time. Patterns other than lines and edges have been modelled and detected in a
higher level by either matching techniques, [1], or the generalized Hough transform, [6].



In the latter technique and many of the matching techniques, every pixel in the image
is considered to be either an edge pixel or not. Based on the spatial distribution of
the edge pixels, a decision process takes over their labelling. In the generalized Hough
transform this decision process is voting for an edge pixel to be an edge of the modelled
pattern or not. The voting process takes place in the parameter space and is followed
by a search for peaks. The amount of computation is extensive but the positions of the
patterns are well determined. The purpose of this paper is to present a new approach
to model local circular structures in low level computer vision and give an algorithm
estimating the model parameters. However, if the size of the images is reduced, the
obtained parameters can be used as features to detect objects of considerable size. The
motivation for this study of circular structures in image neighbourhoods originally arose
in a project processing fingerprint images. The problem was to identify the few special
points around which line structures in these images rotated or in which the lines ended.
A similar need was observed for X-ray images of cancer tumours and cross junctions of
the roads in aerial images.

The computation evaluating the proposed model parameters is carried out in two
steps, each requiring only convolutions and pixelwise arithmetic operations. One of
the model parameters is an angle and represents a subset of the circularly symmetric
function family. By circular structures we do not only mean circles but rather a family
of circles, spirals, and fan shapes, figures 6 and 7. In the next section we will more
strictly define the family of patterns which is the basis of the approach. For example,
if the neighbourhood consists of concentric circles then the angle or the orientation
of this class is given by the angle 0 radian, while the fan shaped neighbourhoods are
represented by 7 radians. The orientation parameter is continuous and corresponds to
a subset of the circularly symmetric function family.

It is possible to represent any neighbourhood by means of the members of the cir-
cularly symmetric function family, just as any neighbourhood can be represented by
means of sines and cosines. For this reason one can talk about the best fit of a subset
of this function family to the local neighbourhood in the least square error sense. Two
certainty measures for the least square estimate are given. The obtained result is an
image in which every pixel has two real values. One is the orientation of symmetry
parameters and the other is one of the certainty measures. This representation of the
features is due to Granlund, [8], and has the advantage that orientation estimates with
high certainties are more visible than the estimates with low certainties if viewed on a
colour TV monitor. Both of the proposed certainties of the orientation estimates are
based on the error obtained in the least squares fitting of the orientation parameter.

The fact that the resulting image is a continuous image and the found circular
symmetry for a neighbourhood is relevant in proportion to the obtained certainty makes
these images useful feature images in areas like remote sensing, texture analysis and
object recognition. Some examples of the latter are demonstrated in Experimental
Results. In the next section it is shown that the orientation pointing out subclasses
of the circularly symmetric patterns can be considered as the usual orientation of lines
and edges in another coordinate system. Moreover, it is also shown that to every



circularly symmetric pattern class represented by an orientation parameter there is
a corresponding set of rotations and scalings under which these circularly symmetric
patterns are invariant. This is the reason why we choose to call these patterns circularly
symmetric. In Section 3 the necessary tools to implement the algorithm of finding the
orientation parameter along with energy dependent certainty estimation are given. In
Section 4 the energy independent certainty estimation is analysed and the necessary
tools are given. Section 5 proposes a method to implement what will be defined as the
partial dertvalive ¥mage, which is necessary to compute the circular symmetry features.
The last section reports the results of the experiments.

2 Description of the image by circularly symmetric
isogray values

Our approach in this section in defining the circular symmetries will be based on the
assumption that these are invariant to rotation and scaling. Rotation and scaling with
respect to the origin can be performed by the following infinitesimal operators:

a
L, = —yx Ia
d
L, = 3I+ya.

For instance to rotate the image f with the infinitesimal angle iy is equivalent to
f'=f+6pL.f (1)

where f'is the image after rotation. It can be thought that the operator £, is applied
successively to perform rotations of considerable amount. The same holds for the scaling
operator, £,. The linear combination of these operators gives the operator al, + bL,
which corresponds to rotating the image by the amount a and then scaling it by the
amount b. Here a and b are assumed to be small. Successive applications of this
operator would then perform a large amount of rotation followed by a scaling. However,
the proportion of the amount of rotation to the amount of scaling a : b is constant
under successive applications. If the amount of rotation and scaling is measured in an
orthogonal coordinate system, then the locus of successive operations would result in
a straight line with an inclination angle defined by the direction cosine, (a,b)'. What
patterns are invariant to a rotation by the amount a followed by a scaling by the amount
b? The question is equivalent to solving the differential equation:

(Gf., i bﬂst =M (2)

e.g.
2
. ay)gg 3l by)a—;' 0. (3)
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The solution of this is any image with the isogray value curves satisfying
alnr —bp =c. (4)

That is f(r,v) = g(alnr—by), where g is a one-dimensional function and r = NZ T
Equation (4) describes an Archimedes’ spiral. When the vector (a,b)! rotates, that is,
when the proportion a : b is changed, the equation (4) describes continuously different
curves including half lines and circles. Putting £ = Inr and ¢ = tan™'(z,y) defines the
coordinate system in which (4) becomes the equation of a line.

To illustrate the concept of a coordinate system as invariants of operators, consider
vet another operator pair L, = ;—z and £, = ai' These infinitesimal operators cor-
respond to translations in horizontal and vertical directions. That is, to translate the
local image f with the amount §z is equivalent to

f'=f+6zL.f. (5)
The invariants of al; + bL, define the curves
—bz+ay =c.

Putting @ = 0 or b = 0 defines the curves which are the basis of the familiar Cartesian
coordinate system. Without commenting on the significance of the patterns like lines
and Archimedes’ spirals to human vision, it should be mentioned that Hoffman, [9], has
shown the existence of a Lie algebra consisting of such operators. He calls this algebra
the Lie algebra of visual perception and refers to experiments performed by, among
others, Hubel & Wiesel, [12], Mac Kay, [11] for support of his theory.

Having summarized the relation between the Archimedes’ spirals and the rotation
and scaling processes we present the idea of describing any neighbourhood by means
of functions having iso-values as these spirals. It is clear that after the coordinate

transformation:

r = expfcosp (6)
y = expésing (7)

a local image represented in Cartesian coordinates can be transformed to an image
which is described by the real function f(&,¢) in the new coordinates (£,¢)". Under
this coordinate transformation the invariants of af, + bL,, (5) transform to lines of
at — bp = ¢, since £ = Inr. A linear combination of rotation and scaling operators
applied to the original local image is equivalent to translating the new image in a fixed
direction. Since an arbitrary local image is not symmetric in the sense that it is changed
when it is rotated and scaled, we can in general not expect to find f(&, ) consisting
of parallel lines. To assign an orientation to every local image f(&, ) will be the same
as looking for a direction along which a translation degrades the local image minimally.
In the following this degradation measure and two certainty measures based on this
degradation will be defined. The purpose of the certainty measures is to provide us
with the necessary information to discriminate two local images with respect to the

11



rotation and scaling symmetry. That is, the obtained orientation estimate may be more
reliable for one local image compared to another, very much in the same way as the usual
lines and edges in-low level vision may be “stronger” than one another, and accordingly
the reliability of the associated orientation parameters varies.

Under quite general conditions imposed on f it is possible to Fourier transform f
with respect to £ and :

F(w,n) [oo f rexp—t (wé +np)f(&,p)dédp (8)

with n being an integer. The inverse transform becomes:
fl&p)=(2m)7 ) f_m expi(wé + np) F(w, n)dw. (9)

This formula can be seen as a description of the local image f(&,4) in terms of the
functions expi(wé + np).

Definition 1 We will use the term circularly symmetric for the functions f(F) which
can be described by means of a one-dimensional real function g as:

f(7) = g(w'€ + n'p) (10)
where n' 1s an integer and w' a real constant.

It is straightforward to show that the circularly symmetric local images are concen-
trated to a line passing through the origin in the Fourier domain defined by (8) and (9).
The inclination angle of this line is given by

6 = tan™'(w', n'). (11)

The concentration of the circularly symmetric images in the Fourier domain makes it
easy to identify them in this domain. One method of examining whether there exists
a circular symmetry, in analogy with [3]!, [2], is to fit a least square error line to the
special Fourier transform domain defined by (8) and (9). In this model, detection is
given for a bounded area. We will lift this restriction here and develop the theory for
a general case. The reason for not considering a bounded area as a neighbourhood
is that the presence of a sharp boundary affects the detection negatively. Modelling
of the local neighbourhood is handled by multiplying the whole image by a positive
function (window), which decreases smoothly with increased distance from the center
of the examined point. The error made by the least square line fitting will be large if the
local image is not circularly symmetric, and will vanish if, and only if, the local image
is circularly symmetric. The error or degradation for a line with inclination angle ¢ is

defined as:
E(8) = Z[ & (k,K) |F(F)| duw (12)

1See Appendix B

12



Figure 1: The figure illustrates the Euclidean distance, d(k,k;), between the point k
and the axis denoted by k;.

Here d%(k,k;) is the squared Euclidean distance between the vector k = (w,n)! and
ks = (cos@,sin@)’, of which the former symbolizes the transposed coordinate vector in
the special Fourier domain. By substituting

d*(k,ks) = w? + n® — (wcos@ + nsinf)? (13)

in (12) and using some familiar trigonometric relationships, Figure 1, we obtain

B(0) = 3lwd +nd+/(wF — n3)? + 4phcos(26 + 0o (14)

where
0o = tan~!(n}— w2 2p,)
Wi o= Zf W? |F(w,n) ! duw
n 400
2 _ 3 [ 2
ny = ) n |F(w,n)|" dw

Pd

Z[w nw |F(w,n)|* dw.

Consequently # minimizing F(8) is given by

20,,in = tan™ (w2 — n?, 2p,) (15)

13



since this choice of 28 results in the cosine term attaining the value —1. The corre-
sponding minimum is given by:

1
E(Omin) = 7w + ng— v/ (w] — ni)® + 4p]]. (16)

E(#min) is a measure of degradation. To get a certainty measure we propose to look at
whether the obtained error of the fitted line is really small compared to the error of the
line giving the maximum error and form,

Cn = E(Hrmz} = E(Bmiﬂ)- (17)

Here £ (0,,4z) is the error of the line maximizing (12) and consequently this line and the
line giving the minimal error are orthogonal. It is straightforward to show that

Cp =y (wi—nd)? +4p} (18)

According to (17), Cj; increases with increased difference between the errors ob-
tained when the worst and best lines are fitted. Thus the magnitude of the complex

number
2 = wi — n 4+ 12p; = Cyy exp (:20). (19)

will give a measure of whether there exists a circular symmetry, and the argument of
it, 26, will give an estimation of the orientation of this circular symmetry. It should be
observed that it is far more convenient to represent the inclination angle of the line by
20 than #, since the orientation of a line is not altered by rotating it 7 radians, while the
addition of a 7 to @ would result in an angle other than #. This ambiguity is removed
by the mapping 24, [8].

The certainty measure Cy; is dependent on the energy of the local image and hence
not dimensionless. Another measure of certainty is:

E(gmaz) - E(@m,-n)

sz N (E(gmnz.) =k E(Bmin)

)* (20)

where ¢ is a positive constant controlling the dynamic range of Cy;. That is

(! — n2)? + 47

5 ok
wy + ng

=y, 1)

O =
= Gt
Since F is a non-negative function by definition, Cy; = 1 if, and only if, E(fin) =
0, that is, when we have a truly circularly symmetric local image. To represent the
certainty and orientation we use the same notation as before, namely we represent both

simultaneously by means of a complex variable:

21

2= = Cyyexp(i20). (22)

T 3 7]
wy +ny

14



The calculations of z; and z; for every neighbourhood, however, can be managed in
the spatial domain, although they are defined for the special Fourier domain given
previously by using the Parseval relation:

i = a7 f“(g)’dsdw (23)
nd = 2)[ f (— *dedyp (24)
b= [ [ ;’;;g;dsd (25)

3 Evaluation of the energy dependent certainty

To be able to calculate w3, n% and py at every point of a discretized image, it is desirable
to simplify the calculations proposed by (23). By using the chain rule we have:

a afdz afa

27 . Pibw efoy (26)

€ 9z € = Ay dE

7] af o af @

B o I (27)

dp az Btp dy dyp
The reason for choosing Cartesian directions z and y is that the image is stored as a
set of discrete values on a rectangular mesh. Assuming f to be a bandlimited function
(in the frequency domain of f with respect to z and y in the usual sense) leads us to
the fact that (4£)%, (—i) and %ﬁ%ﬁ are band limited as well and can be reconstructed

from the samples o and Tz by
af

(Ez = Z :J”J(r)
(G0 = X fams(r)
afof _ =
az ay = ;fzz'fviﬂ.r( )

Here y;(7) is the interpixel function governing the behaviour of the image between the
image points and it will be specified later. f;; and f,,; are the samples of g;'g and g—'& at
the point 7;. Thus w} is given by:

i=n) 5 [ [T O G LG st ggliede. (9
Using the relations (6) (7) (23) (28) we obtain

A= [ [T )+ 150 + 2esfizy)dedo. (29
7

15



Similarly n% and p; are obtained. Thus z; yields:
2 P T sl e .12 e \2
= @ Lo+t [ [ wi0)(z — iv)dedo = Tlfus + ifi)or. (30)
3 j

Obviously it is possible to evaluate z; as a convolution according to (30).

So far we have not specified y;(F). It is the analytic function obtained by inverse
Fourier transforming a region function, since f is bandlimited. By region function is
understood a function which is 0 outside a closed region and 1 inside it. For the sake
of simplicity we put p; as a translated gaussian, and the examined point according
to which £ and ¢ are defined by (6) and (7) as origin. Although this choice of u;(7)
does not provide us with a perfect interpixel function since it is not bandlimited in the
strict sense, we will use it for a number of its properties as an approximation of the
ideal interpixel function. The most important of these is its concentration in both the
spatial and the frequency domain. The latter is especially useful since the resulting
filters become manageably small. Thus we have

15(7) = exp (— BI|7 — 74{*) exp ( — af|7]). (31)

Here 3 is a positive constant governing the behaviour of the continuous image between
discrete image positions while &, also a positive constant but chosen smaller than 3,
controls the width of the neighbourhood to be considered. Thus (30) and (31) define
the filter coefficients v;:

v o= @) [T [Tl iv)dedo
(@n)? [ [ exp (= Bl = 7 - ar)(o — ) dp (52)

since £ = Inr and r = ||7||. Remembering ||7||* = #'7 and z — 1y’ = rexp —1,99 we have:
£ 8

_—_ . Ba .
‘U_,'—47l' (OI'{';G) Iexp(—ﬁ+a ,) (\/‘——‘?’)e)‘p(_tztpj) (33)
where a(z), Figure 2, is the dimensionless function given by:
2 o rr 5 zt
a(z) = ;fo j(; exp(—r*+zrcosp — T]r cos(2yp)drdp. (34)

a(z) is monotonous, even and
lim a(z) = 1. (35)
Z—00

Consequently (34) can be used to construct a table for a(z). The values between table
entries can be evaluated by using numerical interpolation techniques. Once this table
is established, the advantage of this approach is that a(z) can be evaluated rapidly for
future kernel generations with arbitrary a and # without time-consuming numerical
integrations. Since a(z) is smooth, the interpolation techniques yield acceptable accu-
racy for points between the table entries. In the experiments below a VAX 11/750 is
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a(x)

Figure 2: The function used to evaluate the kernels for circular symmetry detection
purposes.

used to evaluate the table entries by means of two one-dimensional, adaptive numerical
integrations chosen from the SLATEC subroutine library, and Newton’s formula with 5
steps, Bjorck, [13], is used for the purpose of interpolation. The constructed table had
entries between 0 and 25 of equal increments of 0.1.

