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Abstract

We propose to reduce the dimensionality of fea-
ture vectors by using the principles of Karhunen-Loéve
transform (KL) applied to the feature images locally
and globally. The reduction is achieved by choosing the
resulting basis vectors which are closest to those of the
classical KL transform. An efficient implementation
technique using pyramids is proposed. Ezperimental
results are presented.

1 Introduction

The automatic segmentation of an image into re-
gions that are homogeneous according to certain prop-
erties, such as gray level, texture or color, is an im-
portant step in machine vision, and has consequently
been the topic of a an intensive research. In the gen-
eral case the segmentation chain includes three steps:
Feature extraction, Feature selection, and Segmenta-
tion/Classification. The choice for the feature extrac-
tion techniques is quite large. We refer to [2] for a
review and an example of this step. Likewise, several
segmentation algorithms have been developed that can
segment images successfully based on multi dimen-
sional feature spaces in an unsupervised manner, [10}.
Depending on application, a classifier which requires
training, and which is therefore supervised. can be
used as an alternative, [7]. If in the process of image
partitioning training has taken place we refer to it as
supervised classification, and unsupervised segmenta-
tion otherwise.

For unsupervised segmentation purposes, the most
commonly used feature reduction technique is the clas-
sical KL transform, [7]. We will sometimes refer to
this as the global KL transform. For another example
of unsupervised feature reduction method we refer to
[12, 3]. We present a method which uses the KL trans-
form in a local and global manner in order to perform
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unsupervised feature reduction for multi-class prob-
lems. The method results in an ON transform and will
be referred to as the Local Karhunen-Logéve, (LKL),
transform. A preliminary version of the algorithm not
taking into account to the computational load, and
the final ordering of the coordinates with respect to
class separation, was presented in [1].

In a first step, the transform is computed in a local
manner, using a sliding window, so that corresponding
to each pixel position an optimal local representation
is obtained. These are then processed further in a
second step by using the global KL transform in order
to define a transform reducing the dimensionality. We
test the soundness of the method by using textures
from aerial images. In section 2 we describe the LKL
transform. In Section 3 efficient implementation issues
will be discussed. In Section 4 the experimental results
will be presented. Finally in Section 5 the conclusions
and a discussion will be given.

2 LKL transform

Suppose that the feature vectors £ = (fi--- fa)'
corresponding to the pixels in the discrete, original
image are given. Within a region corresponding to
one class, Q, f(z,y) can be represented with very few
dimensions, see Figure 1, by solving the eigen value
problem:

with  S= Y f(z,9)f'(2,y)

(z,9)' €
(1)

where ju;| = 1, and projecting f to the most signifi-
cant eigen vectors. We assume that Ay > Aa... > Ag.
If one had to choose to represent f € €, only by using
one dimension then u; would be the coordinate yield-
ing the least mean square error. Inside a region the

Su; = \u;



Figure 1: The area Q, dashed, is inside a region cor-
responding to a class. The vectors represent the fea-
tures. The vector image is spatially discrete

quantity
Az 4+
a1 = _f2zr i An (2)
A + ...+ A,

which is the relative average error in the truncated
representation, can be expected to be small due to
the slow variation of the feature vectors.
if the region changes the optimal representation may
change significantly depending on whether Q is still
within the same class or not.

However,

In order to approximate the feature vectors in a
class, we use local neighborhoods. We expect that a
neighborhood whose size is chosen properly will most
of the time be inside the regions corresponding to sin-
gle classes as it is slid over the image. This is justified
by the geometric constraint that the boundary pixels
can not exceed the region pixels in number. All pixels
are assumed to have class assignments. Hence, assum-
ing that the neighborhood is within a one class region.
through projections to uj it can be awaited that the
local feature vectors as well as the other feature vec-
tors belonging to the same class as those in the neigh-
borhood, can be represented well. Sliding the win-
dow over all the pixels results in a wector image which
corresponds to optimal representation directions of all
neighborhoods.

