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Abstract

The problem of detection of orientation in finite dimensional Euclidean spaces is solved
in the least squares sense. In particular, the theory is developed for the case when such
orientation computations are necessary at all local neighborhoods of the n—dimensional
Euclidean space. Detection of orientation is shown to correspond to fitting an axis or
a plane to the Fourier transform of an n—dimensional structure. The solution of this
problem is related to the solution of a well-known matrix eigenvalue problem. Moreover,
it is shown that the necessary computations can be performed in the spatial domain
without actually doing a Fourier transformation. Along with the orientation estimate, a
certainty measure, based on the error of the fit, is proposed. Two applications in image
analysis are considered: texture segmentation and optical flow. An implementation for
2-D (texture features) as well as 3-D (optical flow) is presented. In the case of 2-D,
the method exploits the properties of the complex number field to by-pass the eigenvalue
analysis, improving the speed and the numerical stability of the method. The theory is
verified by experiments which confirm accurate orientation estimates and reliable certainty
measures in the presence of noise. The comparative results indicate that the proposed
theory produces algorithms computing robust texture features as well as optical flow. The
computations are highly parallelizable and can be used in realtime image analysis since
they utilize only elementary functions in a closed form (up to dimension 4) and Cartesian
separable convolutions.



1 Introduction

Since the processing time is decreasing due to hardware development, n—D image process-
ing with applications to time sequences of 2-D images, volume images, time sequences
of volume images and segmentation of 2-D images using many feature dimensions are
becoming feasible. In many applications realtime image processing is already a reality.
The problem of orientation detection arises in many situations in 2—-D as well as in higher
dimensions in image processing, notably in texture segmentation and optical flow compu-
tations. In texture segmentation, the local dominant orientation can be used as a texture
feature. Moreover the border of two textures can be locally modelled as an edge to be
detected in an n—dimensional texture feature space. In image sequence analysis, the local
spatiotemporal spectrum energy is concentrated to a tilted plane when the optical flow is
possible to determine unambiguously. To compute the optical flow in this case, the tilt of
the plane must be known.

Recent developments in modeling of the human visual system suggest the existence
of frequency and orientation selective channels representing the local spatial spectrum,
[32, 14, 10, 38], as well as the local spatiotemporal spectrum, [32, 46, 52, 41, 2, 47, 57]. In
the latter case an energy concentration in the local spectrum into a particular orientation
and frequency channel means a velocity vector with a particular direction and coarseness
range. Adelson and Bergen [1] as well as Watson and Ahumada [56] and others have
proposed models of human motion perception based on the local spectrum as estimated
by spatiotemporal separable filters, e.g. Gabor in the spatial domain and some two lobed
derivative filters in the time domain. The models differ qualitatively with respect to the
extraction of motion estimates and how to represent the local spectrum. These studies
advocate by-passing the point correspondence problem which arises if motion estimation is
based on matched features in an image sequence, [53, 58]. They also stress the importance
of having certainties attached to the orientation estimates in case the local image spectrum
cannot be modeled as an oriented concentration of the energy.

In parallel with these studies much research effort is invested in computationally eco-
nomic methods which mimick the essence of the discoveries about the human visual sys-
tem. The spatial frequency decomposition is shown to be achieved efficiently using a
pyramidal data structure in combination with separable spatial filtering [51, 12, 16] re-
sulting in the Laplacian pyramid. To achieve orientation selectivity by using linear filters
in combination with the Laplacian pyramids, Fleet and Jeppson [21] proposed filter design
criteria.

Traditionally, the approximation of the local spectrum energy has been dealt with
through directional linear filtering in a number of directions (usually about 5 in 2-D and
about 10-15 in 3-D). Even if a reasonable approximation of the local spectrum can be
obtained, for example by means of a Gabor decomposition with octave center frequency
and band width progression, the problem of the analysis and compaction of the energy
distribution of the filter responses remains. With support from the psychophysical exper-
iments, [36, 45, 1, 56, 29] propose this analysis to be done with respect to the dominant
orientation.

Having this and computational efficiency in mind, we will formulate a general (n—
D) least mean square (LMS) problem, the solution of which facilitates the extraction



of dominant orientation and the modelling error by using very few orientation sensitive
filters, for a given isotropic frequency channel. We assume that the frequency channels are
obtained by utilizing the Laplacian pyramid, [12]. As a particular case of this theory we
present the solutions for 2-D and 3-D problems with applications to texture and motion
analysis, and show that the same mathematical concept can be used in both cases. A
similar approach analyzing the symmetries, can be found in [9, 8, 27].

In Section 2 we will define the n—dimensional linear symmetry which will serve as
a model in the subsequent sections. By minimizing the deviation from the model, the
local images will be assigned an orientation along with a certainty. The approach is
based on the solution of a problem similar to the minimum inertia axis problem of rigid
bodies in mechanics, but applied to the Fourier domain [40, 7]. This is shown to be equal
to an eigenvalue problem of an n X n matrix in the spatial domain. Consequently, the
computations can be performed entirely in the spatial domain. In Section 3 we will present
a discrete implementation technique for the results obtained in the continuous case. We
show that the computations involve simple Gaussian and first derivatives of Gaussian
convolutions and closed algebraic formulas ( up to 4-D) applied to the filter responses.
This property, along with the fact that the Gaussians and their partial derivatives are
separable, can be utilized to decrease processing time and make the methods suitable
for realtime processing. In Section 4 we will apply the methods to 2-D images and
present experimental results and comparisons. Here we show that averaging the square
of the complex gradient automatically solves the optimization problem. In section 5 we
present our comparative results for the 3—D case, applied to the optical flow problem. An
algorithm based on spatiotemporal filtering in analogy with previous sections is proposed.
Sections 6 and 7 are devoted to the discussion and conclusions.

2  Orientation detection in n-dimensional Euclidean
space using linear symmetry.

The approach chosen here to detect orientation in an n—dimensional Euclidean space
is based on the Fourier transform' although the detection is carried out in the spatial
domain.

Let E, be the Euclidean space with dimension n and f is a real function defined on
E,, with F' being its Fourier transform. We will sometimes call this function an image
and its values as gray values. Later f will be interpreted as a local image obtained by
multiplying a window function with the original image.