Figure 3 illustrates v;. Since the asymptotic behaviour of |v;| is proportional to
a gaussian, the filter coefficients decrease rapidly as r; becomes large. Filter v with
coefficients v; can be approximated by a truncated filter. In the experiments below,
v is truncated at a radius, at which the magnitude of the filter is less than 1% of the
maximum of the filter.

Thus evaluation of 2z, for every point in the image can be accomplished as a convo-
lution involving multiplication and summation of complex numbers:

21— Z(fz: 05 fw) exp :2‘ph Z( i+ fw exp (1290!.1)9_1“1 exXp ( = '2‘10:) (36)
)

where
pri = arg(fz; +1ify;)
o T .
7 + ﬁ J
2fr;

@y = (m)

p; = arg(z; +1y;).
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Figure 3: The figure illustrates a) the complex valued v; b) a 3-D plot of its magnitude

Implementation of (36) is given by the flow chart in Figure 4 and yields:
1. Obtain the partial derivative image, (f2; + f1;) exp (2 ;).

2. Convolve the partial derivative image with the filter given by g;a; exp( — z'2§oj).
The resulting complex valued image will contain the local orientation estimate of
the scaling/rotation space at the arguments of every point, while a certainty mea-
sure for this estimate will be contained at the magnitudes. The locally orthogonal
circularly symmetric neighbourhoods will be represented by vectors with opposite
directions, such as circle and star-shaped neighbourhoods.

To utilize the full dynamics of the limited number of bits per pixel allocated for
the magnitudes, both pictures obtained by step 1) and step 2) should be scaled by the
maximum magnitudes of the obtained images respectively, if necessary. For example, if
the number of available intensity levels are 256, then the maximum magnitude in the
image should be mapped to maximum of these intensity levels.

4 Evaluation of the energy independent certainty

Since z; and z; are related to each other by (22), it is only necessary to derive E(fmaz) +
E(Opmin). w3 is given by (29), and a similar evaluation for n} implies

E(Omaz) + E(0min) = w:‘; i nf: =
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Figure 4: The flow chart of the algorithm computing energy dependent certainty to-
gether with optimal orientation estimate of circular symmetry parameters. The resulting
image is complex valued with magnitudes of the pixels being certainties and arguments
being orientations.

= (2m) Z/ f p,}r)fﬁja: +f2y +f2y2+f2 Ndédyp

(2m)? Z( .+ f"')/ [ exp(—B||F — 7| — ar?)rdrdep.

But since

Blr =l + art = (a4 )l — 2o+ 2 (57)

we obtain

ind = DU+ I en) exp (- ort) [ [V exp (~ (@t B) 7~ LomPyrara
]

(38)
The integral term is nothing but the volume under a translated gaussian, and thus
it is constant with respect to 7;. The value of this constant is m(a + 3)™'. Thus
E(0maz) + E(Bmin) is obtained as the convolution:

Wd+nd—2( L+ 2 (39)
with o
K= 41r3(a +p8)! + ﬁff) = gj- (40)
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Here we have assumed that the filter «, defined by (40), is truncated at the same radius
as the truncation radius of v given by (33) yielding a comparable accuracy. Thus by
using (22) we obtain

(e B o = (Sl + Jis) exp (12014950, exp (= i2)
Zi(f2 + £ g Xi(f2: + £1:) e
Since a; < 1, the magnitude of z; will have the upper bound 1, and it will be attained
by local images f having the highest partial derivative energies concentrated close to
the boundary of the filter v. Moreover, the argz; = arg z; for a neighbourhood giving
the maximum magnitude should be 2p;; = 2p; + constant. To prove these, we apply
the triangle inequality to (41).

(41)

2y =

EJ'( :Ej =t f:j)g.fa.f 42

Ll (12)
i\Jzj T Jyj)4;

This is fulfilled with equality if 2pp;; — 2¢; = constant, since the triangle inequality

holds with equality only for parallel complex numbers. Assume that the angle variation
of (fz; +1fy;)* is such a variation and equality holds. Putting

|22| <

(f2; + Io;)9;
Pi= ——_E’( T e (43)
FATE 5] yi/d1
defines P; as a probability distribution, since P;’s are positive and sum up to unity. By
summing up all probabilities originating from points on the same circle with the radius
r; and calling it a new probability P,'j

|22l =3 Pja;=>"a, . Pj=) a,P, (44)
i ™

- e ) s
z3+yi=r B}
J+"'.r k

is obtained. Since @,; = 0 and monotonous, the maximum is attained at the rand,
giving Pp = 1, where R is the radius of the filter. This last property is in fact a
result of sampling the circularly symmetric images by means of a quadratic mesh and
indicates that the samples close to the origin should not be taken too seriously in
circular symmetry detection, which appeals to engineering intuition. The detection of
linear symmetry orientation, which is investigated for n-dimensional images earlier, [1],
indicates that all samples are considered as equally important, since these images can
be sampled by a quadratic mesh and reconstructed exactly from these samples. But
this is not the case for circularly symmetric images, and hence an optimal weighting
should be done for a given choice of interpixel function. This is achieved by a(z) for the
interpixel functions chosen as gaussians. But it is straightforward to calculate similar
a(z) for other u;(7), by utilizing (32).

Implementation of (41) is analogous to implementation of (36) and is given by the
flow chart in Figure 5. 2z is obtained in two steps, the first being identical to the first
step of implementation of z;:

1. Obtain the partial derivative image, (f2; + f%;) exp (i2¢;)-
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Convolve with Convolve with
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vj

Figure 5: The flow chart of the algorithm computing energy independent certainty
together with optimal orientation estimate of circular symmetry parameters. The re-
sulting image is complex valued and ready for interpretation in terms of certainty and
orientation as in the previous flow chart.

2. Perform two convolutions on the partial derivative image according to (36) and (39).
It should be observed that (39) is a convolution of only the magnitude of the par-
tial derivative image with a real valued filter. Divide the first obtained complex
number with the real number obtained later and exponentiate it to a constant
real number ¢. The last stage should be performed if the numerator has a value
larger than a small threshold to ensure the numerical stability. Otherwise put
the magnitude to zero, which means total uncertainty. Since the numerator may
involve a large number of additions of vectors which in general are not all in the
same direction, the well-known numerical error, cancellation of terms may occur.
Consequently the zero level of the numerator increases. By zero level we mean
the level below which the obtained values are interpreted as zero. By ensuring
that the magnitude of the numerator exceeds this threshold, division by zero is
avoided at the same time since |z;| < 1, and thereby it is clear that the magnitude
of the numerator does not exceed the magnitude of the denominator. The value
of this threshold can either be chosen experimentally or by using numerical error
analysis for the filters considered. The resulting image is ready to be interpreted

as in the previous section.
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5 Evaluation of the partial derivative image

In the previous sections two two-step algorithms were considered. They both deliver a
complex number per pixel containing information about the circular symmetry existence
around every pixel in the image. To be able to do that, the partial derivative image ,
which is also a complex valued image, is required. The technique used for estimation of
(fzj +1fy;)? is basically the same as utilized in the previous sections.

Reconstruct the image by means of its discrete samples, f;, and apply 2 s T z—

operator:
9 3 aP”J(" B,u,( )
. 5

By using the same interpixel function as before, (31) and equation (37)

(5o +i5 10 = T-2h(ect )z - —Egm) +ily - Zu))loms

Z fiuj (46)

are obtained for the origin. u; is defined as:
u; = 26(z; + iy;) exp(—B(=] + v})) (47)

Obviously (46) can be considered as a convolution with a complex valued filter u, with
the coefficients u; given by (47). The coefficients u; decrease rapidly as 7; becomes large
and hence can be truncated. In the experiments we have truncated u; when |u;| has
reached 1 % of its maximum. The implementation of the estimation of (£, f + ¢£,f)
is possible to accomplish by:

e Convolve the image f with the filter u. Assign to every pixel of the new image
the square of the obtained complex value.

6 Experimental results

To verify that the algorithms described in the previous sections really work on discrete
image data, they have been tested on a number of both synthetic and real images.
Some of these images will be presented and discussed in detail. A GOP-300 is used
for implementation of the algorithms. Figures 4 and 5 illustrate the flow charts of the
implemented algorithms z; which represents the orientation estimate and its correspond-
ing energy dependent certainty, and z; which represents the orientation estimate and
its corresponding energy independent certainty. Every box in the flow chart should be
considered as a unit with inputs and outputs being images. Except for the convolution
boxes, all boxes consist of pointwise operating functions. Two groups of experiments
are presented 1) Noise behaviour tests 2) Application examples.
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Figure 6: The test image above illustrates some circularly symmetric neighbourhoods.
Gaussian white noise is added to the right half of the image. The image is of size
512x512

6.1 INoise behaviour tests

To investigate the behaviour of the algorithms in the presence of noise we have used
the synthetized image shown in Figure 6. It consists of square blocks of the size 30X30
containing circularly symmetric images. The blocks in the left half of the image are

generated by
(1+ 0.25cos(wlinr +np))/2 (48)

and in the right half of the image by
(14 0.25cos(wlnr + np) + 0.75X) /2 (49)

X is gaussian, uncorrelated noise ~ N(0,32). The values obtained by these functions
are mapped to 256 gray levels. In all colour images the resolution in both the intensity
and the hue consists of 256 discrete values.The peak-to-peak variation of the noise is
three times the size of the cosine term in the right half of the image. Within every
block w and n are constant. w changes proportionally to the y coordinates of the block
centers, and n changes proportionally to the z coordinates of the block centers. The
origin is the center of the picture. Thus, if a block center has the coordinate zZ + yi,
then the orientation of rotation/scaling at the center of the block is given by

20 = 2tan"!(n,w) = 2tan"'(z,y). (50)

23



That is, the blocks with coordinates % + yy and —z% — y have the same orientations
except for the noise. This property of the test image can be utilized to examine the
noise behaviour of the algorithms.

a) z of this image is given in Figure 10. The filter used for the convolution was given
in Section 3. The filter size was 25x25 with @ = 1/16. To obtain the intermediate
result, the partial derivative image, a 3x3 filter is used according to the derivation
in Section 5. Tt can clearly be seen that the block centers on a line passing through
the center of the image has the same colour at the points of the right half of the
image. In this representation, we have chosen green to represent circular and red
to represent the star-shaped circular symmetries. All other circular symmetries
with the orientations between them are mapped to colours, in such a way that
this change in colours is perceived as a smooth continuous variation. This is
done by utilizing T component of the THS colour representation to represent the
magnitude of z; and H to represent the argument of z;. The certainty level
decreases gradually as the distance increases from the block centers until the
block borders are reached, where it increases slightly and attains a local peak
at the block corner. This is natural, since the neighbourhoods of the corners
resemble the star-shaped circularly symmetric patterns. For this reason all the
corners have barely visible red colour with an intensity equal to approximately
half of the intensity of the block centers, which have the highest intensities. The
certainties in the noisy part of the image are of the same order as in the left
half of the image at the block centers. This property is due to the fact that z;
is dependent on the energy of the partial derivative image, that is the energy of
the variation. The right half of the image contains more energy compared to the
left, which has boosted up the certainty to the level of the left part. The colour
components of the block centers corresponding to each other on both sides of the
image differ only by 1 or 2 degrees.

b) Figure 9 illustrates z; obtained for all points of Figure 6 with the same filter param-
eters as before. The zero level, below which the numerator is considered as zero,
here called eps, is equal to 1. ¢, the dynamic range controller is put to 1. The
value of eps is chosen as 3% of maximum of |z|. The colours, e g orientations,
are identical to that of Figure 10. The certainties are dimensionless and relative,
contrary to the certainties in Figure 10. The certainties at the block corners are
about half of the certainties at the closest block centers except for those close to
the origin, the center of the image. The corresponding block centers in noisy and
noiseless parts of the image show a significant difference in intensities compared
to Figure 10. The noisy centers have certainty values about half the values of
centers with no noise. The explanation of the phenomenon that certainties at the
block borders in the vicinity of the origin are higher than their respective block
centers is the cancellation of terms. To show that we have increased eps stepwise,
the result of which forced those block corners close to the image center gradually
to vanish without any interference with the block centers. Increasing eps had the
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Figure 7: The image illustrates some synthetic blocks to be classified with respect to
block types. The classes are right rotations, left rotations, circles, and stars.

effect of eliminating the block borders gradually, starting from the central part
of the test image and moving towards its border. Figure 11 shows the obtained
Z, with eps = 8, where most block borders are forced to zero, while the centers
remain untouched.

6.2 Application examples

Finally, we give two examples of applications which use the resulting images of the
proposed algorithms as features in pattern recognition.

a) Figure 7 is a synthetic image to be classified with respect to “left-handedness”,
“right-handedness”, “circular patterns” and “star-formed patterns”. The mag-
nitudes and arguments of Figure 12 are utilized along with box classification to
obtain the classified image in Figure 13.

b) Figure 8 is an image of the sea bottom, where the aim is to classify it with respect to
the sea anemones. Since the average size of these is much larger, about 100x100
pixels, than a practical filter size, we shrink the partial derivative image from
512x512 to 128x128, Figure 14 and Figure 15. The shrinking process is preceded
by lowpass filtering to avoid aliasing. Then this image is used to obtain z;, re-
sulting in Figure 16. The filter used is the same as before, with the size of 25x25.
The parameter eps is put to 3, which is 9% of the maximum |z| of the image.
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Figure 8: The image is a sea bottom photograph. The objective is to identify sea
anemones.

A box classification based on Figure 8 and Figure 16 results in 90% detection of
the anemones, Figure 17. Here it should be mentioned that the tune-up of the
algorithms is possible and is carried out to increase the recognition rate of the sea
anemones by applying the energy independent linear symmetry operator, [1], be-
fore shrinking it. But since the purpose of this paper is to demonstrate theoretical
and practical aspects of circular symmetry modelling and its implementation, we
will leave it out of consideration here.