Finding the principal local directions among all lo-
cal directions is equivalent to tlie problem of local rep-
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resentation described above. The corresponding eigen
value problem yields

S’u’i = Ajug with s = Z u(z, yyu'(z,y)
(zy)teqy

where Q' represents the entire image. Thus solving
this second eigen value problem yields a compromise
among all candidate representations coming from the
local images. The relative mean error, ¢}, can not be
expected to be as small as its counter parts from the
local images, ¢1, since the statistics are now gathered
from the entire image which in general includes areas
with many different textures.

The obtained coordinates must also cause a large
difference between the classes in the projected coor-
dinates. This requirement is conumon with the su-
pervised feature reduction case, see the Fisher ratio
(8], in which the discrimination increases when the be-
tween class variance increases. Thus the ordering of
the eigen vectors with respect to significance for class
discrimination power must yet be done. In the lack of
knowledge about the class statistics, we propose the
ordering to be done according to the variances of the
projected features. This is equivalent to the ordering
of

1t~y
v; = u; Cu;

(3)

where C is the global, trace normalized, covariance
matrix. Another way to see the expression (3), which
is nonnegative since C is a covariance matrix, is that
the obtained eigenvectors, w; are reordered accord-
ing to their closeness to the global KL eigenvectors.
Here we note that uj, is in general not an eigen-
vector of C, and the eigenvectors of C constitute
the global KL transform. The transformed features,
f'{x,y) = (f{, -+, f2,)", after the reordering of u! ac-
cording to v; so that vy > va... > v,,, yield:

fi = ftu’k,(k) with kel,---,m. (4
Here m is determined by increasing m so that v,,4; is

sufficiently small (thresholding) and m < n.

3 Implementation

Computing the LKL transform in a straight forward
manner according to the functional description in the
previous section can be prohibitive for its high CPU
time consumption. The major cost stems from the
building of the local scatter matrices, and the compu-
tation of the corresponding eigenvectors. We present
some properties of the transform in order to obtain



Figure 2: Feature reduction on Gabor power spectrum features using the KL, left, and LKL, right, transforms.

an efficient method for computations. First we ob-
serve the following. Within « class the feature vectors
are almost constant. Drastic changes can only occur
in neighborhoods containing tezture boundaries. How-
ever, the number of boundary pizels is negligible com-
pared to the total number of points in the image.

The principal local direction, uy, is the eigenvector
corresponding to the largest eigen value of the local
scatter matrix S:

Sz = Y. wlz iy y)
(z,9)€Q,

(5)

where Q; denotes the set of points belonging to the
neighborhood of a pixel labeled as ¢, and w(z,y) rep-
resents some spatially isotropic window coefficients.
We note that, in the previous section, for the sake of
simplicity, these coefficients were assumed to be equal
to one.

An n x n symmetric matrix can be decomposed into
n matrices each having the rank 1:

n .
A= E Aiug
i=

Here u;’s are eigen vectors and A;’s are their corre-
sponding, eigenvalues. Ideally, if S is the local scatter
matrix then 1 — ¢; should be 1 if the local constancy
assumption is correct. When the local feature vectors
are described by a constant perturbed with a small

(6)
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amount of noise, the relative error in the approxima-
tion S = Ajuju} is still low. Thus, by using (5) and
(6) the following approximation of u; is justified:

w = cZ\/w—jfj. (M

Here ¢ is a normalization constant and equals to
I1>2; w;f;]|~ when this is non-singular, 0 otherwise.
That is the local eigen vectors can be obtained by
smoothing followed by a normalization. In terms
of the number of arithmetic operations, this method
gives a sensibly less load especially when a separable
filter such as a Gaussian is utilized in the smooth-
ing. The efficiency can be increased yet another or-
der of magnitude if the filtering process is performed
sparsely or equivalently if it is carried out by using
pyramids, [4]. The actual size of the eigenvector im-
age will be small and the construction of the global
S’ will result in a small computational load compared
to the construction and the eigenvector computation
of C. This puts the computational complexity of the
method at the same order of the magnitude as the
global KL transform since in both of the cases the
construction of C is required. For a comparison of
the results based on the direct and the normalized
smoothing implementation we refer to [3].