In the following, if f has an orientation then the locus of f’s isogray values, points
which have the same values, will consist of either parallel lines or parallel hyperplanes.
We note that a line is a linear, 1-D space embedded in n-D, while a plane is a linear
(n—1)-D space embedded in n—D, as usual. In the case of parallel lines the orientation is
represented by the common direction while in the case of parallel planes it is represented
by the common normal. Step edges in 3-D (volume segments with different gray values)

! An equivalent formulation in the spatial domain utilizing the variational calculus is possible but then
the geometric interpretation in the frequency domain is obscured.



and lines in 3-D are examples of images having orientation. Later we will show more
explicitly that the problems of describing the orientation in these two cases are reduced
to the same problem. Therefore we will first be concerned with the case of planes since it
has some notational advantages.

Definition 1 We will call an tmage, f, linearly symmetric if its isogray values consist of
parallel hyperplanes of dimension n — 1. That is

f(F) = g(k'F)
where g is a one dimensional function (g: FE, — Ey) and k is a constant vector in E,,.

It should be noted that allthough g(z) is a one dimensional function, g(k'7) is a multi-
dimensional function. This property assures that the linearly symmetric images have the
same gray values at all points, 7, satisfying k'7 = Constant.

Example 1 A step edge, 0,(7), defined in n-D as

o = |1 RG> 0;
" 0, otherwise

1S equal to 0(1?:3?), where o s the usual one dimensional step function

(1, ifz>0;
o(z) = {0, otherwise.

Thus o, is linearly symmetric.

Lemma 1 A linearly symmetric image, f(7¥) = g(ki7), has a Fourier transform concen-
trated to a line through the origin:

F(w) = G(w'ko)d (w6 (@'ug) - - - §(0 1)

ko, U1...TUp_1 are orthonormal, and & is the dirac distribution. G is the one dimensional
Fourier transform of g.

To detect linearly symmetric objects is consequently the same thing as to check the
existence of energy concentration to a line in the Fourier domain. This lemma further
states that the function g(kr), which is in general a “spread” function, is compressed to a
line. This is a property which will be exploited to construct algorithms checking whether
a neighbourhood is linearly symmetric or not.

We will fit an axis through the origin of the Fourier transform domain of a general
image, f, which is not necessarily linearly symmetric. Fitting an axis to a finite set of
points is classically performed by minimizing the error function:

min e(k) = Z:d2(wj,/_c) (1)

l[kl|=1

where d(w;, k) is the Euclidean distance between a point, wj, in the set and a candidate
axis k. Since in general we have a continuous Fourier transform function, F', defined on



the entire F,, instead of a finite point set, this error function does not suit our purposes as
it stands. We use instead the following error function which obtains contributions from
all frequencies in the Fourier domain according to their energy in a continuous manner:

min e,(k) = [ d?(@,k)|F(@)PdE, )
l[il|=1 E,

where dF,, is dw;dw; - - - dw, and the label [ represents the line fitting case. If the energy

of the Fourier transform is interpreted as the mass-density, then e;(k;) is the inertia of a

mass with respect to the axis k;. This error function has a screening effect, that is, F is

concentrated to a line if and only if el(l_clmm) vanishes in analogy with the finite set case,

(1). The distance function, Figure 1, is given by:

& (@, k) = |lo- (@tf_fz){_fl||2 -
= ((I) — (@tkl)kl)t(a) — ((Dtkl)kl)

Using matrix multiplication rules and remembering that @'k; is a scalar and identical to
kiw and ||k||? = k}k, = 1, the quadratic form

& (@, k) = kl(Io'e — o'k

is obtained. Thus equation (2) is expressed in a quadratic form

el(El) = EfJE‘l (3)
with
Ju  =Jio ... —Jun
J_ —e.]21 J'22 —:.fzn
—dJdnl  TInp2 .- Jnn
where J;;’s are given as
Jiy = / S W F(F)PdE, (4)
En i
and
T = / wiw;|F(@)2dE, when i j. (5)
En

The minimization problem formulated in (2) is solved by k; corresponding to the least
eigenvalue of the inertia matrix, J, of the Fourier domain, [60]. All eigenvalues are real and
non-negative and the smallest eigenvalue is the minimum of ¢;. The matrix J, contains
sufficient information to allow computation of the optimal k; in the least square error
sense, LSE, given by equation (2).

This error will be exactly zero if and only if f is a linearly symmetric image. The
obtained orientation will be unique if the least eigenvalue has the multipicity 1. When
the multiplicity of the least eigenvalue is larger than 1, there is no unique axis k, by which
the image can be described as g(k}7) for some one-dimensional function g. Instead, the
energy in the Fourier domain is distributed in such a way that there are plenty of axes
which give the least square error. More exactly, these axes are any axes given by a linear
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combination of the eigenvector space belonging to the least eigenvalue. Here it should be
observed that the dimension of this space is equal to the multiplicity of the eigenvalue
it corresponds to (the least one). This is due to the fact that J is positive semi-definite
and symmetric by definition, (2) and (3). In other words, there is no optimal and unique
axis passing through the origin but a unique (n — m)-D linear vector space when the
multiplicity of the least eigenvalue, m, is greater than one.

At this point the question whether the degenerated solutions of the line fitting problem
are at the same time solutions to other similar problems arises. Suppose that we are
intending to approximate the function F' by a hyperplane with the dimension n — 1 under
the condition that the hyperplane passes through the origin. Representing the normal of
the hyperplane by Ep, we must minimize

min ¢,(k,) = [ d3(@ k,)|F(@)dE, (6)

l[kpll=1

where the label p represenents the plane fitting case. The difference here is the distance
function d, (&, k,) which is the perpendicular distance of the point @ to the hyperplane
represented by its normal vector &,

dZ(G), ];"p) = (w%p)2 = ;(D‘Dtl_fp (7)
Thus (6) reduces to minimize ) o
ep(kp) = k;Akp (8)
where
Aij = [ wws|F(@)PdE, 9)

Comparing equation (9) with (4) and (5) yields an algebraic relationship between these
two different problems:
J =Trace(A)I— A (10)

where “Trace(A)” is the sum of all eigenvalues of A and can be computed by summing up
A’s diagonal elements. In analogy with J, A is also positive semi definite and the solution
to the plane fitting problem is given by the least eigenvalue of A and its corresponding
eigenvector(s). The matrix A defined by (9) is often referred to as a scatter matriz in
the literature and arises, [44], when the most economic basis is to be found to represent
a given set of n dimensional data, {@;}. This problem then leads to Karhunen-Loewe
expansion which is also known as principle value decomposition.

Lemma 2 The matrices J and A have common eigenvectors that is
Ju=XNu & Au=lu (11)

with
N = Trace(A) — \. (12)

Thus fitting a line to F' is algebraically equivalent to fitting a plane to it.