7 Conclusion

In the Sections 2, 3 and 4, estimates of wy, ng4, pa, (fz + if,)? are used to obtain an
estimate of the optimal local orientation in the scaling/rotation space. The theoretically
crucial point was to assume the bandlimitedness of the considered image. Although
the squaring of the convolution results appearing at the first step, requires images
oversampled with a factor of at least 2, experiments with practical applications have
shown that most images of normal resolution fulfill this requirement. Thus it is not
necessary to do anything special to eliminate errors originating from this source. In
the cases where this really is a major source of error, it can easily be removed by
oversampling the original image. We believe that the resulting images can be used as
features in many classification applications since they describe a structural property of

the neighbourhoods.
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It is interesting to note that the obtained partial derivative image can be used by
symmetry describing algorithms other than the circular symmetry description proposed
here. An example of this is linear symmetry description, [1], which approximates the
optimal local orientation of linear symmetry in the image, using the same image obtained
in step 1. The only difference is the filters used for the convolutions in the second step.
An extension of the circular symmetry description approach, based on the isogray value
curves as proposed here, to other more general symmetries is under consideration. The
preliminary results would indicate that a generalization is possible.
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Figure 9: The image illustrates 2z; at every point of original image of Figure 6. The
light intensities, i.e. the certainties, are independent of the energy. eps is 1.
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Figure 10: The image illustrates z; at every point of original image of Figure 6. The
hue is the orientation of the neighbourhood in the rotation/scaling space. The intensity
represents the certainty of this estimate.
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Figure 11: Same as Figure 9, but eps is chosen as 8. By changing eps one can dras-
tically adjust the visibility of the points with circularly symmetric neighbourhoods, in
comparison with points with neighbourhoods departing from this symmetry.
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Figure 12: The image illustrates z; of Figure 7.
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Figure 14: Partial derivatives of Figure 8. The filter size is 3x3.
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Figure 15: The image is a shrunk version of Figure 14. The image size is 128x128, but
for the purpose of comparison it is photographed as a 512x512 image through repetition
of pixels.
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Figure 16: The image illustrates z; of Figure 8 based on the shrunk partial derivative
image. The image size is 128x128, but it is expanded for comparison as before.
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Figure 17: The image illustrates the identified sea anemones of Figure 8. Box classifi-
cation is used. The used feature images were Figure 8, the intensity and hue of Figure

16. The used boxes were 10, 255], [85, 255], and (113, 143].
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A Some properties of the filter coefficients

In this appendix we will show that the filter coefficients v;, given in this chapter involve
a function which is given by

2 o= r= 2 T
a(z) = ;r-j; '/0 exp(—r°+zrcosp — I)rcos[?.!p)drdgo (1)
and will prove some of its properties. By formula (32) we obtain:
v; (27m)72 exp(ﬂr?) =
o r2r
= / f exp(—i2p) exp ( — (a + B)r? + 2Br;r cos(p — p;))rdrdp

f / exp (— (a+ B)r® + 2Br;r cosp)r exp ( — 12(p + @;))drdyp

exp ( — :'Zp,-)[/ f exp ( — (a+ B)r* + 28r;r cos p)r cos(2p)drdp
o Jo
oo pr2x
— i/ [ exp (— (@ + B)r® + 20r,r cos p)rsin(2p)drdyp]
o Jo
Since the sine function is odd and periodic the second integral vanishes and we obtain:
v; (27) %exp (ﬁr} + 12¢;)
o r2x
= f j exp ( — (a+ B)r? + 20r;r cos p)r cos(2p)drdp
o Jo

(=] 2x %
(a-l—ﬂ)-lfo /;3 exp(—r?+ \/za'@%arcosgo)rcos(mo)drd@.

Adding and Subtra.ctmg to the argument of the exponential function term in the
integrand provides

Lo ; L
o ar?) exp(— :2<p,~);
28r
o e 26r; (Vs
o W s SETE WS L
/0 ./; exp(—r°+ \/mrcosp . )rcos(2p)drde
2fr;

Pa
ﬁ+ar;‘!]exp( t2<p,)a(\/_ﬁ)

v; = 4r%(a+f)exp

dr(a+ B) !

since the cosine function is even.
Now we will show that a(z) is even and

lim a(z) = 1. (2)

T—00

2 fo fx 5 x?
a(-z) = 7—;]; /l; exp(—r*—zrcosp — T)rcos(2tp)drdrp
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2 foo r¥ 2 z?
= ;r-/;: /‘; exp(—r*+zrcos(p —m) — T)r cos(2p)drdyp
2 foo (O z
= ;f f exp(—r? + zr cos(p) — ?)r cos(2p)drdp
0 -
27 exn (- = )r cos(2)drdp = a(z)
= — exp(—r®+zr — —)rcos = :
=) 1, =P cosp — —-)r cos(2p)drdp = a(z
Consider the function f(zr) which we will define as one of the integrals in (1):
2 rr
flzr) = ;] exp(zr cos ) cos(2p)dp
0
2 ks
= ;]{; cosh(zr cos @) cos(2p)dp
since f(zr) is even in analogy with a(z). Repeated partial integration gives:
2 r= : . :
flzr) = 2—[ zr sin p sinh(zr cos ) sin(2p)dp
x Jo

1 f= 2
= = f z*r? sin o cosh(zr cos p) 3 sin® pdp
7 Jo

= % '/: z’r? cosh(zrt) (1 — t*)%/2dt
= 2% f_ll(l = z2)2“1/2 cosh(zrt)dt ®)
= 20h(zr)

where I3(2) is the modified Bessel function of the first kind of order 2.
Thus

a(z) = 2/000 exp(—r? — %z)fg(zr)rdr (4)

Define g(z) as
_ Iz(z)
12) = P (5)
we will utilize
lim ¢(z) =1 (6)
to prove (2). Because of (6) there exists a constant w above which ¢(z) is bounded
above, that is
q(2) < My < for z>w. (7)

Formula (3) reveals that I;(z) is even and strictly increases for positive values of z. The
assymptotic equivalent function exp(z)(272) '/? is bounded below with a positive lower
bound. Thus for non-negative z values less than w, ¢(z) is bounded above as well. This

provides us:
g(z) <M< oo for z>0. (8)
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Utilizing (4) and (5)

a(z)

2

- j;“’ exp(—(r — g)z]q(zr)r(%rzr)—l/zdr

= (an) " [ expl-ratelr + U ar

dr

r 1.
_+_
T

= (@) " exp(=rt)q(alr + D)olr + D) |y S+ 5

< (2m)"Y2 fm exp(—r?)(r? + 2)Mdr < oo

is obtained for z > 1 where ¢(z) is given by:

_ L, 220
oz = {0, otherwise. (9)

Thus the dominated convergence theorem [12], can be used to evaluate the limit of a(z):

= 1
-+ —d
z+2 ’

Il

lima(e) = Jim —= [ exp(-r)a(e(r+ Po(r+3)

z—00 Z— 00

\/%.[:0 lim exp(—r*)q(z(r + ;))a(r + ;) l\} :—; + % d
= \/g/_: exp(—rZ)\/;gdr =

[1] R. L. Wheeden, A Zygmund, “Measure And Integral” Marcel Dekker, Inc., Basel,
1977.
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B Central symmetry modelling

This appendix considers the theoretical aspects of the case when a neighbourhood is
defined by means of a circle and the local coordinate transformation is chosen as

T = rcosp

rsing

The local coordinate transformation is not defined by a pair of harmonic functions, a
concept which will be studied closer in Chapter IV. It should be observed that this
does not affect the form of the theoretical solution as such. The appendix is included
as a reference for this reason but also to demonstrate that the behaviour of the special
Fourier domain corresponding to a new coordinate system can be studied with respect to
point concentration as well as line concentration. The latter is the type of the behaviour
which characterizes the symmetry definition in different coordinate systems appearing
throughout this thesis. During the implementation and the experimental results, the
superiority of the smooth window function and the harmonic pair given in the chapter

is verified.
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CENTRAL SYMMETRY MODELINGT

Josef Bigiin, Gosta H. Granlund
Computer Vision Laboratory
Linkoping University
Department of Electrical Engineering
S-581 83 Linkoping Sweden

Abstract

A definition of central symmetry for local neighbourhoods of 2-D images is given.
A complete ON-set of centrally symmetric basis functions is proposed. The local
neighbourhoods are expanded in this basis. The behaviour of coefficient spectrum
obtained by this expansion is proposed as the foundation of the central symmetry
parameters of the neighbourhoods. Specifically, examination of two such behaviours
are proposed: point concentration and line concentration of the energy spectrum.
Moreover, the study of these types of behaviors of the spectrum is shown to be
possible in the spatial domain.

Introduction

There is a long list of operators that detect the existence of linear symmetry in a local
neighbourhood. Most of them measure linear symmetry in the sense of lines and edges.
But there is very little done to model central symmetry. Perhaps it is because images of
objects in nature, are usually more irregular than circles. Nevertheless, we believe that
this is one of the symmetries which human beings utilize in early vision. It seems that
central symmetry should be an additional symmetry model. The fact that circularly
symmetric shapes like rotating fans, diverging rays, circularly propagating water waves,
etc., are observed as phosphenes when low frequency magnetic fields are applied to the
temples of a subject, [1], [2], supports this belief. Moreover many manufactured objects
are locally concentrated and have closed rounded boundaries. Many natural objects
in low resolution images may exhibit this property, like cells seen under a microscope.
Conceivable application areas are the object counting, classification as well as image
coding and enhancement of certain types of images, possessing a local central symmetry
property. But first we should have an intuitive feeling about what kind of patterns
are called centrally symmetric in our terminology, since it is otherwise a rather vague
concept.

tSIGNAL PROCESSING III: Theories and Applications, I.T. Young et al.. (editors) Elsevier Science
Publishers B.V. (North-Holland), EURASIP, 1986; pp. 883-886.
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Definition 1 We will call local neighbourhoods centrally symmetric if the locus of iso-
gray values constitutes parallel lines in local polar coordinates:

w0 =kr+ks 20

for some constants ky and ky. if the locus of iso-gray values is not curves, that ts when
they are regions then the borders of these regions are considered as locus. We will assume
that the boundary of the neighbourhood is a circle, and the origin of coordinates is the
center of this circle.

Definition 2 (f,g) s the sealar product given by

(1927 [, 7 ()

with r = |F| and:

1
)=/ =df.
ar
Definition 3 C() is the completion of the space of complezx valued functions, contin-
uous on {1 except on a subset of 1 with zero measure, with respect to the scalar product

grven above. O ts a eircle with the radius R.

Consider the functions, see Figure 1),

W () = ellmrsne) (1)
with w = —T and m,n € Z. C(1) is a Hilbert space with the following scalar product
ZTrR-/ f g(r, p)drdp.

Thus {¥,..}mnez is dense in C(Q2), which follows from the Fourier series expansion
theory on a rectangle, [3]. But this scalar product is the same scalar product defined
earlier with () being a circle. Now let us consider the neighbourhood (1, around an
examined point in an image. Assume that the polar coordinates, r = |F| and ¢ = arg(7),
referred to in the following are relative to the examined point, and the positive z axis
from the examined point.

Let the real function f(7) express the gray values in {1, with the center at the
examined point, so that 7 is the local coordinate vector. Then one can expand [ as

f(?) =F Z cmnwmn(?) (2)

mneEZ
with
Cmn — (fa‘l'mn)
B B TV ”
2rR Jar
because C(1) is a Hilbert space and {¥n}mnez constitutes a complete orthonormal

base:

(‘I’mna \pm’n'J = 6mm’6nn' (4)

with 6, being the usual Kronecker delta.
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Figure 1: The image illustrates some of the basis functions ¥,,,. The real parts of ¥,,,,
are mapped linearly to the gray values of the monitor.

Point concentration

Definition 4 Let P be an operator from C(Q) to the function set X, X C C(Q). Then
P is a projection from C(Q) to X if

Pif= Py
for all f in C(12).

Our goal is to find an algorithm based on operations done in the spatial domain
which still gives some indication about whether the energy is concentrated to a point
in the frequency domain. The algorithm should posses the following properties:

1. Whenever the neighbourhood, f(7), is equivalent to one of the basis functions,
W,.., except possibly for a scale factor B, the algorithm should detect this par-
ticular basis function save a sign change of it's index tuple, (n,m). That is
(f, ¥pmin) = 0 for all tuples (n',m') except for a tuple (n,m). In other cases
it should give some sort of dominating tuple (n, m). It should be noted that ¥,,,
is complex valued. For real neighbourhoods consisting of the real or imaginary
part of a ¥,,,,, this condition will be enough to identify the neighbourhood except
possibly a phase factor. Given the tuple (n,m), ¥,,, is unique. Call the operator
of finding the tuple (n, m), and associating the function ¥,,, to that, as P then:

Pf=Pf=V¥,,

40



for any f € C(Q1). This is equivalent to saying that the sought algorithm is
a projection to the countable set {¥,,,}, according to the projection definition
above.

2. The projection value (or parameter) should be rotation and radial phase invariant
for pure inputs of:

f(r,‘P) = B'I’mn(rs‘lp)

with some scalar B. That is
Pf(r+ To, P +990) = Pf(?‘,(p) =T,

should be fulfilled.

3. Whenever the spectrum of the real valued local neighbourhood differs from a
pattern with a point concentrated spectrum, an uncertainty parameter should
reflect that. By attaining low values, for example, this parameter could indicate
the relevance of the projection parameter, and conversely to suppress it if the
neighbourhood differs from a central symmetric pattern. '

The use of the uncertainty parameters is indicated in [4]. The uncertainty parameter
and the projection parameter are combined in every point of the image to form a vector,
in such a way that the magnitude of this vector becomes inversely proportional to the
uncertainty parameter, (the confidence in the projection parameter) and the argument of
it becomes the projection parameter. This can be visualised by allowing the magnitude
to modulate the intensity of a point in a colour TV monitor and the argument of it,
representing the projection parameter, to modulate the colour of the same point. The
result is a colour image representing a decision in every neighbourhood of the original
image. The projection parameter and the confidence parameter values evaluated in
every point in the image can be thought of as two separate images influencing each
other. A point with a low confidence level looks dark in the resulting image, no matter
what the colour of the point is. A point with a high confidence level is emphasized by
illumination, and it’s colour is revealed.