4 Experimental results
Method

Both KL, and LKL transforms propose a complete
ON coordinate system. The importance of the pro-
duced coordinate axes are ordered in accordance with
a vector consisting of non-negative scalars as compo-
nents, the relevance vector. For the KL transform this
is given by the ordered eigen values while for the LKL
transform it is given by the ordered global variances,
linked to the coordinate vectors, (3). Normally the
most relevant axes are those whose eigen values are
less than a threshold. The original features are then
projected to these axes. However, to facilitate our
assessments we will by pass the non-trivial threshold-
ing problem by simply selecting as many features as
necessary in order to obtain the bhest results after the
segmentation. The assessment is performed through
visual inspection by taking into account the number
of classes found and the boundary accuracy compared
to the true borders which are known for our arranged
test image.

For segmentation, we use the clustering algorithm
of [11] which admits only one parameter corresponding
to the minimum region size. We have used the region
size of 16 x 16. Given the meaning of the window of the
LKL transform, it was natural to use the same window
size parameter as the one used for the segmentation
method so that the freedom related to this parameter
was removed. Moreover we used a Gaussian with o =
4.0 as a weighing in that window.

Data and results

The test image has the size of 256 X 256 and consists
of 16 patches illustrating different types of field and
forest textures and a residential area. These patches
represent 7 distinct textures which are arranged in
such a way that any texture has any other as a neigh-
bor at least once. We utilize 2 sets of features on the
same test image.

The first set corresponds to a 30 dimensional fea-
ture space representing the local power spectrum. It
1s obtained by taking the magnitudes of the responses
when a filter bank is applied to the original. The fil-
ter bank consists of the complex valued Gabor-filters,
[9], with frequency responses being Gaussians whose
center frequencies and bandwidths are in octave pro-
gression, [6]. Similar filter banks Lias been utilized in
many other applications [5]. Figure 2 left illustrates
the segmentation result when the KL transform was
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utilized. 5 classes were found using 3 transformed fea-
tures (m=3). The corresponding result when using
the LKL transform is given by Figure 2 right. All 7
classes were found by using 4 features.

The second set of features has 12 dimensions. It
represents the local dominant orientation and the en-
ergy in the octave frequency bands of the power spec-
trum. The features are obtained by applying the Lin-
ear Symmetry algorithm, [2], to the Laplacian pyra-
mid of the original. Figure 3 left with 5 classes repre-
sents the result when 4 KL transformed features were
utilized in the segmentation. Figure 3 right illustrates
the corresponding LKL transform results. By utilizing
7 features 6 classes were found.

5 Discussion and conclusions

The experimental results on real texture images
show that the LKL transform improves the segmen-
tation performance. It exhibits poorer global mean
square error compared to the ON system produced by
KL-transform since the latter is designed to achieve
that purpose. However, the region discrimination is
not suffered as much as it does in the KL-transform.
For image synthesis applications such as lossless trans-
mission and coding, an optimal LMS representation
can be highly important. On the contrary, judging
from those results presented here and others we have
performed, we conclude that one can improve the per-
formance of the classical KL transform considerably
for analysis purposes by taking into account the spa-
tial arrangement of the features. A common limita-
tion of both of the methods is that they are linear and
metrics preserving. Thus further performance gain is
possible by extending the future research to include
non-linear methods. Another common problem is the
dimensionality estimation once a relevance vector is
obtained.

Compared to the KL transform, a local window
must be defined in addition to the number of the trans-
formed feature parameters. We have proposed to use
a Gaussian because of its simplicity. While this addi-
tional a priori knowledge is in conflict with the very
goal of unsupervised image segmentation, it can be
seen as the price to pay in order to achieve better seg-
mentation results.
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Figure 3: Feature reduction on Linear Symmetry features using the KL, left, and LKL, right, transforms.
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