The lemma is a consequence of the fact that J and A commute but can also be proved
immediately by utilizing the relationship (10) and operating with J on u which is assumed
to be an eigenvector of A. Given this Lemma one has the following conjecture which
assumes that the eigenvalues of A are enumerated in ascending order, Ay > Ao > -+ )\, >
0.

Conjecture 1 If and only if the eigenvalues of the scatter matriz related to F' fulfill the
relationships
)\1:)\2"':)\n—1>0 and )\n:(] (13)

then the energy of I is concentrated to a plane through the origin. The normal of this
plane is given by u,. Similarly if and only if

A >0 and A =A3---=X\, =0 (14)

18 fulfilled then the energy of F' is concentrated to a line through origin. The direction of
this line is given by u,.

The conjecture will be exploited later in Section 5 to construct a certainty measure.

3 Discrete approximation

Up to this section the theory for detection of orientation in multidimensional Euclidean
space has been based on continuous signals. The method examines whether an image
consists of an n — 1 dimensional hyperplane or a line, by eigenvalue analysis of the matrix
A. The computation of the matrix elements themselves are given by equation (9) for the
continuous case in the Fourier domain.

In practical situations, however, we would like to have a good approximation of the
matrix A by measurements based on discrete data, and this should, in many applications
, be done quite often. For example we would like to do it for local images around every
point. For this reason an economic computation scheme providing the elements of A is
necessary.

The first step in this direction is to eliminate the need of Fourier transformation. This
can be done by utilizing the Parseval theorem which translates the computation of matrix
elements from the Fourier domain to the spatial domain:

1 of of

Ay = — 9 4B, 15
7 4n? JE, Oz; Oz, (15)

The next step is to find a discrete approximation of A;; given by equation (15). A good
approximation can be obtained using finite element methods, [4], yielding a function
dependent non uniform mesh. Szelski, [50], proposed an interpolation method for com-
puter vision applications based on hierarchical interpolation functions yielding uniform
meshes. Recently Jahne, [35], reported accurate estimates of (15) on a uniform mesh
utilizing extrapolation techniques. Here we will choose a simple method yielding uniform
discretization and allowing fast implementation with a high degree of parallelism.



Assuming f(7) now being the original image instead of the local image, we can, without
loss of generality, choose the center of the neighborhood (the examined point) to be the
origin of the coordinate system. That is, we approximate (15) by utilizing

YO YD 1

(16)

where 7; is the n dimensional coordinate vector of a mesh point, w(7) is the window
function and g4 (7) is the continuous interpolation function. This approximation is exact
if y; is chosen as the interpolation function corresponding to the sampling of the original
image with an over sampling factor of 2 in each dimension and w is chosen as a band
limited window function, [19]. However the disadvantages of such a choice include large
filters which are either rotationally symmetric but not separable or separable but not
rotationally symmetric. We will choose both y; and w as two Gaussians which are the
only functions being rotationally symmetric and separable in Cartesian coordinates. This
alternative yields filters which are small in size since a Gaussian is concentrated both in
the spatial and the Fourier domain. Thus we have

uFyo(r) = exp (— 57— 7l exp (— 5 7% a7)

where o, and o,, are two constants which control the effective width of the two Gaussian
functions. Substitution in equation (15) yields

1 8f(fl) af(ﬁ)ml

A~ — 18
I 472 I 8acz 635]- ( )
where m; is
my = w(F)w(7)dE,
21 o0, 1 g
_ 2r b ey 19
77101 ™" gz oz Inlh) 19)

Equation (18) is equivalent to a discrete convolution by a Gaussian if A;; is computed
for every point in the original image. Since my;’s, the filter coefficients, decrease rapidly
outside of a circle with radius (/02 + 02, we can truncate the infinite filter when its

coefficients are sufficiently small. In our experiments this is done when the coefficients
have decreased to about 1% of their maximum in magnitude. Thus equation (18) implies

where V f; is the gradient of f(7) at the discrete image position 7.



4  Orientation detection in 2—-D

In the 2-D case, there have been solutions to the problem of finding the dominant local
orientation, for example [34, 17], by projecting the neighbourhood onto a number of
fixed orthogonal functions. The projection coefficients are then used to evaluate the
orientation parameter of the model. When the number of filters used is increased, the
local image is described better and better in terms of the filters. But the inverse function,
mapping the coefficients to the optimal orientation, if it exists at all, increases greatly
in complexity when mapping the obtained projection coefficients (filtering results) to
orientations. Another drawback of these methods is that their generalization to higher
dimensions is not obvious.

The proposed computations in the previous section are simplified further by utilizing
some fundamental properties of the complex z-plane, implying that the matrix eigenvalue
analysis is replaced by its equivalent: a complex convolution. Moreover, because of the low
dimensionality, the “fitting a plane” problem as discussed in Section 2 becomes identical
to “fitting a line” problem simplifying the analysis further. We present two certainty
measures and an orientation estimate which are based on the eigenvalues and eigenvectors
of the scatter matrix of the local spectrum, A.

We consider tk, t € Ey, which represents a line and observe that —tk is an equivalent
representation of the same axis. Thus the orientation of a line tk can be defined as 26, if
6 is the direction angle of k given by

k = (cos ), sin 0)"* (21)

since the function 26 maps 6 and 6 + 7 to the same angle. Let Z be a two-dimensional
vector:

z = (z,y)' (22)
Define x to be the complex number obtained by:
X =2+ iy (23)
Then the relationship
1
jifg = RG(XTXQ) = i[XTXQ + (XIXQ)*] (24)

holds. Since ||k|]| =1 and A is positive semi definite, k¥ maximizing k‘ Ak is the eigenvector
belonging to the largest eigenvalue of A, [60]. By using (24) and (20) we obtain

AR = o SRV
_ 4LWQ;(Re(k*wj))Qmj
1 1 2\ % 2 2 % 27% 2
= r 20 (0 (VR + [0 (VAT + 2198, P
= g X5 IVEPm 4 CRe(6)(VE))m, (25)
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Here, as defined by (22) and (23), Vf; and k are the complex interpretations of the real
2-D vectors Vf; and k. The complex number k? maximizing (25) is the same as the one
which maximizes:

> Re((&*)"(VE;)")m; = Re((k*)" 3_(V£;)’m;) = Re((k*)"z) (26)

where

zZ = Z(Vf])2m] (27)

J
By remembering that |k?| = 1 and interpreting (26) geometrically by means of equation
(24) as a scalar product of two vectors, k2, is obtained as:

Koo = 2/2]. (28)
Consequently the complex number, k2. | minimizing (25) is given by —k2 . Substituting
k2., and k2 in (25) yields:
- 1
)\0 = e(kmm) = 8— Z |ij|2mj |Z|) (29)
- 1
/\1 = e(kmaw) = 8— Z ‘Vf]‘QmJ + ‘ZD (30)
That is:
lz| = 47*(A — No) (31)
argz = 26,. (32)

Thus only computation of z is sufficient for knowing whether the considered neighbour-
hood is linearly symmetric or not. The argument of z will be a representation of the
optimal orientation given the data and the interpolation function. Hu, [31], has presented
a pattern reconition technique based on the complex moments of the gray values of the
image using moment invariants. Second order complex spatial moments of his method
are similar to those presented here for the 2-D local spatial frequency spectrum. Compu-
tation of z can be done by an averaging of the complex derivative image, according (27).
Performing this for every neighbourhood of an image is possible through a convolution
and results in the first scheme, Figure 2. The certainty in this approximation of the lo-
cal orientation depends on the behaviour of the eigenvalues Ay and A, according to the
discussion in Section 2. An existence of a definite orientation in the neighbourhood is
probable if )y is small relative to A;. An ’ideal’ case occurs when Ay = 0 and A; >> 0.
The magnitude of the resulting image measures this very property, and will be referred
to as a certainty measure, C;.

Cfl = 471'2(/\1 — )\0) (33)

A high Cy; indicates that the orientation found is reliable.



Cy1 is an energy dependent certainty measure, that is, the certainty decreases as the
contrast of the neighbourhood decreases. In many applications however there is a need
for an energy independent orientation detection. The measure

. )\1_)‘0 c

has such a property where c is a positive constant, for the purpose of controlling the
dynamic range. Cf; is defined as 0 when A; + Ao = 0. This happens only when we have a
constant image in the neighbourhood and thus no unique orientation is present. C, at-
tains the maximum value 1 if and only if A\g = 0, since both Ay and A, are non—negative. It
decreases when the difference between the eigenvalues decreases. This property effectively
tests whether the multiplicity of A¢ is 2, in which case there is not a unique orientation
minimizing the error. Utilizing (29) and (30) provides

AT (A1 + Xo) = D |VE['m; (35)
J

and results in the second scheme, Figure 2, implementing the ideas given in Sections 2
and 3. The choice of Cy, as in (34) can be replaced by any other energy independent
relation of the eigenvalues fitting to one’s purpose since these eigenvalues are provided
through convolutions given by equations (29) and (30).

These two schemes can be summarized by the compact notation

200 = arg((VF)?*m)
Cp = ‘(Vf)Q*m‘

|(VE)? xm]|.,
Cro = (F=F— 36
12 ( |VE|2 xm ) (36)
where the symbol * represents the usual convolution operation and arg(-), |- | and (-)¢

operations are being applied pointwise to their arguments which are complex or real

images. The first scheme computes 20, and C}; and the second scheme computes 26, and
Cyo.

4.1 Accuracy evaluation

In this section, by using a specially constructed test image, we evaluate the extent of the
validity of the 2-D implementation technique proposed previously. However, because of
the nature of the tests, these results concerning accuracy are indicative for dimensions
higher than 2 as well. Figure 3 shows the test image ( 512 x 512 and 256 gray levels )
which contains sine waves with exponentially increasing frequencies in the radial direction,
including all possible frequencies and directions. Gaussian uncorrelated white noise is
added to the right half of the image with the proportion 1:3, that is 0.25f; +0.75Y;, where
fi is the image intensity and Y; is the stochastic variable with the distribution of N(0,32).

Figure 4 shows the local orientation, 26,, estimate of the test image along the line
shown in Figure 3. Signal 1 is obtained by means of a 9 X 9 complex derivative filter
(partial derivatives of a Gaussian) and a 15 x 15 averaging filter (a Gaussian). Signal 2
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will be dealt with later. Ideally Signal 1 should be constant. At the left part of Signal
1 where no noise is added this is perfectly the case, while at the right part fluctuations
due to the noise are observed. Signal 1 deviates from its true, constant value by 40.01
radians in the average in the noiseless (except for the quantization noise) region, while in
the noisy region the measurement of the corresponding deviation needs some care since
the certainty measures at these points are far from uniform, Signal 3 Figure 5. As a
consequence it is possible to know when the orientation estimate is reliable and hence
such an estimation is meaningfull. Measuring the orientation deviation at those parts of
the signal where the energy independent certainty measure claims a moderate degree of
confidence, is one way to judge the the orientation accuracy quantitatively. By using this
technique, in particular when Cy, > 0.5 with ¢ = 1 in Signal 3 of Figure 5, the orientation
deviation in the noisy part is found to be +0.33 radians on the average. The original
image, as well as the intermediate and final images were all quantized to 256 quantization
levels. Noting that the error measurements were based on the quantized results and 75 %
of the signal amplitude consisted of noise in one part of the signal, one can infer that the
orientation estimates are accurate and robust both in presence of quantization noise and
Gaussian additive noise. The quantization error robustness is particularly important when
an algorithm is intended to be implemented on simple hardware using integer arithmetic
processors for the purpose of speed and economy.

The signals in Figure 5 illustrate the certainty measures Cf; and Cyy corresponding
to the orientation estimate signal commented previously (Signal 1 in Figure 4). Of these
curves 1 and 3 correspond to Cy, with c=6 and c=1 respectively. Increasing c¢ from 1 to 6
suggest a dramatical change of the dynamic range of C'yo. However, this is only observable
for the noisy part of the image as illustrated by the corresponding signals. The certainty
level of the noiseless part is very close to 1 so that the mentioned change of the dynamic
range has a very small effect. Cy, is given by Signal 1. Since Cy, is not a relative measure
like C, is, it has a high degree of frequency dependence which can be observed as a peak
in Signal 2 (left part). In comparison with the signals 1 and 3, Signal 2 is considerably
more “suspect” outside of an effective pass band. The frequency sensitivity band of the
certainty parameter Cy; is due to the derivation in the first step, and averaging in the
second step. In the Fourier domain, at low frequencies, this roughly corresponds to a
multiplication of an increasing and a decreasing function. The center frequency can thus
be varied by varying the scale of the filters at the two steps, Figure 6. Thus, the method
permits to perform orientation measurements corresponding to a given frequency band.
However, if many frequency bands are to be studied with respect to orientation at the
same time, it is computationally more efficient to decompose the original in a Laplacian
pyramid and apply the orientation estimation technique described here to each level of
the Laplacian pyramid separately. The second alternative will be utilized in the texture
analysis application below.