The algorithm we propose consists of the computations described by (5)-(9):

A2 f| (5)

m 210 (6)
2001 -

Gl 2T ®)
a3, 2120l _ o)

41



mg and n, are radial respectively angular frequency measures. Cp,, and Cp, are
the uncertainty measures associated with my respectively n;. Denote the projection
parameters by the tuple (#,7). That is (7,71) points out the location of an eventual
point concentration in the spectrum. To produce rh and #i from my and ng, we observe
that = and 7 should be integers. Moreover they take positive as well as negative values.
However since we assume real valued images, the requested point concentration will
consist of two concentrations symmetrically located around the origin of the coordinates
in the spectrum. This is due to the Hermitian property of the coefficient transformation.
Hence we need only give the position of one of these concentrations. Thus we can assume
that m is always positive. We will simply assign to i and # the closest integers to my
and ng with the proper sign:

= round(mg)
= sign X round(ng) sign € {—1,1} (10)

> P

sign is the sign of 32, ez an':"}E, the calculation of which is given in the next section.
Let us see what (5)-(9) does for a neighbourhood :
I'= ¥ cuu¥eu (11)

m,nEZ

We get through (5)

A= Y |€mnl?

m,neZ
This is the energy of the neighbourhood in terms of the centrally symmetric function
set {Upn}. (4) together with (6), (11) yields:

DA .mc
= %:” 2, i A"‘“.pmn”
mneZ
c:m ni
= (X —am)? (12)
m,neZ

Hence my is the weighted root mean square of all radial frequency measures, m. It should
be observed that a particular radial frequency number, m, is weighted by the uniform
sum of all angular frequency energies. The weights constitute energy distribution of
the input function. The higher the energy share of ¥,,, in the total energy, the closer
mg will be to m. (12) obviously fulfills the projection requirement after rounding my
to the closest integer, /. Similarly ng will be the weighted mean square of all angular
frequencies of different order:

na=( 3 Lmalas (13

The latter is insensitive to the sign changes in n. The consequence of this is a real

neighbourhood of
= Cn + VYorpn + Yinn + ¥opns
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projected to a W, input. The decision is in favour of one of the two equally strong
candidates. When f = ¥,,,+ ¥_,,_,, then my = |m| and ny = |n| which in turn reflects
the necessity of the variable sign referred to earlier (10). Uncertainty parameters Cp,,
and Cq,, are proposed to be as in (8) and (9), and Ca.. yields through (4), (8), (11),
(12)

D3| [emnl?
C?]m_ s ” r _m;: E mn m4
At mneZ A?
— 9 z |cm"[2m2m2+m4 Z !Cmnlz
A? d 4 A2
mnEZ mneZ
|Cmn2
= Lol iy (14)
mnezZ

which can be viewed as a weighted variance for the integers m?. It attains its minimum
in the case when

2
|C:zf2t| (m2 L 5 m§)2 =0
for all n,m € Z. This occurs if and only if
Icmﬂ!2
d- =l

n

for some m = m' since m? is constant. Thus if Cq,, is zero then there exists one unique
radial frequency in the neighbourhood and it is given by the estimation, my. When this
is the case the energy is concentrated to a horizontal line through m = my. Since Cp,,
is a variance it also reveals some information about the shape of the spectral density
of the neighbourhood. If Cp,, is small then it is likely to think that the neighbourhood
is a degraded version of a wave with a well defined radial frequency, my. Conversely
it is unlikely that the association of my to the neighbourhood will be relevant, if Cq,,
is large. Interpretations of ny and Chq, are similar to my and Cnp’s. Given my, ng,
and the sign parameters the tuple (7, 7) is computed according to (10). We adopt the
uncertainty parameters Cp, and Cq,, for # respectively /n. We propose Cpq,,

Ch, = Chm + Cha (15)

to be the uncertainty parameter for the tuple (7,7). Cp, = 0 if and only if Cp,, =
Cpn = 0. But Cp,, = 0 if and only if the total energy is concentrated on a horizontal
line and Cp, = 0 if and only if the total energy is concentrated on a vertical line. The
only possibility for the neighbourhood to fulfill these two requirements is when an input
possessing total point concentration in its spectrum, with location on the intersection

of the lines m = my, n = nq.
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Line concentration

We will examine whether the energy spectrum has line concentration. Let the line we
look for be

m = tan(f)n. (16)
We assume that the line goes through the origin of the coordinates in the coefficient
domain. Since the real functions coefficient transforms should be Hermitian, their energy
spectra are even, forcing a possible line concentration to pass through the origin of the
coordinates of the coefficient plane. A real neighbourhood f can be expanded in the
basis functions as before, yielding:

f = Z cmn‘pmn
mnEZ
with the Hermitian coefficients ¢,,,. The energy concentration of the neighbourhoods
in general degrades from a line through the origin of the coordinates. Let us measure
this degradation by Cqg, which is the average sum of the squares of the distances of the
spectrum points to the line given by (16):

2
Cas 2 Y (m— tan(d)n)? cos’(ﬂ)lc"‘—"l

mnczZ A2
2 2
= sin®(9) Y_ Lol +cos?(0) > m lemal”
A? A?
m,neZ mnezZ
2
— sin(20) > mnlc"ml (17)

AZ

m,neZ

We want to find a # which minimizes Cps. This is the least square estimation of # and
it is straightforward to find 0:
dCny

5 = (n% - m:) sin(20) — 2pcos(26) (18)

where

2
Cmn
P= Z mnl Agi

m,nEZ
If n2 — m? # 0 or p # 0 then choose the minimizing # as:

1
0;= 5 tan™!(n% — m3, 2p). (19)

The degradation or uncertainty measure is given by substituting (19) in (18) and using
the trigonometric half angle formulas:

1
Cas = 5(ng +mi —\/(n? —m)? + 4p?). (20)
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The angle given by (19) gives the axis around which the moment of inertia is minimum
and the moment of inertia is given by (20) if E‘i’i—'-’— is seen as a point mass, [5]. The
omitted case when both p = 0 and n — m% = 0 corresponds to local neighbourhoods
with no specific orientation. Because %F“— vanishes according to (16), any # would work
as minimizing argument to (17). This case implies that

3 miltml _ 5 alemal”

m,nEZ A? mnEZ A?
2

p mnlc"";] = 0

mncZ A

The class of functions having this property in their spectra is the class of functions
with coinciding principal axes in the coefficient domain. Neighbourhoods of Wgq, ¥y +
V_pon+ ¥pmp + ¥_, are examples of such functions. We observe that m% = 0 and
n% = 0 implies that the neighbourhood is a constant function and consequently has
no orientation. Thus to keep the consistency of the meaning of Cps in the case when
n — m? = p = 0, we should define Cqs = oo and leave § undefined. p which is needed
to calculate 8; and Cpy according to (19) and (20), can be easily found in the spatial

domain to be: | {2
_ ema’ _ 1 3 Of
p—mlgezmn A2 Azwtar’atp

)

Implementation of the scalar products given above for every neighbourhood of a
digitized image is straightforward after using the chain rule:

o = X cos(p) + L sin(p)

Br = Ecoa +&sm
af _ of _af .
% - ar cos(ip) ar sin(yp).

This means that we can transfer the scalar products to be valid for functions defined in
Cartesian coordinates. At this point we can use either the bandlimited signal theory or
some quadrature rule to evaluate the resulting integrals, given that we know % and %ﬂ-
at a rectangular net of points. It can be shown that the scalar product evaluations at
every point are obtained by convolutions with FIR-filters.

Conclusion

Both the point concentration parameters my, and n4 and the line concentration param-
eter 04 are best fits of a point or a line respectively through the origin of coordinates of
the coefficient domain. The best fit is in the sense that the two variance measures given,
which are adopted as uncertainty measures, are minimized. It is interesting to note that
the approach lends itself to linear symmetry parameter extraction as well, with a minor
change. By linear symmetry we mean the neighbourhoods with iso—gray values being
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straight lines in Cartesian coordinates. Parallel lines belong to such neighbourhoods.
Hence it is possible to find the dominating frequency and the dominating orientation of
a neighbourhood, [6], with the least error variance in the Fourier domain in a similar
manner. The only difference is the scalar product and the shape of the neighbourhood.
The scalar product of the linear symmetry case becomes the usual £?((2) scalar product
with 0 being a rectangle. The complete ON-basis set is of course {ei(mw==+mwsul}  ,
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Chapter III

OPTIMAL ORIENTATION
DETECTION OF LINEAR
SYMMETRY

What has been sard about circles also ap-
plies to lines as well as to colour...
Plato

47



OPTIMAL ORIENTATION DETECTION OF
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Abstract

The problem of optimal detection of orientation in arbitrary neighbourhoods is
solved in the least squares sense. It is shown that this corresponds to fitting an axis
in the Fourier domain of the n-dimensional neighbourhood, the solution of which is
a well known solution of a matrix eigenvalue problem. The eigenvalues are the vari-
ance or inertia with respect to the axes given by their respective eigenvectors. The
orientation is taken as the axis given by the least eigenvalue. Moreover it is shown
that the necessary computations can be performed in the spatial domain without
doing a Fourier transformation. An implementation for 2-D is presented. Two cer-
tainty measures are given, corresponding to the orientation estimate. These are the
relative or the absolute distances between the two eigenvalues, stating whether the
fitted axis is much better than an axis orthogonal to it. The result of the implemen-
tation is verified by experiments which confirm an accurate orientation estimation
and reliable certainty measure in the presence of additive noise at high as well as
low level.

1 Introduction

The problem of orientation detection of lines and edges arises in many applications
in image processing. One of the earliest approaches was to model the direction of a
neighbourhood in terms of the direction of the gradient of the image. A drawback of this
method is its noise amplification since the gradient operation enhances high frequencies
of the image. Another approach is to combine linearly the magnitudes of a number, 3
or 4, of quadrature, directional filters, [1]. The coefficients in this linear functional are
complex valued as well as those of the filters. This results in a complex valued variable,
the argument of which is an estimate of the orientation of the local neighbourhood and

*Reprinted from PROCEEDINGS OF THE IEEE FIRST INTERNATIONAL CONFERENCE ON COMPUTER
VISION, London, June 8-11, 1987 pp. 433-438.
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the magnitude is an estimate of the certainty of this orientation estimation. There have
also been solutions to the problem of finding the local orientation by projecting the
neighbourhood to a number of fixed orthogonal functions. The projection coefficients
are then used to evaluate the orientation parameter of the model [2,3].

We will propose a new approach for local orientation detection which is based on
the well-known solution of the principal axis problem of rigid bodies in mechanics, but
applied in the Fourier domain [5, 6,10]. In Section 1, we will define linear symmetry
and describe the method for an n—dimensional Euclidean space. In Section 2 we will
apply the results for 2-dimensional images and in Section 3 the experiments and results
for the 2-D case will be presented. We predict that the experimental results of this
approach for the 3-D case should be similar to those for 2-D. Since lines and edges are
linear symmetric structures, this method can be used for detection of these structures
by means of the certainty parameters introduced in Section 2, as well as orientation
estimation in applications.

2 Orientation detection in n-dimensional euclidean
space.
Let E,, be the Euclidean space with dimension n.

Definition 2 We will call a non-negative and bounded function f with real or com-
plex values defined on E, an image, and the values of f the gray values of the image.
Further we will call an image linearly symmetric if the tsogray values constitute parallel
hyperplanes of dimension n — 1. That 1s if the image f can be ezpressed by a function
g defined on E, for some vector k € E,, as f(7) = g(k -¥) for all ¥ € E,,.

Theorem 1 A linear symmetric image has a Fourter transform concentrated to a line
through the origin:

Falf (ko7)) (3) = Fi(£) (3'K0) 6 (3'%1)6(5"2) - - - 6(5"Em)
ko, fiy...7, 1 are orthonormal, and & is the dirac distribution.
Proof: Decompose E,, in E; and E,, ;
T= ”-ép + ugﬁl + ugﬁg....u,,_lﬁ,,_l
for all # € E,, so that kg, @y, @3 ... %, ; are orthonormal.
= oo o -
FEA) = [~ [T r(e) exp(—g2ntstho) x
-0 —00
exp (—JZ'A‘(E'E;, u; + §‘ﬁgu2...§'ﬁ,‘_1un,J)dtdul e dun,l

then the desired result follows immediately.
To detect linearly symmetric objects is consequently the same as to check the ex-
istence of energy concentration to a line in the Fourier domain. This theorem further
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states that the function f(ki7), which is in general a "spread” function, is compressed
to a line. This is a property which supports the idea of checking the linear symmetry in
the Fourier domain rather than in the spatial domain. But the Fourier transformation
of every local neighbourhood is very cumbersome. We will show that the fitting of a
straight line through the origin in the Fourier domain of an image with the least square
error is possible to accomplish in the spatial domain. If we define the infinitesimal
energy of the Fourier transform, |f(F)|*dE,, as the mass distribution, then we have the
variance (or the inertia) with respect to the axis tko

V2= ['ezn d*(7, ko) dm(F) (1)

for the Fourier transform of the image, f. Here d(7, ko) is a real valued function which
gives the Euclidean distance between the point ¥ and a candidate axis, defined by the
axis tko, where ||ko|| = 1. The problem is to find such an axis minimizing V}:

min V7 = min fE (7 o) F(7) P, (2)

where dF,, is dz;dz,--+dz, when ¥ = 2,.%; + %,;...2,%, for all ¥ € E,. The distance

function is given by the usual Euclidean distance:
(7 ko) = (F— (Fko)ko)

= K (It'r - 77)k*

where ||ko||? = kiko = 1 is assumed. In combination with (1)

vV} = kidk (3)
is obtained with:
Ju —Ji2 ... —Jia
—J. J. eer —Jon
J— :21 22 5 T2
—afpl T VR esa Jnn
where A
Ji= [ T2 (r)dE, (4)
En i
for diagonal elements and
Js = [z ()P (5

for off-diagonal elements except for a sign change. The minimization problem formulated
in (2) is solved by kg corresponding to the least eigenvalue of the inertia matrix J of the
Fourier domain, [4]. All eigenvalues are real and the smallest eigenvalue corresponds to
this minimum. This matrix contains sufficient information to allow computation of the

optimal ko in the sense given by (2)
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Lemma 1 The sneriva matriz of the energy of the Fourier domain is possible to compute
in the spatial domain by the following relation:

1 af s
Ji=— dE, 6
472 E En (6:1:;-) (6)
for the diagonal elements and
1 af of

—Jy=

dE, (7)

4n? /g, 0z} Az}

for off-diagonal elements. Here z) is the spatial domain coordinate corresponding to the
Fourier domain coordinate z; and dE, = dz'dz)...dz!,

Proof of the lemma is immediate by applying the Parseval relation and the fact that
a differentiation in the spatial domain corresponds to multiplication by the respective
coordinate in the Fourier domain, (4) and (5).

Using the previous lemma we have the tools to find an optimal orientation of any
image f. The obtained orientation will be unique if all the eigenvalues differ from
the least eigenvalue. Moreover the variance given by (1) would be exactly zero if and
only if f is a linear symmetric image. When the multiplicity of the least eigenvalue
is larger than 1, there is no unique axis tky, by which the image can be described as
g(kLF) for some one-dimensional function g. Instead, the energy in the Fourier domain
is distributed in such a way that there are plenty of such axes which give the least
square error. More exactly these axes are any axes given by a linear combination of the
eigenvector space belonging to the least eigenvalue. Here it should be observed that the
dimension of this space is equal to the multiplicity of the eigenvalue it corresponds to
(the least one). This is due to the fact that J is positive semi-definite and symmetric
by definition, (1), (3), and (5). In other words, there is no unique and optimal axis
passing through the origin but an optimal and unique hyperplane passing through it
in the Fourier domain when the multiplicity of the least eigenvalue is greater than one.
How shall we interpret the case when the least two eigenvalues of the inertia matrix J
are equal? If they are equal and vanish?

Since the matrix J is symmetric and positive semi-definite, it can be diagonalized
by a similarity transformation to J’

3 =P%IP

This corresponds to a rotation of the coordinate axes (both in the Fourier and the
spatial domain). Let the coordinate axes of the spatial domain after rotation be i,
fi3... @,. Then by using lemma 1) and Jj, = Jj; = Ag we obtain

[ (Goydb= [ (52)'dE )

n OUg

We will call such images perfectly balanced images with respect to i, and #, coordinate
axes due to a similar definition in mechanics when Ay = A;. When Jg, = J{; = 0 we
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obtain through lemma 1)

Z =

i#0

Zf )dE—O

1#1

Since all elements in the sums above are positive we have

f (au.) w1

for all allowed i, which in turn leads to the fact that

af

F ol

for all allowed i. But this is the same as saying that f is a constant image. If only one
eigenvalue is zero then we have
aof

Sy

for all ¢ except the one corresponding to the zero eigenvalue. That is, it is constant in
the directions perpendicular to the axis belonging to the least eigenvalue. Thus when
two eigenvalues of the matrix J are zero, so are all the others, and by this we have
established the following lemma.

Lemma 2 If one of the eigenvalues of the tnertia matriz J of the Fourier transform of
the image f, has value zero then this eigenvalue has multiplicity of either 1 or n. It 1s
equal to 1 if and only if we have a linearly symmetric image, and equal to n tf and only
if we have a constant tmage.