It can be observed that the size of the partial derivative filters affects the accuracy
of the orientation detection at high frequencies more than the size of the averaging filter
if the original image, as in the case of our test image, is not over sampled by a factor
of 2 in each dimension. Signal 2 in Figure 3 which illustrates the orientation estimate,
shows this effect. The signal is obtained as a result of a 5 x 5 complex derivative and a
21 x 21 averaging filter configuration and should be compared to Signal 1, obtained as a
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result of 9 x 9 and 15 x 15 filter configuration. It can be seen that the size of the complex
derivative filter is not large enough to suppress the undesired high frequency components,
and increasing the spatial extent of the averaging does not compensate for that failure.
Accurate orientation estimate at high frequencies can be achieved by resampling the
discrete data, [44], so that the over sampling condition mentioned is fulfilled or by using
another approximation than the simple one proposed by equation (16).

4.2 Texture analysis application and evaluation

Texture analysis has been used in classification tasks concerning 2-D images in general,
and in the segmentation of aerial images in particular. An important means in the course
of the analysis is extraction of texture features. Given a set of texture features, the original
image can be segmented using unsupervised or supervised segmentation techniques. These
exploit the observation that in the feature space, a well chosen set of features induce well
separated clusters corresponding to different classes.

Feature extraction has been effectuated by computing characteristics of the autocorre-
lation function, partitioning of the Fourier transform energy into radial and angular bins,
[5], interpretation of co-occurrence matrices through their moments, [28], identification
of markov random processes parameters [23], energy of real valued special texture masks
[37], [54]. The first two methods exploit the fact that a texture is repetitive. A conse-
quence of this is that peaks occur in the autocorrelation function and a concentration
of the energy is observed in the frequency domain. These methods are able to take into
account textures with repetition frequencies ranging from very low to very high values
while the other methods are restricted to the size of a prescribed neighbourhood.

The textural structures which can be described within a neighbourhood are naturally
limited to those which are observable within the size of the neighbourhood. Thus a feature,
based on measurements within a neighborhood, fixed in size, has a poor discrimination
power when applied to textures not observable within the neighborhood because of the
wrong scale. But in general the size information is not available. The psychophysical
experiments indicate, [10], [33], that there exists frequency and orientation selectivity in
the human visual system, giving a hint of how this scaling problem can be solved. The
scaling problem has, in image processing, been treated by filtering with Laplacian filters
with different sizes, [39], [12] (octave band pass filters) or using different decompositions
in Gabor, [22], Wavelet, [26], and Wigner, [59], basis functions. In [13], the moments
of Laplacian pyramid images are proposed providing anisotropic information about the
local image. In [21], orientation selectivity within a frequency band is proposed to be done
by filtering a Laplacian image with a directional cosine filter. Such an approach results
in spatial phase dependency, that is the response to a sinusoid is also a sinusoid. This
is not desirable in texture analysis because one would like to have a uniform response
at those regions of the image which have a dominant orientation. To achieve phase
independency, the magnitudes of Gabor filter responses or quadrature filter responses can
be used. To detect the orientation [36] proposes interpolation on the magnitudes of the
filter responses of quadrature filters. The used filters however, are non-separable and
numerous and therefore require dedicated hardware.

The original image, with the true borders superimposed for the purpose of elucidation,
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which we used in the subsequent tests is presented in Figure 7. The texture patches in the
original are cut from real aerial images. They were individually normalized with respect
to illumination (mean) and contrast (variance) before they were pasted together to form
the 256 x 256 original. The individual textures, 7 in total, represent some typical forest,
field, and residential areas. They are repeated within a 4 x 4 configuration such that every
texture is neighbour of any other at least once for the sake of evaluation. In contrast with
the texture patches from Brodatz album [11], the presented textures are extracted from
images formed during aerial imagery and are contaminated by a large amount of non
artificial noise. They were moreover selected by a group of 3 people, independent of the
authors, with experience in aerial images to decrease the unconscious bias in the choice
of interesting textures.

We propose to use the linear symmetry along with the Laplacian pyramids approach,
to produce the feature images. To be more explicit, we first decompose the original image
into its components of different resolutions by means of the Laplacian pyramid, [12]. To
each level in the Laplacian pyramid i.e. a frequency channel, we apply a linear symmetry
measure. In the particular application below we have used the second scheme proposed in
the previous section with 9 x 9 complex derivative, 17 x 17 Gaussian filter. The number of
frequency channels were 4. The real and imaginary parts of the resulting images are used
as features along with the average local energy (within the same 17 x 17 Gaussian window
as before) resulting in 3 real features per frequency channel. The feature images are blown
up to the size of the original using the technique discussed in [12]. The number of features
are reduced using the local Karhunen-Loeve transform as suggested by [6]. The clustering
algorithm proposed by [49] is applied to these to obtain the unsupervised segmentation
result illustrated by Figure 8. The result predicts 6 classes of which 5 correspond to true
classes and the remaining class correspond to a merging of two true classes. Almost all
borders are found with a good accuracy. It should be noted that the classification as well
as feature reduction is unsupervised. Thus the border quality should be compared with
other results, like the subsequent ones to be presented, using unsupervised procedures.

Figure 9 illustrates the result when the texture energy measures proposed by [37] are
utilized as features along with the same feature reduction and clustering technique as
before. The texture energy planes are obtained by first convolving the original by 7 filters
(E515, L5E5, R5R5, E5S5, SH5ES, L5S5, S5L5 as labeled by [37]) and then applying the
standard deviation filtering using a 7 x 7 window. We have also tried larger sizes which
resulted in a poorer class and border performance compared to Figure 9. The feature
dimensionality reduction process of [6], tested also on many other different feature sets,
seems to be an adequate means to compress the information and increase the discrimi-
nation power of the texture features, a matter which is also dealt with by [55] recently.
The result suggests that 4 classes exist of which two more or less represent two classes
while the two other represent the merged classes. Many of the borders are identified with
a good accuracy.

Figure 10 illustrates the segmentation result when the features, proposed by [54] are
utilized. These features, totaling to 4, are obtained by first computing the discrete
Hadamard transform within a running neighbourhood of 2 x 2 and then applying the
variance filtering to these in a window of 8 x 8. In the result 4 classes are possible to
distinguish and of these only one corresponds to a true class while the remaining being the
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merged classes. Some of the borders are possible to identify with a reasonable accuracy.