To illustrate the concept of perfectly balanced images we have such a Fourier domain
and its corresponding spatial domain in 2-D, Figure 1 a). It can, for this image, be
shown that any axis through the origin in the Fourier domain will give the same least
square error:

4
Zm;dz(f'.-,/_c) = 2a’m?
i=1
This is a perfectly balanced image. Thus the 2-D inertia matrix J of this case has one
eigenvalue 2a’m?® of multiplicity 2. The spatial domain corresponding to this Fourier
domain consists of two planar waves (sinusoids) in the directions of the coordinate axes.
Interpreting Figure 1 a) in 3 dimensions would give a hyperplane as in Figure 1 b). In
the 3-D spatial domain this corresponds to an image as the one in Figure 1 a), in every
2-D plane perpendicular to the axis defined by the vector, Z3. In Figure 1 a) we obtain
both eigenvalues equal, namely 2m?*a?®, while in the 3-D case, Figure 1 b), we obtain
eigenvalues 2m?a?, 2m?%a® and 4m?a®. Thus we can say that the image is perfectly
balanced with respect to any axis perpendicular to Z3. One is tempted to infer that
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a) h)

Figure 1: a) and b) illustrate perfectly balanced images in the Fourier domain for 2-D
and 3-D respectively. m is energy. A spatial domain image corresponding to both a)
and b) is given by: Asin(2wau,) + Asin(2rau;), where A is a constant and u; and u,
are spatial domain coordinates corresponding to %, and Z;. It should be observed that
the spatial domain image is constant for all us.

the image should have its iso-gray values as parallel lines, when the least eigenvalue has
multiplicity 2 for the 3-D case. However, this is not always true. A counter-example
is when we have equal masses (energies) at the Fourier sites: (+1,+1,0), (0, 0,:!:-;-).
The eigenvalues are proportional to :—,, %, 4, but this corresponds for instance to three

sinusoids in the spatial domain:
. " el
Asin(uy) + Asin(ug) + Asm(aua)

where u;, us, us are coordinates in the three orthogonal spatial domains corresponding
to the Fourier coordinates, and A is some constant.

3 2-D implementation of finding the minimum va-
riance axis

To test the theory above we have implemented two algorithms evaluating local orien-
tation of the 2-D images. Both of the algorithms rely on finding the eigenvalues and
eigenvectors of the inertia matrix of the Fourier domain. The direction measurements
for both of them are the same and based on the eigenvector(s) of the least eigenvalue.
They differ on the certainty of the direction estimation. What has been referred to
as image in the theory above, becomes a local neighbourhood of the total image in the
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following discussion. To represent this local image at the point 7; we multiply the larger
image f(7), by a window function w(F,7;):

k;(7) = f(F)w(F, 7)) (9)
For simplicity we choose w a gaussian:
4
w(F,F;) = exp(— |7 —77) (10)
w

with || - || being the Euclidean norm: ||7||* = #7 and d, being a constant controlling
the ’diameter’ of the local neighbourhood. The algorithm fits a least square error axis
in the Fourier domain of the local image h; corresponding to the least eigenvalues of
the inertia matrix of the Fourier domain, J. The computation is pursued in the spatial
domain by means of equations (4) and (5). The axis found, tko is possible to represent
by ko. Since this is an axis, —ko is an equivalent representation as well. For this reason
the orientation of an axis tky can be defined as 2¢q, if ¢ is the direction angle of
I_Co — kzi:l + kvi:g:

¢o = tan"'(kz, k,) (11)
Consequently both —k and k will be mapped to the same angle, through 2¢,. It can
easily be shown that the eigenvalues of J for the 2-D case, corresponding to h; are:

1
Ao,l — E(ng + J11 :t J(ng - Jll)z + 4J122) (12)

The eigenvector corresponding to the least eigenvalue can be found to be ky = k,2;+k, %,
satislying:
('Ill == Ao)kz =+ Jlgky = 0 (13)

with the Euclidean norm of unity. Thus the orientation becomes:
2¢o = 2 tan" ' (k,, k,) (14)
By using! (12), (13), and (14)
2¢g = tan™" (Jo3 — J11,2J12)
is obtained. Define the complex variable z as:
z=Jy —Jn+ 72J13 (15)

thus

2¢y = arg z
The certainty in this approximation of the local orientation depends on the behaviour of
the eigenvalues Ay and A;, according to the discussion in the previous section. A linear
symmetry of the neighbourhood is probable if A; is small relative to A;. An ’ideal’ linear

!see Appendix B at the end of this chapter
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symmetry occurs when Ag = 0 and A; >> 0. A certainty measure, Cy,, incorporating
these properties is

e [/\1 - Ag), _ [\/(Jn —Ju)? + 4%, _ |2| e (16)
A1+ Ao Joz +Jn Jaz + Ju
Here ¢ is a positive constant, the purpose of which is to control the dynamic range of
the certainty. Cy, is defined to be 0 when Jz; + J1; = 0. According to the previous
section we then have a constant image and there is not a unique orientation for such
images. It attains the maximum value 1 if and only if Ay = 0, because both Ay and A,
are non-negative. C'y; decreases when the difference between the eigenvalues decreases.
This property effectively tests whether the multiplicity of Aq is 2, in which case there is
not a unique orientation minimizing the variance.
An alternative certainty measure is:

sz = A] = Au = IZI (17)

In this measure we do not get a unique certainty value when A; = 0. Rather the
confidence varies due to the largest eigenvalue when this happens. A consequence of this
is that when the neighbourhood is linear symmetric with small energy, it is considered as
less reliable even though the orientation measurement is correct. This is justified when
it is desired that the certainty decreases continuously as the image becomes constant.
Both of these certainty measures are considered.

Thus the task is reduced to express either of the certainty parameters Cy, or Cy; and
the orientation estimation 2¢g. The evaluations of these are governed by the equations
(17), (16) and (15), which in turn rely on the efficient computation of the elements
of the inertia matrix. Computation of these parameters for every neighbourhood in a
discrete image is accomplished as follows.

Consider a discrete representation of the 2-D, bandlimited image f(7). The contin-
uous image can be reconstructed from its discrete samples, f; by

10) = 3 faulr = 7) (18)

where u(F) is an analytic function governing the behaviour of the continuous function
between the discrete values. We will call it the interpixel function. g can be assumed
to be known since it is theoretically the inverse Fourier transform of a function which
is 1 at the passband of the considered image and 0 at the outside. For its concentration
in both Fourier and spatial domains we choose g as a gaussian as well:

u(r) = exp (- =7 (19

even though it is not an ideal interpixel function, since it is not strictly bandlimited.
Under these conditions an approximation to Jy; yields:

: 1 Ah; 1 af(w)
f == beler 15 e EY i/y2
4 = 472 /:E‘, (3.7:2) as 472 E!:( dxy e

4 2 4
— —||F+7; —F||* — ——=)dE, 20
ng exp( ”r+r:r 7| d:‘u”F”z) (20)



Here (aﬁé)2 is reconstructed from its samples

3y, -2

O (e -7 (21)

since it is bandlimited as well when f is. This requires that we have a version of ,_%L
oversampled by at least a factor 2 in every dimension. This is due to the fact that
squaring a bandlimited function doubles its passband in every dimension. This is an
effect which can be removed easily by resampling, if necessary. J{l corresponding to
a neighbourhood, characterized by the coordinate vector 7; and a window function of
"diameter” d,, is then computed as

T = 2 3 (i (22)

47

where m] is given by (20)

; Bpe . 8 4

mi = [, el gl + =57 = FFI)E,
n did}, 4
- = Ty —T 23
- gl (23

(22) is nothing but a convolution of the discrete version of the (_aéz[;)? by a gaussian.
Since the gaussian decreases rapidly outside of a circle with the radius (/d2 + dZ,, we
can truncate it when it is sufficiently small. In our experiments this is done when it has
decreased to about 1% of its maximum. Similarly J{;, JJ, and J{, can be approximated
by averaging the discrete images:

szz = Z(af(r' .‘I

ar?

;1 Bf(r,]af(r,) p
Ly = 471'22 az; 8:1:2 - (o4

Thus =z for the point 7; becomes:

B O(r)ys _ DU(r)ya |, AT DI(R),
2 = 4?1.2 E[ a:E] 8172 ) +2 61’21 a$g ]mf
f(7) , Of(F)y: ;_
SO A bt

where u; is the complex valued image obtained by taking the square of the gradient of
the image, interpreted as a complex number instead of a real vector:

wm (2L 2000y e
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Similarly :
Ho+ i = o 3 sl (27)
i

is obtained. Thus calling the discrete image defined by (26) as u and the filter defined
by (23) as m we have:

2¢o = arg(u*m)

|u* m|®
Gl =2 el
- (|| # m)°
i |
Gfg = mh&*m[ (28)
where the symbol # represents the usual convolution operation. Here arg(-), |- | and

(-)¢ operations are assumed to be applied pointwise to their arguments and thus 2¢,,
Cyy and Cy; become images representing local orientation and certainties. The first
algorithm is to evaluate 2¢, and Cy; and the second algorithm to evaluate 2¢g and Cyp;.

The discrete partial derivatives necessary for the evaluation of u can be produced
by convolution with various filters. For the sake of completeness we just mention the
technique used before: Expansion of the image in its interpixel functions and application
of the derivative operation.

of(7;) 9
= i—u(F; — 7 29
() = X figmonlty =) (29)

As before this gives us a filter which decreases rapidly outside of a small region
close to the examined point 7;. The evaluation of (29) and (28) is easily computed on
hardware with support for convolution. In the experiments below a GOP-300 computer
has been used.

4 Experimental results

In the experiments, the implementation proposed in the previous section has been tested
for detection of the linear symmetric neighbourhoods. This is carried out in two steps:

1) Evaluate a partial derivative picture. In reality the complex variable u; of the
neighbourhood at the point 7;,

af(7;) , 9f(r)
adz; AL dz,

is computed by using (29) and then this complex number is squared.

2) Estimate local orientation, 2¢g, and the certainty of this estimation, either of C;
or Cy; according to (28) based on the image obtained in step 1).

Figure 2 shows an image containing all possible directions for sine waves with expo-
nentially increasing frequency in the radial direction of the circles. Gaussian uncorre-
lated white noise is added to the right half of the image with the proportion 1:3 that
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Figure 2: The test image used in the experiments. The straight line is the line along
which the profiles of results are presented at the proceeding figures.

is 0.25f; + 0.75Y; where f; is the image intensity and Y; is the stochastic variable with
the distribution of N(0,32). In the experiments this proportion is varied and the local
orientation is examined for different sizes of filters in the two steps mentioned before.
In general it could be observed that the filter size of the first step affects the accuracy
of the orientation detection more than the size of the neighbourhood given by the gaus-
sian, (23), in the second step. This is not surprising, because the probability that the
energy at a high frequency is erroneous is higher than the same probability for a low
frequency. The reason is that most of the natural errors are composed of high frequen-
cies like aliasing error, discretization error, measurement error, etc. A squaring of the
gradient image causes these errors to propagate to lower parts of the local frequency
spectrum.This makes it difficult to remove the noise by increasing the filter size, i.e.
low pass filtering. Figure 3 shows the orientation estimation of the profile of the test
image cut along the line passing through the origin of the circles shown in Figure 2. The
profiles at the left part of the test circles demonstrate these phenomena. Both profiles
should have constant levels, since the orientation of the profile is constant. The shown
two profiles are due to two different filter configurations of two estimations. Profile 1
is due to a 9 x 9 filter in the first and a 15 x 15 gaussian averaging filter in the second
step. The second profile shows the result of a 5 X 5 gaussian derivative filter at the
first step and 21 x 21 at the second step. It can be observed that in the latter filter
configuration the effect of the noise is removed at low and medium frequencies while at
high frequencies the orientation estimate is not as good as at the lower frequencies.
Control of the certainty in the presence of noise without disturbing the certainty in
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ORIENTATION ESTIHATION PROFILES

PROF ILE AXIS

Figure 3: Orientation estimation with two different filter configurations. Graph 1 illus-
trates 9 x 9 and 15 x 15 configuration at the two steps of the algorithm, while 2 is due
to 5 x 5 and 21 x 21 configuration.

the less noisy parts is a desirable feature for many applications. Profiles in Figure 4
show the certainty measures Cy; and Cy, of the estimation given by profile 1 in Figure
3. Profiles 1 and 3 correspond to Cy; with ¢=6 and c=1 respectively. Cys is given by
profile 1. Since this measure is not a relative measure like Cy,, it has a high degree
of frequency dependence. It is considerably more ’suspect’ outside of the pass band,
compared to the one given by profiles 1 and 3. A natural consequence of this is that
the fluctuations in the noisy part of the image are small with a low level certainty. The
frequency sensitivity band of the certainty parameter Cy, is due to the derivation in the
first step, and averaging in the second step. In the Fourier domain this corresponds to a
multiplication of an increasing and a decreasing function at low frequencies. The center
frequency can thus be varied by varying the scale of the filters at the two steps, Figure
5. This certainty measure can be used when it is desirable to control the orientation
measurements for the neighbourhoods with a priori known frequencies.

5 Conclusion

It is experimentally verified that the problem of orientation detection within a local
neighbourhood is possible to solve in the Fourier domain for the 2-D case. The problem
for the 3-D case is possible to solve in a similar way. The first section is sufficiently
general to handle the 3-D problem, while Section 2 uses some fundamental properties of
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Figure 4: Certainty measures for the profile 1 in Figure 3 Graphs 1 and 3 are due to
Cfy with ¢ = 6 and ¢ = 1 respectively, while 2 corresponds to Cps.

Figure 5: Frequency dependence of Cy;. Graph 1 corresponds to 15 x 15 and 21 x 21
configuration at the two steps of the algorithm. 2 corresponds to 5 x 5 and 19 x 19
configuration.
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the 2-D case and its relation to the complex z—plane to accomplish the representation
of orientation and the certainty of the estimation. The proposed certainties Cy, and Cy,
and the orientation 2¢, are shown to be computable by averaging the complex valued
image © which is the square of the gradient represented in the complex form. For the
first algorithm producing Cj; and 2¢g, 5 real convolutions are required, while in the
second algorithm producing Cy; and 2¢, 4 real convolutions are required. In both cases
the algorithms can, under the condition that f is bandlimited, be summarized in the
compact forms: %l); and m * (V * f)? with V being the complex gradient filter
given by D,, + 3D,,, and m the averaging filter. The resulting complex image can be
seen and interpreted directly on a colour TV monitor, if the magnitude of the image
corresponding to the certainty controls the intensity, and the argument corresponding
to the orientation controls the colour [7].

One of the reasons for first evaluating a 2-D implementation, apart from it having
less data compared to 3-D, is the difficulty of displaying the orientation of 3-D images
together with the certainties of the given orientation estimation. The experimental
work indicates clearly that, for higher dimensions, it is possible to evaluate the local
orientation accurately together with its certainty with controllable behaviour when noise
is present. The first section shows that even though there is no obvious linear symmetry
in the neighbourhood considered, the estimation found is optimal in the least squares

sense.

Acknowledgements

The authors would like to express their gratitude to the other members of the Com-
puter Vision Laboratory group for valuable discussions and to the STU for the financial

support.

61



References

[1] H. Knutsson: “Filtering and reconstruction in image processing.” Dissertation No.
88, 1982, Linkopings Studies in Science and Technology, Linkoping University,
Sweden.

[2] R. Lenz: “Optimal filtering.” Linkdping university, Internal Report of the Depart-
ment of Electrical Engineering, 1985.