We have also tried to obtain a segmentation result using the 13 features proposed
by [28]. The used features represented certain, in [28] well defined, properties (angular
second moment, contrast,... etc.) of the cooccurrence matrix with 64 quantization levels
computed in 9 X 9 neighbourhoods using a distance vector of (0,1)!. The result was a
single class for the entire image and naturally no borders.

A general explanation for why the linear symmetry have performed well is that the
textures in the test image differ in their “repetition frequency” e.g. scale, considerably
while the used neighborhoods in the 3 compared methods were constant. On the other
hand, a straight forward application of these techniques to every level of a multiresolution
pyramid would result in too many texture features for further unsupervised processing.
Moreover, the linear symmetry features are directly measuring the dominant orientation
information in each frequency channel. This is a property which is in line with the current
understanding of the human visual system. The results of these unsupervised experiments
and others we have done using aerial images suggest that the linear symmetry features
can be used successfully in texture modeling.

5 Application to image sequences

Optical flow computation has been a subject of an intensive research during the last
decade because of its potential and realized applications in image sequence coding, object
tracking, surveillance, robot control and many other domains. An exposure of the appli-
cations and the methods computing the optical flow with brief summaries can be found
in [42]. We directly propose our method based on linear symmetry and then in the sequel
we establish the relationship and differences with existing relevant methods. Further on
we present our experimental results.

Two types of local motion will be analyzed within the same model: The pure trans-
lation of a line and the coherent translation of a random dot pattern. We think that the
rotational components of the motion can be dealt with at a higher level of the motion
analysis given the local velocity estimates (local linear approximations).

Let f(xz,y,t) represent a spatiotemporal local image registered by a visual sensor
system. When f is generated by the translation of a line the velocity component of
the translation along the line is not possible to determine locally. In general this problem
occurs whenever the isogray values of f consists of parallel 2-D planes as in the case of the
translation of the sine stripes used in the experiments of Adelson and Movshon [2]. This
phenomenon is often referred to as the aperture problem. In this case the translation is
implicitly given by the normal vector of the parallel planes of the spatiotemporal domain.
If the normal of the planes is represented by the unit vector k = (kg, ky, k)¢ then by using
geometry, Figure 11, the components of the normal velocity vector v, is determined by
the formulas:

kwkt
, = — 37
Y k2 + k2 (37)
kyky
vy, = _kgi-kg (38)
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In the linear symmetry model, Conjecture 1, the normal vector is given by the eigenvector
belonging to the largest eigenvalue of the scatter matrix A, under the condition that the
smallest eigenvalue is zero and it has the multiplicity 2.

When the local intensity function f is generated by the coherent translation of a
random dot pattern or more precisely when the isogray values of f consist of parallel
lines, the motion can be determined unambiguously. When (ky, ky, k)" represents the
direction of these parallel lines, the velocity components are given by

ks
k
by = k_i (40)

In the linear symmetry model, this direction is given by the eigenvector belonging to
the smallest eigenvalue of the scatter matrix A, under the conditions that the largest
eigenvalue has the multiplicity 2 and the smallest eigenvalue is zero.

The value of 7, obtained by (37-38) or (39-40) is significant and to be computed only
when a high certainty degree about the type of the motion exists. The relative positions of
the three eigenvalues of A enable us to infer about the quality of the optical flow estimate
as well as the type of the motion. Using Conjecture 1, We propose

2y
D VIEW

to be the measure to be used as a discriminator and a certainty degree. Remembering
that the eigenvalues are related to inertia measurements with respect to the principal axes
and having Conjecture 1 in mind, many other measures can be constructed to analyze
the energy distribution in the frequency domain. If the sign of Cy is positive the optical
flow estimate is unambiguous and of the type “translation of a random dot pattern”; if
it is negative then the optical flow estimate is ambiguous and the estimate is of the type
“translation of a line”. The magnitude of C; which has the upper bound 1, increases
gradually as the the type of the motion becomes more certain. If and only if C'y = 1 then
one has an unambiguous optical flow in the local image while if and only if C'y = —1 one
has the ambiguous flow case. When C; = 0 there is total uncertainty about the nature
of the motion.

Cy

(41)

5.1 Relationship with some existing methods

Depending on the chosen mathematical model, the exact meaning of optical flow has been
defined differently in the computer vision literature. In this section we will compare two
different definitions with the definition contained in the concept of linear symmetry.
One of the most common models uses variational calculus, Horn and Schunk [30]. In
this approach Z—Ji, which depends on optical flow is minimized over a region of F;. On
the solution a smoothness constraint assuring a smooth variation of the optical flow is

imposed.

min = / (B f)2dady
k€ Sy, Ey
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where k is a point in Sy, which represents a plane consisting of the points (u,v, 1) with
v and v being the z and y components of the optical flow vector. E5 is an image region
and A is a heuristic positive coefficient regulating the importance of the smoothness in
the solution. The coefficient is chosen large when the gray value measurements are noisy,
small otherwise. It should be noted that there is no time integration in the expression
above. The minimization is possible to perform by solving a second order elliptic partial
differential equation related to this problem. A feature of the smoothness constraint is
that when there is no unique optical flow in a region then unique solutions from other
parts are propagated towards this region. The propagation direction is uniform in the
original approach but [43] discusses a modified version of the smoothness constraint which
depends on the gray value variations and hence allows oriented smoothness resulting in
improved optical flow estimates along object boundaries. The equivalent minimization

problem formulated in this paper by the linear symmetry concept takes the form

min e(k) = / (E*V f)2dadydt (43)
kes;, Es

where S, represents the surface of the unit sphere. Once k € S;, is obtained the optical
flow vector is defined as the intersection point of k with Sj,. The intersection point may
degenerate to a line in which case the optical flow is possible to compute only along the
gradient and is represented by the point of the line closest to (0,0,1). Putting A = 0
makes both approaches possible to compare to each other conceptually, since we don’t
propose that the optical flow should be propagated from regions with good estimates to
regions with poor estimates. We advocate, as in [25, 3, 1, 56, 29], that certainty measures,
should be used to keep track of the regions with poor estimates and thereby to facilitate
for making a proper use of them in the subsequent analysis. Such an analysis could be
token tracking as in [48, 20].

An important difference is that the linear symmetry approach also takes account of
the errors made in the time direction contributing to the robustness of the approach in
the presence of temporal noise. The solution spaces are normally different. However when
zero error is reached by (43) for some optical flow solution, then the same error (zero) is
attained by (42) as well. This corresponds to the ideal case when the energy of the 3-D
Fourier transform of the local image is concentrated to a Dirac plane or to a Dirac line.