[3] Robert A. Hummel: “Feature Detection Using Basis Functions.” Computer Graph-
ics and Image Processing 9, 1979.

[4] A. Wouk: “A course of applied functional analysis.” Wiley, New York, 1979.

[5] J. Bigiin, G.H. Granlund: “Central symmetry modelling” proc. EUSIPCO-86 part
2 pp 883-886

[8] J. Bigiin: “Circular symmetry models in image processing” Licentiate report no:
85 1986 Linkoping studies in science and technology

[7] G.H. Granlund: “In Search of a General Picture Processing Operator.” Computer
Graphics and Image Processing 8, 155-173 (1978).

[8] G.H. Granlund: “Hierarchical Image Processing.” Proceedings of SPIE Technical
conference, Geneva, April 18-27, 1983.

[9] P.E. Danielsson: “Rotation invariant linear operators with directional response.”
Proceedings of 5’th international conference on pattern recognition, December
1980.

[10] I.L. Meriam: “Statics.” John Wiley & Sons, New York, 1980.

62



A Overall results

Here we will present the pictures underlying the experimental results of the 2-D im-
plementation in this chapter. The results presented earlier correspond to certainty and
orientation estimations along a line and consequently of a one-dimensional nature. The
purpose of this appendix is to present the overall results. Figure 6 is included for refer-
ence. It represents the true orientation of Figure 2. It is coded in the same same way
as the figures below. In colour images every pixel is a complex valued number. The
magnitude of the complex number is coded as brightness of the pixel and the argument
of the number is coded as its hue. The certainty estimates of Figures 8, 9 and 10 are
given a close look along a line by Figure 4. It is clearly seen that the filter responses
illustrated in Figure 4 are independent of the inclination angle of the chosen profile
line. The orientation estimates of Figures 9 and 12 correspond to Figure 3. The ac-
curacy of the orientation estimate at higher frequencies is thereby demonstrated to be
dependent on the filter choice. Some care, in the form of resampling or interpolation,
should be taken when performing partial derivations. Similarly Figure 14 and Figure 15
correspond to Figure 5 and illustrate that it is possible to tune the algorithm to certain
frequency bands. Finally the results of the algorithms on a realistic image is given.
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Figure 6: Local orientation of the original image, which serves as a reference image for
the following colour pictures. The certainty, which is coded as brightness as before, is
set to maximum value in the bright area.

Figure 7: This image illustrates u = 2? = (% + ]%)2. The brightness represents |22
and the hue represents arg(u). It is obtained by a pair of 9x9 filters based on Figure 2.
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Figure 8: Local orientation estimation. The brightness represents %ﬁ%‘;’- and the hue
represents the orientation of the estimated linear symmetry, which is given by twice the
inclination angle of a line or an edge. It is obtained by filtering Figure 7 with a 15x15

filter.

Figure 9: Same as Figure 8 but (%;—:\\g-)s. This suppresses noise without disturbing the

pure linear symmetric neighbourhoods.
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Figure 10: The image illustrates the energy dependent existence of linear symmetry, that
is, the brightness represents A\; — ¢ and the hue represents the estimated orientation of
linear symmetry.

Figure 11: The image illustrates (% + -7%5)2‘ It is obtained using a pair of 5x5 filters.
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Figure 12: Indication of linear symmetry, with brightness representing i‘{;—ig— It is
obtained by filtering Figure 11 with a 21x21 filter.

Figure 13: The image illustrates (%ﬁ -- _7%%)2. It is obtained using a pair of 15x15 filters.

67



Figure 14: Indication of linear symmetry, with the brightness A; — A¢ and the hue
indicating orientation. It is obtained by filtering Figure 13 with a 21x21 filter.

Figure 15: Indication of linear symmetry, with the brightness A; — Ao and the hue
indicating orientation. It is obtained by filtering Figure 11 with a 19x19 filter. Observe
the change of frequency band sensitivity by comparing this figure with Figure 14. A
comparison along a line is given in Figure 5.
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Figure 17: Result of orientation detection. The image points represent the orientation
vector z;. Sizes of used filters were 3x3 and 9x9.

69



B The relation between the eigenvectors and the
complex z plane.

Here we will show that the orientation angle of a line represented by an eigenvector is
reduced to the simple form given by:

2¢0 = ta.n_l(\]zg — Jll: 2]12). (30)

This relation shows that the eigenvectors of the inertia matrix in the 2-D case are related
to the average of the complex number (3£ + i%)Z.

Putting
kz = J12

and
ky = Ju—'Ao
1 2 2
= Ju-— 5(»’22 +Ju— \/(Jzz — Ju)? + 4J%)

1
= SUn—Ju+ V(J22 — Ju)? +4J%) > 0 (31)

provides us the eigenvector corresponding to the least eigenvalue. Using double angle
formulas for sine and cosine functions, equation (14) implies:

2¢0 = 2tan"!(k;, k,) = tan"' (k2 — k2, 2k, k,). (32)
Utilizing (31)
kz— ki = Jf—(Ju—Ao)?
= Jfh— i—[(Ju — Ja2)* + (Jaz — Ju1)" + 4T, +
+ 2Ty — Faa)y (Faa — Ju)® + 45)
= ”%(Ju = Jzz)(Jzz —Ju+ \/(Jzz —Ju)?+ 4J122) = (Joz — Ju1)ky

is obtained. Thus

2¢0 = ta.n_l((.]n — Jll)ky,2kzky) = tan_l((Jn — ‘Ill)a2‘]12)

is obtained since k, > 0.
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Chapter IV

PATTERN RECOGNITION BY
DETECTION OF LOCAL
SYMMETRIES

The philosopher who frequently meets with
the divine and harmony will, as far as it
ts possible for man, himself become divine
and harmonious. But, like everybody else,

he will be exposed to slander.
Plato

71
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Josef Bigiin
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Department of Electrical Engineering
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S-581 83 Linkoping Sweden

Abstract

The symmetries in a neighbourhood of a gray value image are modelled by
conjugate harmonic function pairs. These are shown to be a suitable curve linear
coordinate pair, in which the model represents a neighbourhood. In this represen-
tation the image parts, which are symmetric with respect to the chosen function
pair, have iso-gray value curves which are simple lines or parallel line patterns. The
detection is modelled in the special Fourier domain corresponding to the new vari-
ables by minimizing an error function. It is shown that the minimization process
or detection of these patterns can be carried out for the whole image entirely in
the spatial domain by convolutions. What will be defined as the partial derivative
image is the image which takes part in the convolution. The convolution kernel
is complex valued, as are the partial derivative image and the result. The mag-
nitudes of the result are shown to correspond to a well defined certainty measure,
while the orientation is the least square estimate of an orientation in the Fourier
transform corresponding to the harmonic coordinates. Applications to four sym-
metries are given. These are circular, linear, hyperbolic and parabolic symmetries.
Experimental results are presented.

1 Introduction

Describing events in neighbourhoods of a gray value image is an increasing need in
Computer Vision. The most extensively studied event is the existence of lines and
edges. Also circular patterns have been subject to investigation [9], [5], [2], [3]. The
generalized Hough transform, [6], is general and accurate enough to find arbitrary curves
with the drawback of being computationally demanding. In the following we will give
a method for detection of a large class of symmetries in a gray value neighbourhood
which is a generalization of the work done in [3], [2] for circular symmetry.

tPROCEEDINGS OF PATTERN RECOGNITION IN PRACTICE III, Amsterdam, May 18-20, 1988;
Elsevier Science Publishers.
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By a neighbourhood of a point will be understood the image multiplied by a window
function placed at the point. For its behaviour to be satisfactory in practical situations
we will assume this window function to be a gaussian with a sufficiently large standard
deviation instead of a sharp window. But the method is not restricted to this choice.
In Section 2, a definition of symmetry will be given by means of a pair of conjugate
harmonic functions in which the neighbourhood coordinates are represented. After this
representation, the neighbourhoods with iso-gray value curves associated with a linear
combination of these chosen coordinates constitute the family of neighbourhoods for
which the detection is developed.

The detection is based on minimization of an error function in the Fourier domain,
but computed entirely in the spatial domain. In Section 3, this minimization process is
shown to be a convolution of the complex valued partial derivative image with a complex
valued filter. The result delivers an angle corresponding to a subclass of neighbourhoods
within the family of the neighbourhoods the a priori chosen function pair can handle.
By changing this angle, all patterns in the symmetry model can be reached which is
in analogy of a class of lines and edges with the same orientation. All lines and edges
are covered by changing the orientation of the latter class. In fact, in Section 4 it is
shown that lines and edges can be modelled in this general framework just as any other
symmetry.

Besides the orientation of the found symmetry, the minimization process delivers
a certainty defined by the minimum and maximum error. The higher the significance
of the found symmetry orientation for the neighbourhood, the higher this certainty
becomes. Also a non-energy dependent certainty measure is derived, which is useful for
pictures with different light conditions in different parts of the picture. In Section 4
applications and experimental results are given.

Four symmetry models are covered by using the general methodology given in Sec-
tions 3 and 4. These are circular, linear, hyperbolic and parabolic symmetries. The
conjugate harmonic function pairs are easily established by observing that all analytic
functions’ real and imaginary parts are such pairs. The analytic functions connected
with the symmetries mentioned are the elementary functions: log z, z, 22 and /z.

2 Modeling the local neighbourhoods by harmonic
functions

Let u(z,y) be a harmonic function defined in the neighbourhood, that is, it is continuous
together with its partial derivatives of the first two orders and satisfies the Laplace’s
equation: , )
—a—u + 3_u = 0. (1)
oz  0y?

Due to the linear character of Laplace’s equation, the linear combinations of the har-
monic functions are also harmonic. If two harmonic functions v and v satisfy the

Au =
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Cauchy-Riemann equations:

du Ov du dv

B 3y %:_6—; (2)

then v is said to be the conjugate harmonic function of u. The imaginary part of any
analytic function is the conjugate harmonic function of the real part. In general v does
not need to be a single valued function even if v is. Here we will assume both u and v
to be single valued. By definition, (2), a curve pair defined by:

¢ = u(z,y) (3)
n = v(z,y) (4)

are orthogonal to each other at their intersection points for any constants £ and 7.
For non trivial u(z,y) and v(z,y), (3-4) define a coordinate transformation which is
reversible almost everywhere.

Consider a neighbourhood around a point in a gray value image. Let this neigh-
bourhood be represented by the real function f;(z,y) which attains positive real values.
For simplicity we will assume that the origin of the Cartesian coordinate system in
which the neighbourhood is represented as being the considered point. Let 7 = (¢,7)*
be defined through (3—-4). The representation of the neighbourhood is then possible in
these coordinates and yields f;(z,y) = f2(&,n).

Definition 1 The local neighbourhood f(z,y) represented in its local Cartesian coordi-
nates, 1s said to be symmetric with respect to the coordinates (£,7n)* if there exists a one
dimensional function g so that f(z,y) = g(a& + bn) for some real constants, a and b.
Here (&,1)" = (u(z,y),v(z,y))! and v is the harmonic conjugate function of u.

This definition suggests that the iso-gray value curves of a neighbourhood, which is
symmetric with respect to a coordinate pair (&,7)%, are parallel lines in this coordinate
system. In the following we will develop a method to select all neighbourhoods of
an image, which are symmetric with respect to an a priori chosen local coordinate
transformation given by the harmonic pair (¢,7)¢ = (u(z,y),v(z,y))!. It may be thought
that every neighbourhood is first represented in its local Cartesian coordinates and
then represented in the transformed coordinate system which in turn tested whether
its iso-gray value curves are parallel lines. Of course we will not suggest doing all
these time-consuming transformations in practice but rather their equivalents which
are computationally easy to evaluate. In general a neighbourhood is not symmetric
with respect to an a priori coordinate transformation. But when it is symmetric, we
will observe that the energy of the neighbourhood is concentrated to a line through
the origin in its Fourier transform domain corresponding to the new coordinates. Our
approach will be to check whether there exists a line concentration in the local Fourier
domain obtained by means of the new coordinates. But before doing this, we should
specify what we mean by this special Fourier transformation and a line concentration

in it.
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Let the local image be represented by f(&,7n), then the corresponding Fourier trans-
formation is defined as:

Flw,e) = [ [ expl-i(wé + n)lf(€,n)dédn (5)

Here we assumed that ¢ and 7 have the range [—co,00]. For cases where either of
the variables have a finite range, f is put to zero outside its value set. Then the
corresponding transform variable ( w or ¢ ) constitutes a numerable periodic discrete
set (Fourier series expansion in that variable). In the following, all integrations in the
spatial domain should be interpreted in this sense. The inverse transform is obtained
through:

7gm) = (2m)® [ [ explifwe + sn)lFw,¢)dwd. (©

where one of the integrations is changed to a summation over a discrete periodic set if
& or n has finite range. In the following, all integrations in the Fourier domain should
be interpreted in this sense.

Theorem 2 A symmetric neighbourhood with respect to the coordinates (&,n)t, that is
f(a& + bn), has a Fourier transform, in these coordinates, which is concentrated to a
line through the origin:

(F)w,¢) = 2—17r-6(bw ~a¢) [~ J(0)eap(~it(aw + bc) de ()

—00

where 6 1s the dirac distribution, and the symmetry direction vector, (a,b)t, has the

modulus of unity:
Vat+b =1. (8)

The proof of the theorem is straight forward and will be omitted here, [1]. As al-
ready mentioned, the initial position for determining the symmetry is the corresponding
Fourier domain. Any neighbourhood in the image will then have a Fourier transform
which is not necessarily concentrated to a line through the origin. We will fit the best
line to the corresponding Fourier domain in the least square sense. If there exists a
symmetry according to an a priori model then the error will be low. The greater the
size of the minimum error, the more degradation from this symmetry will be observed.
To any neighbourhood, a line through the origin of its Fourier transform, or rather its
orientation, will be given together with the minimum error expressing the significance
of the found symmetry. The degradation of F(w,¢) from a line tk; = t - (cosf,sin6)"
with ¢ € R, or the error in the least square estimation, will be given by:

EB@0) =[] : / : a2 (k, ko) |F(B)[" duwds. (9)

Here d?(k,ks) is the squared Euclidean distance between the vector k = (w,¢)* and
ks = (cos8,sinf)*, of which the former symbolizes the transposed coordinate vector
in the special Fourier domain, Figure 1. Without proof, [2], we mention the following

theorem.
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Figure 1: The figure illustrates the Euclidean distance in the special Fourier domain,
d(k,ks), between the coordinate point k and the axis denoted by k.

Theorem 3 The double angle minimizing E(0), e.g. 20 1s given by the formula:
20 i = tan~}(w} — 62, 2p2) (10)
where
i = [T [T ) duds
2= [ [T 1P, dudg

/°° /°° cw |F(w,¢) | dwds.
—00 —00

The error corresponding to the line given by 0., ts obtained through

1
E(Omin) = 5[w3 + 67 — V(Wi — <) + 4703 (11)

Moreover, the line corresponding to the angle mazimizing the error E(6), is orthogonal
to the line minimizing the error. The mazimum error is given by:

1
E(Omaz) = 5[wi + g3 + /(Wi — ¢3)* + 4P])- (12)

Since we know that the least square error line passes through the origin, it is possible
to specify it by a single real variable. We will choose the label 26 for a line given by

Pd
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t- (cosd,sin 6)¢. Labelling a line by the angle of 20 instead of # is more suitable since 20
maps 6 and 0 + 7 to the same angle. This is a desirable property, since we do not want
to claim that we have found two different lines when we obtain two angles differing by
.