Adelson, [1], has proposed a model for human motion perception based on the energies
of frequency tuned quadrature filters (Gabor like). Heeger, [29], has recently proposed an
algorithm for detecting optical flow using similar filters. He analyses the Fourier transform
of the image on the basis of the extracted energy responses using Gabor filters tuned to
different frequencies. In the analysis the actual motion (the responses of the Gabor filters)
is approximated by the motion of a translating random dot pattern (a dirac plane in the
frequency domain). The approximation is realized by minimizing the squared error of the
fit through varying the tilt, the intersection point of the normal of the Dirac plane and
the Sj, plane.

12
min e(k) = Z(mM

S — 1k 2 44
k€ Shs =" "Ri(u,v) mi) (44)



where m; is the magnitude of the 7’th filter response, m; the average of m; over the filters
with the same orientation as the i’th, R; is the magnitude of the 7’th filter response when
the input is a dirac plane with the tilt represented by u and v, R; is the averaged R; over
the same orientation. The function KTZZT) is used as a factor of R;(u,v) to compensate
for the energy differences of the responses of the Dirac plane and the input. The error
function is a 2-D function defined on the Sjs plane and has a unique point at which the
error reaches its minimum when there is a unique optical flow while if there is an aperture
problem the optimum is reached along a line. The kind of motion is determined on the
basis of whether the error function is elongated or rotationally symmetric by computing
the curvature of the error function. The accuracy of the results depend on whether the
range of the optical flow to be estimated is known a priori or not. Also the computational
expenses may be very difficult to overcome due to necessary nonlinear optimization and
the numerous filterings. Both in the linear symmetry approach and the restricted Horn
and Shunk approach, (A = 0), the error functions are quadrics for which the minimization
is not more intricate than solving for the roots of a third order polynomial? or solving for
a 2 x 2 linear equation system.

5.2 Experiments on motion estimation and evaluation

To test the proposed method we have implemented the scheme given in Figure 12. The
flow chart consists of three steps: gradient estimate and auto outer product computation,
averaging and eigenvalue analysis. To compute optical flow corresponding to several
spatial frequency channels, the Laplacian pyramid filtering should be applied to each
image in the original sequence before applying the optical flow scheme.

The gradient is estimated by convolving the image sequence with separable 3—D ker-
nels, 7 x 7 x 7 each, given by the partial derivatives of a Gaussian, one for dz, dy and
dt respectively. This means that some averaging is done in the two directions perpendic-
ular to the gradient direction of the kernel. The gradient estimates are then combined
to the following quantities; dxdz, dydy, dtdt, dxdy, dzdt, dydt (since the scatter matrix is
symmetric only six components are needed).

The second step is to average the six components from the previous step. This is done
by applying a 3-D Gaussian averaging kernel, 11 x 11 x 11, to each component. That is,
each component is smoothed in all three dimensions.

The third step takes the smoothed components and builds the matrix A (eqn. 20).
The eigenvalues are computed and are used to obtain the certainty measure proposed by
(41). One large eigenvalue and two small ones correspond to a moving line, the aperture
problem. Two large eigenvalues and a small one correspond to a moving point, that is
there is no aperture problem. The sign of the certainty vector is utilized to determine
which type of optical flow vector to compute. When all eigenvalues are equal and zero the
certainty measure is defined to be zero. The eigenvalue analysis at such points is avoided
by assuring that Trace(A) > 0 is fullfilled at the points where the analysis is carried out.

Two different image sequences have been used in the experiments, one synthetic and
one natural. The synthetic sequence is a star shaped object with a known amount of

2Closed form solutions for the roots of the polynomials with degree less than 5 is available in most of
the mathematical handbooks.
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rotation and a translation. The signal to noise ratio is 0 dB. The other sequence is shot
from a video camera mounted on the roof of a car, driving on a road. One frame from
each of the sequences are shown in figures 13 and 14.

Figure 15 shows the magnitude of the optical flow vectors for the synthetic test se-
quence. The certainty of the optical flow vectors are shown in figure 16, where gray means
total uncertainty, degree of whiteness is proportional to certainty for the case without
aperture problem, and degree of blackness is proportional to certainty for the case with
aperture problem. Figure 17 shows the original frame with a set of estimated optical flow
vectors overlayed. White arrows indicate the case when there is no aperture problem,
and black ones the case with aperture problem. For a detailed accuracy evaluation of the
optical flow estimates obtained by the linear symmetry concept we refer to [35]. In figure
18 the same is shown for the outdoor sequence.

As comparison, the algorithm described by Horn and Schunk has been used. In partic-
ular, for a meaningfull comparison, equation (42) with A = 0 and the same interpolation
and window functions used in the linear symmetry approach is applied. Consequently, we
have solved the resulting linear system of equation (2 x 2) whenever there was a unique
solution (white arrows). In the case when there were an infinite number of solutions we
have chosen the one with &, closest to (0,0,1)" (the black arrows). For the synthetic
image sequence, the resulting magnitude of the optical flow vectors are shown in figure
19. Figure 20 shows the original frame with a set of optical flow vectors estimated by the
Horn and Schunk algorithm. The estimates are reasonably well in the areas with unique
optical flow (white arrows) while they are poor in the areas with no unique flow (black
arrows). One reason is that there is no certainty measure, i.e. it is not possible to know
to what degree there is an aperture problem. Another is that there is no time integration.
We have also tested the iterative version of the process minimizing (42) as it is originally
proposed by [30]. The results obtained using various A’s in the range of [0.1,500] and
iterations in the range of [30, 500] were comparable to those illustrated by Figures 19 and
20 and therefore we have omitted them. In this case the SNR in combination with the
sparcity of the points having a unique flow estimate disturbed the propagation of the true
flow estimates towards the points with ambiguous flow estimates.

The true motion in the traffic sequence was not known. For this reason and also
for the fact that the Horn and Schunck’s method have a fundemantally different way of
handling the aperture problem (we have certainty measures giving a continuous selection
between black and white arrows) it is very difficult to give an objective judgement of the
performance results in the case of the traffic sequence. For this reason we only include our
velocity result in Figure 18 and, after a visual inspection, note that the motion estimate
and the choice between the white and black arrows is satisfactory.