The least square error E(0min) is a positive number which we really cannot interpret
if it is not related to another quantity, since we should know what is a large error and
what is a small one. One way to do that, is to consider the quantity:

Cp1 = E(Omaz) — E(0min) =/ (wi — ¢3)* + 4p] (13)
which can be used as a certainty measure for the found symmetry. This is simply a
quantity which measures how much better a best fitted line is compared to the worst
line. It is non-negative and is large for neighbourhoods possessing the symmetry under
consideration and it decreases smoothly for the neighbourhoods degrading from this
type of symmetry. This definition allows us to consolidate the obtained orientation and
the corresponding symmetry to a complex number 2y, [8]:
21 = wﬁ == nﬁ + ind = Cfl €exp (2.20,,“',,). (14)

Another way to interpret E(0min) is to use
E(0 — E(0.min

(Oraz) — B(0i) )
E(omaz) + E(omin)
as a certainty measure. Unlike Cy;, it is not energy dependent and Cy, =1 if and only
if E(0min) = 0 which is the condition for a truly symmetric neighbourhood. Moreover
it varies between O and 1. The closer this measure is to 1 the more significant the
found symmetry is. If desired, Cy; and 26,,;, can be consolidated to a complex number

2y = Cpy exp 120 as before.
If the two symmetry models specified by the local coordinate transformations

(&1,m) = (va(z,v),v1(z,9)) (€2,m2) = (va(z,9),v2(z, ) (16)
are given, then can we relate the two certainty measures obtained for a neighbourhood?
That is can we say that one symmetry model describes the neighbourhood better than
the other when the certainty for one of them is higher? Since equality occurs for
Css < 1 only when we have a truly symmetric neighbourhood and the right hand
side is independent of the chosen transformations describing the symmetries, the two
certainties of type Cy, can be related to each other. The following theorem will help us
to answer the question when the certainties are of Cy; type.

Theorem 4 (Energy Conservation) The sum of the mazimum and the minimum
error is independent of the coordinate system chosen for symmetry investigation of a

given neighbourhood f:

sz =

EOmss) + EOmin) = [ [ (02 4 ¢%) |F(r) dug (17)
= [T Ghr e Ghyaean (18)
= /_‘: _D:o(%)z—i—(%)zda:dy. (19)
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The Fourier transform of f in the new coordinates is F as before.

Proof:The first equality is obtained by theorem 3 the second is provided by the Parseval
relation. To prove the third relation we utilize the chain rule:

df 8fdx  ofdy
¢ 9z dE ' Ay aE

dy
an
dy

a(&,n) _( % ‘3—5)

and then utilize the fact that the Jacobian

a(&m)a (5
8zdy

SIS S
>

is given by

dzdy a —Z—S g—s

since ¢ = u(z,y) and n = v(z,y) constitute a harmonic pair fulfilling the Cauchy-
Riemann equations (2), almost everywhere. Remembering the relation

a(z,y)_ a(&n) _1_ 1 g-f? _g%
8¢dn ~ \ dzdy _(ﬁ)z_;_(?_{)z 9 ¢

oz ay dy oz

we obtain

of _ 1 ofoc 1ot

o0& (8" + (8?9292 dyay”
Similarly

af 1 (af ¢  of 65)

an (3—5)2 i (g—s)z dzdy Oyox
is obtained. Thus

o\, Of L0 o

(36) +(6n) =m((ax) +(@))

together with the variable substitution according to (3) and (4) concludes the proof.
It follows from the theorem even the certainties of type Cyy, can be related to each

other since
0 S Cfl S E(gmaz) T+ E(omin) (20)

and the right hand of the inequality is independent of the choice of the transformation
for description of symmetry. Equality occurs only when the neighbourhood is truly
symmetric with respect to the chosen coordinates. The closer Cy; is to this common
upper bound, the better the chosen transformation describes the underlying symmetry.

The certainties and the orientation above are evaluated in the Fourier domain cor-
responding to the a priori chosen coordinate transformation. By using the Parseval
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relation it is possible to transfer these evaluations to the spatial domain:

i = (e [ [T (GEdean (21)
w o= et [0 (ﬂ)zdgdn (22)
pa = (2m) / / 6f¢9f (23)

3 Detection of local symmetries

In the previous section we have presented a model by which we could test the symmetry
with respect to a fixed coordinate system in the entire image. Although (21-23) presents
a way to evaluate the quantities necessary for the symmetry test of a neighbourhood
in the spatial domain, it is still cumbersome to evaluate these integrals for every neigh-
bourhood. The chain rule applied to these formulas along with the Cauchy-Riemann
equations, (2), establishes:
(o] {e ]
#y = / ﬁ + za—f) exp[—12 arg(% + i%)]dmdy. (24)
By this result, z; the unit incorporating the certainty and the found symmetry
orientation, is ready for aproximation by discrete image data. Assume that f is a
bandlimited function, that is, its Fourier transform in the Cartesian coordinates is such
that it vanishes outside a bounded region. Then it is possible to reconstruct f from its
discrete samples. The same is true for f’s partial derivatives with respect to z and y,
the functions obtained by f’s products and sums with other bandlimited functions, etc.
Assume that the local neighbourhood is such a bandlimited function. Then for
sufficient dense discretization
00 [ee]
a=2 s +if) [ [ mi) exp|—i2 arg(g—E +i%1azdy  (29)
7 —o00 4 —o0 T ay
is evaluated from the samples f,; and f,;. The latter are the values of the functions
4/ and % at the discrete image position 7;. The image given by (f; + ¢f,;)* will be
referred to as the partial derivative tmage. The analytic function u; will be called the
interpizel function since it is the function which makes it possible to evaluate values
between the image pixels. It is the function obtained by inverse Fourier transforming
a region function which is 1 inside of a region and 0 outside of it. The region itself is
the region in which the Fourier transform of the bandlimited function (3£ + i %)2 does
not vanish. Even if a gaussian is not an ideal inter pixel function in the strict sense it
is proposed to utilize as p; to obtain reasonable filter sizes.
Consider (25), which is a convolution with a filter with the coefficients:

. o aJ .0
wi = [ uy(r) exp - i2arg(5F + i) dzdy. (26)
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The filter coefficients decrease rapidly as ||7;|| become large when p; is chosen as:
ui(7) = exp (= B|I7 — 7;1*) exp (— ef|7[*). (27)

Here a controls the size of the neighbourhood and B controls the low pass character
of the filter. The image should be multiplied by the gaussian term containing a to
define a neighbourhood, but for convenience it is incorporated to the interpixel function,
resulting in the same effect.

Since 22 = 21/[E(0maz) + E(0min))] and the denominator is independent of the chosen
coordinate system it is easy to obtain z; from 2z;. We will not consider the derivation of
the error sum in detail. We will only mention that it is a gaussian filtering of || %-H'%HZ
and refer to [2] for further details.

4 Applications and experiments

To apply the method derived above, a model for the symmetry in terms of harmonic
functions and a partial derivative image,

(ot ifss) (28)

are required. A special technique is not required to obtain f,; and f,;. Many methods
exist in the literature for this purpose. However an efficient and easily implemented
one is to convolve the image by the partial derivatives of a gaussian even though this
has some drawbacks. In the experiments we have made this choice to obtain the partial
derivative image.

For test purposes we define a one dimensional function g as

g(z) = (1 + cosz)/2 (29)

which is positive. The parameter z of this one dimensional function is replaced by
a& + bn to illustrate the different symmetries given below.

1. The function log z, except for the origin, is analytic and single valued if one defines
the principal branch as the value set. Since the imaginary part of an analytic
function is the conjugate harmonic function of its real part, then

logz =Inr+1p (30)
where r = 2|, p = arg(2) and z is the complex variable z + 7y. Thus

& = Inr
n =

is obtained. The only singularity is at the origin and does not cause any problem
since (21)-(23) are not affected by the values of the integrands at enumerable
points (Lebesgue integrals, [12]).
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Figure 2: The figure illustrates the iso-gray value curves of a)-b) the circular symmetric
harmonic function pair c)-d) linear symmetric harmonic function pair.

Figure 2 a) illustrates a neighbourhood described by g(a¢) and Figure 2 b) illus-
trates g(bn). According to the previous sections all neighbourhoods, with iso-gray
values being a + bn with any real constants a and b, are included in the sym-
metry model associated with the coordinates & = Inr and n = p. We will call
this type of neighbourhood circularly symmetric . Some of the neighbourhoods in
this model are given in Figure 3. Figure 7 illustrates the result of the convolution
proposed by (25) with the filter coeficients v/ which are obtained by (26),

v = /(;oo /oh 1 (F) exp(—12p)rdrdp. (31)

A plot of these complex valued coefficients is given in [2]. The intensity of the
picture in Figure 7 is the certainty in the symmetry, while the colour indicates its
orientation, that is, the double angle representation of the inclination angle of the
line a& + bn.

The certainty at the borders of the test blocks is approximately half the amount
of the block centers. Green colour represents circles, which is a representation
of the angle 0 and is mapped to the integer O, while red represents star-shaped
neighbourhoods which is a representation of the angle 7 and is mapped to the
integer 127. (See the scale at right in Figure 8 for angle representation.) These two
neighbourhoods are represented by two different complex variables: the first one
has the argument zero, the latter the argument 7. The fan-shaped neighbourhoods
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Figure 3: The figure illustrates some neighbourhoods included in the circular symmetry
model. The orientation of the model corresponds to the “twistedness” of a neighbour-
hood and is well-defined.

are mapped to z; with im 2z; > 0 or im z; < 0 in accordance with the direction
of rotation. The amount of “twistedness” that is double the inclination angle of
af + bn, is continuously mapped to the argument of 2;, which is colour. The dark
areas do have an orientation estimate but since the certainty level is too low in
these areas, the visibility is automatically suppressed due to the low intensities. An
experiment with natural images ha been made. The circular symmetry detection
is utilized in the classification tasks. Figure 5 illustrates a sea bottom image with
sea anemones and their identification only by the circular symmetry image and
the original image. Box classification is used.

2. Another pair of harmonic functions, the simplest one, is obtained by the analytic
function z:

z=z+1y=£E+1n (32)

This is simply a model of neighbourhoods having edge or line forms. It delivers

the orientation of these lines together with a certainty, [1]. The iso-gray value

curves generating these symmetries, (linear symmetries), are given in Figure 2 c)

and d), that is g(a¢) and g(bn). The necessary filter turns out to be real and a

gaussian, [1].
3. Choose the analytic function 2? to generate the harmonic pair

2=zt —y*+i2zy=E¢+1p (33)
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Figure 4: The figure illustrates some neighbourhoods included in the hyperbolic symme-
try model. The orientation of the model corresponds to the orientation of the orthogonal

asymptotes and is well-defined.

generating a symmetry which is given in Figure 5 a)-b). We will call this type of
symmetry hyperbolic symmetry.The corresponding filter coefficients are given by:

vl = /ooo fozw 1 (7) exp(i2¢p)rdrdp. (34)

which is the complex conjugate of the filter obtained for circular symmetry, (31).
A number of the neighbourhoods which are included in this model are given in
Figure 4. The function generating these is g(a¢ + bn) where & = z? — y% and
n = 2zy. The neighbourhoods are generated by changing a and b as before.
The orientation obtained in this symmetry obviously corresponds to the angle of
rotation of the asymptotes. The two asymptotes are orthogonal and make this
operator useful for detection of crosses in the natural images. The result of the
symmetry detection is given in Figure 8.

4. Yet another symmetry will be generated by the real and the imaginary part of the
analytic function /2, (the principal branch of the log is utilized):

Vz= \/Fexp(ig) = \/?cos(—i—) + z'\/;sin(%) = £+ 1. (35)

The symmetric neighbourhood pair generating this symmetry model is given in
Figure 5 a)-b). The corresponding filter coefficients are given by:

vl = /000 /027 1i(7) exp(—tp)rdrdp. (36)
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Figure 5: The figure illustrates the iso-gray value curves of a)-b) the hyperbolic sym-
metric harmonic function pair ¢)-d) parabolic symmetric harmonic function pair.

This operator is observed to be useful in finger print images to detect patterns
having parabolic symmetries.The linear combinations of these coordinates, a&-+bn,
result in rotated versions of the parabolas shown in Figure 5 a)-b).

The list of symmetric patterns detectable by the formula (25) can be made long. It
is sufficient to know one of the coordinate curves or its gradient, to be able to construct
a symmetry model for the family of curves associated with this curve. In fact, since
the the coordinates are assumed to be harmonic and one is the conjugate of the other
makes it possible to use the theory developed for harmonic and analytic functions. For
example if a coordinate curve function ¢ = u(z,y) is known on a circle with radius R
and is harmonic within the circle then the other points on the disc are possible to obtain
by Poisson’s formula, [7]:

1 RZ = lZo[2
u(z0) = ﬂ/p[:x Wu(z)dso. (37)
We have already used the fact that the real and imaginary parts of an analytic function
are harmonic and the imaginary part is the harmonic conjugate of the real part.

The results of experiments with energy independent certainty, Cy,, are deliberately
left out since these are very similar to the results in [1], [2]. However we can comment
on the implementation of equation (15)should be made. A threshold value should be
specified for the entire image, telling the level below which numerator is considered zero.
For values below this threshold the obtained certainties are set to zero. This effectively
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eliminates the division by zero problem as well since the denominator is greater than
the numerator.

5 Conclusion

A method to model symmetries of the neighbourhoods in gray value images is derived.
It is based on the form of the iso-gray value curves. It is shown that it is possible to
check in a special Fourier domain whether all iso-curves in a neighbourhood can be
described by an a priori chosen harmonic function pair. However, it is also shown that
the equivalent procedure can be performed in the spatial domain without performing a
local Fourier transform, which is computationally demanding. For every neighbourhood
a complex number is obtained through a convolution of a complex valued image with a
complex valued filter. The magnitude of the complex number is the degree of symmetry
with respect to the a priori chosen harmonic function pair. The degree of symmetry
has a clear definition which is based on the error in the Fourier domain. The argument
of the complex number is the angle representing the relative dominance of one of the
harmonic pair functions compared to the other.

Since the a priori chosen harmonic function pair is such that the curves associated
with these, intersect in right angles (except for some singularities), it is possible to rep-
resent a neighbourhood in this curvilinear coordinate system. And hence the problem
becomes an edge detection problem in another coordinate system. The obtained ori-
entation corresponds then to the orientation of an edge and therefore has a geometric
interpretation. An advantage of using harmonic functions in symmetry descriptions,
beside their ability to lead to easily implementable methods, is that one can use many
powerful results obtained for analytic functions. The fact that the sum of the maxi-
mum and minimum errors for a given neighbourhood is invariant under different tests of
symmetry models has potential advantages which can be used to prefer one symmetry
model to another in updating the description of the neighbourhoods.
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Figure 6: The image is a sea bottom photograph. The objective is to identify the sea
anemones. The labels are obtained as a result of box classification.
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Figure 7: Result of circular symmetry estimation on the circularly symmetric neigh-
bourhoods given in figure 3. The intensity indicates certainty while the colour indicates
orientation.
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Figure 8: Result of a hyperbolic symmetry operation on the corresponding neighbour-
hoods given in Figure 4. On the right the colour scale used to map [0, 27| to the integers
{0..255}. The mapping is modulo 2.
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Chapter V

OPTICAL FLOW BASED ON
THE INERTIA MATRIX OF THE
FREQUENCY DOMAIN

So what 1s time? If nobody asks me I know.
If I try to ezplain it to someone who asks
me I do not know... ... Do you command
me to agree if someone says that time is a
motion of a body? Do not command! For
I hear that no body moves except in time:
this you tell me.