6 Discussion

The key idea in the outlined approach is known as the principal axis analysis in the
mechanical engineering and statistical literature. The task is to minimize an error function
as given in (2). The immediate question is whether this error function is a suitable one
since the high frequencies contribute to the error much more than the low frequencies,
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due to the quadratic term. Consequently the noise, which usually has high frequency
components, would make the error noise sensitive. The discrete image data is assumed
to be obtained from a bandlimited continuous image. The experimental results show
that this is not a serious problem since a smooth suppression of high frequency terms is
assumed by utilizing spatially spread interpolation functions. It can in fact quite easily
be shown that the noise amplification in the presented algorithms, due to the choice of £2
norm, is equivalent to the noise amplification in conventional zero crossings of Laplacian
algorithm for edge detection, since Laplacian filtering corresponds to multiplication by
||o||? in the frequency domain. An alternative to the proposed error function would be to
use the absolute value of the difference instead of squared difference in (2). But this causes
many computational difficulties since minimizing such an error function in the frequency
domain would be too complicated, let alone computing it in the spatial domain.

Not only its solutions but also the frequency domain minimization problem itself is
possible to interpret in the spatial domain. It can be shown that the obtained estimate
of the optimal axis is also the normal of an optimal plane parallel to which a translation
of the entire neighbourhood can be performed with minimal error in the £? sense.

In Section 4 properties of the complex number field are utilized to show that the
eigenvector analysis of a 2 X 2 matrix is not necessary. The significant result is that
averaging upon the complex valued partial derivative image, (f, +if,)?, acts as the least
square optimization process which is intuitively appealing. In Section 5 one is tempted
to use the field of quaternions, [15], to obtain a similar simplicity for the 3-D case. The
analogy to equation (24) provides us:

fﬁfQ = —§(X1X2 + X2X1) (45)

where x; is the quaternion with the scalar part (principal unit) having the value zero
and the other units corresponding to 7, j, £ having the values obtained from the first,
second and third components of the three—-dimensional vector ;. But since the field of
quaternions, in contrast to the field of complex numbers, is not commutative the analogy
resulting in simplifications cannot be followed, (25).

The results from Galois theory, [24], tell us that the polynomials with degrees less
than 5 can be solved for their roots algebraically. That is, the roots are possible to obtain
by utilizing the arithmetic operations of squares, square roots, cubics, cubics roots ..etc.,
a finite number of times. Thus fast, optimal orientation detection in the least squares
sense with corresponding certainties can be achieved for such data intensive domains as
volume images, image sequences and volume sequences. The time complexity of the pre-
sented algorithms depends on the available hardware architecture and the implementation
technique of convolutions, (FIR, IIR, separable).

7 Conclusion
The presented experiments show that frequency domain based minimization of the error

function or the moment of inertia gives good estimates of the local orientation in n—
D together with corresponding confidence measures. The presented algorithms, which
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are entirely computed in the spatial domain, implicitly perform the least square fitting
through averaging.

In the 2-D case it is shown that the eigenvector computation is equivalent to averaging
over the square of the complex gradient. The optical flow problem is formulated as a
pattern recognition problem (recognition of a line or a plane in the frequency domain) and
for the detection, the linear symmetry method is proposed. The closed form solutions of
the resulting eigenvalue problem and the separability of the filters contribute to a decrease
in the execution time compared to the iterative methods and methods using non-separable
and/or numerous filters.

Both in 2-D and 3-D problems the algorithms were implemented on a machine us-
ing integer arithmetic and the intermediate results were stored as integers. Despite the
known difficulties attached to it, the integer aritmetic is widely used in parallel machine
architectures because of technical and economical reasons. We have shown that the ap-
proach taken here to solve the orientation problem, is robust enough to be implemented
on machines using integer arithmetics.
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Figure 1: The figure on the left is a local image with a dominant orientation. The figure
on the right illustrates the magnitude of the frequency domain which is concentrated to
a line denoted by k. d(@, k) is the distance between a point @ and the line £.
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Figure 2: The flowcharts of the algorithms computing energy dependent (left) and en-
ergy independent (right) certainties together with optimal orientation estimate of linear
symmetry parameters. The resulting images are complex valued with magnitudes of the
pixels being certainties and arguments being orientations.
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The straight line is the line along

Figure 3: The test image used in the experiments.

which the signals of results are presented in the subsequent figures.
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Figure 4: Orientation estimation with two different filter configurations. Graph 1 illus-
trates 9 x 9 and 15 x 15 configuration at the two steps of the algorithm, while 2 is due to
5 x 5 and 21 x 21 configuration.
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Figure 5: Certainty measures for the signal 1 in Figure 4. Graphs 1 and 3 represent C',
with ¢ = 6 and ¢ = 1 respectively, while 2 represents C;.
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Figure 6: Frequency dependence of Cy;. Graph 1 corresponds to 15 x 15 and 21 x 21
configuration at the two steps of the algorithm. 2 corresponds to 5 x 5 and 19 x 19
configuration.
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Figure 7: The used aerial texture image containing 7, different textures corresponding to
fields, forests and a residential area.
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Figure 8: The result of unsupervised feature selection and unsupervised segmentation
using the linear symmetry approach.
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ult using Unser features.

Figure 10: The segmentation res
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Figure 11: The figure a) illustrates a small region of the visual field in which a translation
of a line occurs b) illustrates the geometry used to derive the 2D velocity vector from the
3D normal vector associated with the translation.
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Figure 12: The flow chart illustrates the implemented algorithm.
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Figure 13: One frame from a synthetic test sequence. The star shaped object rotates
1.8% counter clockwise round its center, and translates 0.5 pixels up, 1 pixel to the right
between each frame. The vectors illustrate the true velocities. The frame size is 128 x 128.
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Figure 14: One frame from a video sequence shot from a car driving on a road.
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Figure 15: The graylevel corresponds to the magnitude of the estimated optical flow
vectors resulting from the proposed algorithm.
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Figure 16: The certainty measures obtained from the proposed algorithm. Gray means
total uncertainty, whiteness indicates the degree of certainty for the moving point case,
while blackness is proportional to the degree of certainty for the moving line case.
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Figure 17: In this figure the original frame is overlayed with arrows indicating the optical
flow vectors at some sampled positions. White arrows means that there is no aperture
problem, while black arrows means that the optical flow vector is perpendicular to the
moving edge.
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Figure 18: Optical flow vectors overlayed on a frame from the natural sequence.
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Figure 19: The magnitude of the optical flow vectors resulting from the implemented
Horn Schunk algorithm.
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Figure 20: The arrows indicate the optical flow vectors for the Horn Schunk algorithm at
the same positions as in the corresponding figure for the proposed algorithm.
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