St. Augustine
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OPTICAL FLOW BASED ON THE INERTIA
MATRIX OF THE FREQUENCY DOMAIN*

Josef Bigiin, Gosta Granlund
Department of Electrical Engineering
Computer Vision Laboratory
Linko6ping University
S-581 83 Linkoping Sweden

Abstract

An algorithm which utilizes the behaviour of the frequency domain to obtain
the optical flow is presented. The solution is based on the inertia matrix of the
Fourier domain corresponding to small regions of the observed visual field. It gives
the optimal velocity vector for the regions together with a confidence measure for
the estimates. Although the method is Fourier domain based, all computations are
carried out in the spatio-temporal domain as filterings with separable filters. The
frequency sensitivity associated with both spatial and temporal domain is possible
to control by utilizing different filters, which is a property of human perception of
motion according to current understanding of neurophysiology and psychophysics

of motion.

1 Introduction

In recent years an increasing amount of the computer vision research effort has been
devoted to motion. This is partly because of the powerful computers that are available.
It is also believed that many important clues about the environment can be obtained
by using motion analysis of each region of the visual field. One of the tools developed
is called optical flow and refers to the two-dimensional velocity field of the visual field.
There are gradient based approaches as well as other spatio temporal filter response
approaches to solve the optical flow problem, [5], [4], [6]. An extensive list of references
relating to the motion analysis of images can be found in [7].

In the following we will report about a gradient based method which is actually an
application of the principles derived in [1]. The method can be thought of as Fourier do-
main based, even though all computations are finally carried out in the spatio-temporal
domain. The obtained velocities are determined by a closed solution of an eigenvalue

*PROCEEDINGS OF SSAB SYMPOSIUM ON IMAGE PROCESING, Lund, March 10-11, 1988.
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Figure 1: The figure illustrates a small region of the visual field in which a translation
of a line occurs.

problem associated with the scatter matrix of the frequency domain. This guaran-
tees the optimality of the velocities found. The differences in the eigenvalues are used
as statements of certainty. The next section discusses the formulation of the optical
flow problem and its relation to the frequency domain. Moreover the solution of the
problem in terms of the inertia matrix of the frequency domain is proposed. The sec-
tion on Ezperimental results reports about an implementation of the algorithm and the
experimental results of an image of a rotating fan with different rotation frequencies.
The algorithm turns out to be implementable with a relatively small effort, using the
separability of the filters and the closed solution of the eigenvalue problem.

2 Formulation of the problem

Let f(z,y,t) represent the local intensity function registered by a visual system. The
parameters = and y represent the spatial coordinates of the visual system while ¢ repre-
sents the time variable of the system. By the local intensity function or a neighbourhood
we mean the product of a smooth window function and the intensity function. Assume
that the local intensity function is generated by a line translated in a constant direction
and velocity according to Figure 1.

The local intensity function, f, then describes a plane. The velocity component
of translation parallel to the line is not possible to obtain. This natural phenomenon
is often referred to as the aperture problem. The velocity component of translation
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Figure 2: The figure illustrates the geometry used to derive the 2D velocity vector from
the 3D normal vector associated with the translation.

perpendicular to the line is implicitly given by the normal vector of the plane. If
this vector is given by k = (kz, ky,k:)! then using geometry as indicated in figure 2,
the velocity, = (vs,vy)?, of translation perpendicular to the line is obtained by the
formulas:

keoke
T TEiRE 1)
ke
T TRt )

As expected, the velocity vector 7 does not change when % is replaced by —k.

When the local intensity function f is generated by translation of a line the formu-
las (1) and (2) can be used to obtain the local velocity field. By the local velocity field
is understood a “representative” velocity of a neighbourhood. However, k is not known
in general, and an immediate way to find an estimate of it is to estimate k with the
gradient of the scalar field f. But this intuitive estimation is not always meaningful
for a general local intensity function, since we can not expect it to be a perfect plane.
Moreover, neither is it clear what a representative velocity of such a neighbourhood is.
If the local image degrades severely from a perfect plane, say that it is like a cloud,
then motion no longer consists of translation of a single line. Obviously, when the local
optical flow consists of a perfect plane, the estimation £ = V f works. But what do (1)
and (2) estimate in terms of physical observations when f is no longer a plane? The
question of when to trust such an estimation of the velocity, and when not to, has to
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be raised. This implies that an estimation of the velocity of a neighbourhood needs a
reliable certainty measure informing about the credibility of the estimate.

In the following we will model a general local intensity image using sine and cosine
functions. This is equivalent to the Fourier transform of the local image. Without
proving it, see [1], we will state that if the graph of the iso-values of the intensity
function f consists of parallel planes, then the energy is always concentrated to an
axis through the origin in the Fourier transform domain. Any local intensity function
corresponding to the visual world has a representation in the frequency domain. Thus
one can reformulate the problem of finding a representative velocity for the local image
as the problem of fitting an axis through the origin of the Fourier representation of the
local image. The reason for reformulation of the optical flow problem is of course to
concretize the rather vague concept of a “representative” velocity of a local image. We
will fit an axis to the Fourier domain in the least square error sense, which corresponds
to solving an eigenvalue problem in the spatial domain. The 3X3 matrix involved in this
eigenvalue problem is the inertia matrix of the Fourier transform of the local intensity

function, and is found to be
J = Itrace(A) — A

with
JGE? S5t J3Lst
a=|gua gy gl = [(viwy) 3)
afao afa a3
Ioea Jam JG)

The least square error axis in the Fourier domain is given by the eigenvector corre-
sponding to the least eigenvalue of J. In fact, given J for a neighbourhood f, the error
or the inertia with respect to any axis k € R® is given by E(k) = k'Jk. There is no
risk of E(k) being negative, since J is positive semi-definite. Thus the eigenvalues of
J are the errors obtained when the corresponding eigenvector is fitted to the Fourier
domain. If the least eigenvalue is zero with multiplicity one, then one can be sure that
the local intensity function corresponds to a translation of an edge. Another way to
interpret the eigenvalues is to consider the difference between the second least and the
least eigenvalue. If this difference is small, then one can say that the error obtained by
an alternative axis is not much worse than the optimal one. Consequently, when this
difference is large, one cannot only say that the axis found is optimal, but also that the
energy in the Fourier domain is concentrated on the optimal axis.
Label the eigenvalues of A in ascending order with A; as:

A2>A 2220
and the corresponding eigenvectors by s, @i, %o. Since A%; = A;%;
Ju; = (Itrace(A) — A)u; = N, (4)

is obtained, where X} is given by
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Here the relation
trace(A) = A11 + Azz + A33 = Az + Al + Ao

is utilized. Thus the matrices J and A share the same eigenvectors with the co.
sponding eigenvalues being the primed and unprimed lambdas satisfying equation (-
Finding the eigenvector corresponding to the least eigenvalue of J is the same as fina
ing the eigenvector corresponding to the largest eigenvalue of A. The certainty measure
representing the reliability of the obtained motion direction is proposed to be

Cfl = A’l = A:) = Az =S Al' (7)

The images are represented in computers by a discrete sample of data. Assuming
that the sampling is dense enough, one can reconstruct the local image as well as its
partial derivatives from the discrete data. The reconstructibility assumption is that the
images as well as the products of their partial derivatives are possible to reconstruct
from their discrete samples by means of an interpolation function. For example the
matrix element as3 is possible to compute by means of the reconstructibility assumption

according to:
/°° /°° / )2dzdydt
/-: /_:, /_0; Z fini(z,y, t)dzdydt
i
= Z:féwj-
i

ass

Here f;; is the value of %{— at the discrete point 7;, and p; is the interpixel or the
interpolation function associated with the reconstructibility assumption. The other
elements of A can be evaluated in a similar way. Moreover all matrices A,, associated
with the neighbourhoods around the discrete image points 7, can be evaluated through
simple convolutions, which turns out to be simple averaging, [1]. For compactness in
the frequency and the spatial domain, the p;’s are chosen as gaussians resulting in
smooth filter coefficients. To be able to obtain the elements of the scatter matrix, A,
the gradient image

Vf(zj,y5,t5) = (fzaafwaft:) (8)
is necessary. If the gradient image is known, then the scatter matrix associated with a
local image is the local average of V f(Vf)%

= (V£ (25,45 )V (55 ¥5> t3)]")- (9)

The gradient image V f; is of course also possible to estimate through convolutions
with partial derivative filters obtained through the same technique, resulting in discrete
values of the partial derivatives of three-dimensional gaussians. In the experiments
below this technique is utilized. It should be mentioned that V f; and A; can be obtained
using recursive filters as well as FIR filters. However, we have only considered FIR filters
in our preliminary implementation.
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Figure 3: The flow chart illustrates the implemented algorithm.

3 Experimental results

To test the proposed method we have implemented the scheme given in Figure 3 on a
GOP-300.

1. The first step of this implementation starts with convolving the discrete intensity
function f(z;,y;,t;) with three partial derivative filters. The filter coefficients in

the gradient filter are chosen as Vg(7;) where
9(7;) = exp(—B(z% + y] + t2)). (10)

Here the spatio-temporal variables z;, y;, t; are assumed to be scaled appropriately
to accomplish a desired relation between the spatial and temporal variables. Then
[V£;][Vf;]t is obtained, where V f; is the three-dimensional vector of the three par-
tial derivative convolutions. Since the result is a symmetric matrix of dimension
three, only six of the matrix elements need to be stored. The spatio-temporal fre-
quencies in which the algorithm produces reliable results are controlled by the size
of the gaussian in equation (10) through B. In the experiments the convolution
with the gradient filter is implemented as a FIR filter. The three partial derivative
filters are the truncated versions of the gradient of a gaussian. The truncation is
such that at the borders of the filters the magnitude of the filter coefficients is less
than 1 % of the maximum magnitude of the filter coefficients. In the following
results the used filter was 5x5x5. The fact that the gaussian filters are separable
is utilized, resulting in a speed-up of the algorithm.
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Figure 4: The figure illustrates the rotated fan. All black and white figures have an
intensity dynamic range consisting of the integers in the interval [0,255].

2. Convolve the matrix image obtained in the previous step by a gaussian and obtain
the scatter matrix, A;, of every point. The size of the gaussian controls the size
of the neighbourhood for which a representative velocity is to be found. In the
experiments the size of the gaussian was 7x7x7. The separability is utilized as
before. The eigenvector corresponding to the largest eigenvalue is utilized as k&
in equations (1) and (2) to obtain the local velocities. The certainties in these
velocity estimations are obtained by evaluating the difference of the eigenvalues of
the scatter matrix according to (7). Without writing down the solution it should
be mentioned that the eigenvalues and eigenvectors for 3x3 matrices are possible to
obtain in closed forms. This enables the algorithm to find the optimal orientation
without implicit optimization techniques as is the case when a set of responses of
the Gabor filters are used, [4].

As a test image we have used the one in Figure 4 which illustrates a fan produced
according to the formula:

[1+ cos(72 tan™?(z;,y;))] /2. (11)

It is rotated and 64 frames of the motion are observed under slow-down of the
rotation, to study the response in different spatio-temporal frequencies. If the rotation
velocity is kept constant, the intensity at any particular spatial position on the fan
frames describes a sinusoid. The slow-down of the rotation is such that the sinusoids in
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Figure 5: The figure illustrates the direction of velocity estimation.

the time direction have a frequency decreasing as o(1/t), chosen to match the natural
spatial frequency slow-down, o(1/r).

Figure 14 illustrates the obtained velocities for one frame. The intensities are pro-
portional to the obtained velocities. Figure 5 illustrates the direction of the velocities.

The interval [0,27] is mapped to integers in the interval [0,255], which represent the
available intensity values in all images. Figure 6 illustrates the obtained certainties for
the same frame.

Figure 7 illustrates the cross-section of 64 observed frames along the horizontal
midline of the frames. The slow-down of the motion is visible and the decrease in
frequency is illustrated in Figure 10, which is the graphical illustration of the intensity
variation of a point along the time axis. Figure 15 illustrates the velocities along the
same cross-section. The intensities represent the magnitudes of the velocities. Figure 8
illustrates the direction of the velocity. The intensities are proportional to the angles
[0,27]. The certainty image which is illustrated by Figure 9 predicts the confidence
in the velocity estimations in Figures 15 and 5. It is clearly visible that the results
are not reliable at very high spatial frequencies, which is a consequence of insufficient
sampling density. This certainty image can also be used as a tool to determine the
frequency sensitivity band of the filters. The iso-values of 9 describe curves like ¢/r.
This indicates that the product of temporal and spatial frequency is an important factor
which influences the frequency sensitivity of the used filters.

Figure 11 illustrates the velocity profile along a horizontal line in Figure 14 which
clearly shows a linear behaviour as it should. The irregularities at the boundaries are due
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Figure 7: The figure illustrates the obtained horizontal cross-section of the fan along
the time axis.
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Figure 8: The figure illustrates the obtained horizontal cross-section of the rotation
direction along the time axis.
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Figure 9: The figure illustrates the obtained horizontal cross-section of the certainty of
velocity vector along the time axis.
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Figure 10: The figure illustrates the profile of the figure 7 along the indicated line.

256

Figure 11: The figure illustrates the velocity estimation along the line in figure 15.
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Figure 12: The figure illustrates the direction of velocity estimation along the line in
figure 8.

to insufficient sampling density as well as to the discontinuities at the boundaries and
are indicated to be less relevant by the certainty image. Figure 13 shows the certainty
profile corresponding to Figures 14 and 12, of which the latter describes the direction
of the velocity. The direction is described by the argument angle of the velocity vector
and attains two constant values differing by half of the representation dynamic range,
128 which corresponds to 7. The source of the error at the boundaries is the same as
in Figure 11. The optimal spatial frequency response at a given temporal frequency is
visible as a top in Figure 13, the position of which can be controlled by changing the
size of the gradient filter.

4 Conclusion

The presented experiments show that frequency domain based minimization of the error
function or the moment of inertia gives good estimations of the optical flow together
with a confidence measure. The presented algorithm, which is entirely spatial domain
based, implicitly performs the least square fitting through averaging and eigenvalue
analysis. The averaging over a functional of the gradient is a property which is shared
by symmetry descriptions other than linear symmetric, [2], [3]. This is interesting
since the optical flow problem is considered as a part of symmetry description of a
neighbourhood. It can be shown that the obtained estimate of the the optimal axis
is also the normal of an optimal plane parallel to which a translation of the entire
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Figure 13: The figure illustrates the certainty estimation along the line in figure 9.

neighbourhood can be performed with minimal error in the £% sense. The closed form
solutions of the eigenvalue problem and the separability of the filters contribute to a
decrease in the execution time compared to the iterative methods and non-separable

filters.
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Figure 14: Optical flow estimation for one frame. Intensity represents the magnitude
of velocity, hue represents the direction of velocity.
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Figure 15: Horizontal cross-section of the fan velocity along the time axis.
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