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Abstract: A new feature based correspondence algorithm for image mat-
ching 1s presented. The interest operator is optimal for selecting
points which promise high matching accuracy, for selecting corners
with arbitrary number and orientation of edges or centres of discs,
circles or rings. The similarily measure can take the seldomness of
the selected polnts into account. The consistency of the solution is
achieved by maximum likelihood type (robust) estimation for the para-
meters of an object model. Approximate values have to be better <than
1/3 of the size of the image in shift, 20 ° in rotation and 30 % in

scale.

0, Introduction

The paper describes a new feature based procedure for image
matching. It was motivied by the algorithm developped by BARNARD and
THOMPSON (1981). Their concept basicly resulted in a three step-pro-
cedure. Keeping thelr motivation for the individual steps, specifi-
cally distinctness, similarity and consistency, the steps were re-
placed by slightly different ones in order to arrive at a procedure
with a common theoretical framework, namely a maximum likelihood type
estimation for the parallax field (cf. PADERES et. al. 1984). Though
the actual implementation uses a comparably simple object model, the
concept 1s general enough to handle piecewise smooth surfaces. The
procedure contains a new interest operator, which turned out to have
attactive features, as it not only aims at finding points which pro-
mlse preclise parallax determination, but at the same time is an opera-
tor to find corners with edges of arbitrary number and orlentation as
well as the centre of circles, discs or rings. In addition a simple
measure of seldomness has been developped in order to increase the re-
liability of the procedure in presence of repetetive patterns.

Feature based matching (FBM) procedures contrast to gray level or
area based methods, 1like classical image correlation or least squares
matching (LSM). FBM 1i1s superior to image correlation with respect to
speed and versatility and is superior to LSM with respect to range of
convergence, speed and versatility. Especially the high requirements
for approximate values of LSM, (< 1-2 pixels for shifts, < 20 ° for
rotation, < 30 % for scale difference and shear) are reason enough to
use different concepts. FBM procedures are widely used in pattern re-
cognition and computer vision (cf. FORSTNER 1986) and find increasing
interest also in photogrammetry.

We will first outline the basic strategy and the requirements to be
met in +the individual steps, and give an example. Section 2 then
describes the maximum likelihood type estimation of the parameters of
the mapping function between the images. The determination of prelimi-
nary weights for this robust estimation are discussed in section 3. It
ils based on the points selected by the new interest aperator whose
.properties are described in detall in section 4.

1. Concevt of Feature Based Matchins

FBM procedures consist of three steps:

1. selecting distinct points in the images separately using a socalled
interest operator.
2. building up a preliminary list of candidate pairs of corresponding

points assuming a similarity measure, and
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3. derizing the final 1list of point pairs gonsistent with an object
model. i

1.1 Selecting Distinct Points with an Interest Operator

In FBM instead of matching all pixels in an image, only selected
points with certain features are to be matched. The selection prin-
ciple should fulfill the following requirements:

- Distinctness: The points should be distinct, i.e. be different from
neighbouring points. E. g. points on edges should not be selected
if the epipolar geometry constraint 4is not used; also points in
flat areas should not be selected. MORAVEC's and HANNAH's opera-
tors follow this aim: MORAVEC’s operator (1977) searches for
points with the largest minimum variance of gray level differences
in 4 directions, while HANNAH'’s operator (1974) searches for points
where the autocorrelation function of the gray level function is
steep in all directions.

- Invariance: The selection as well as the selected position should
be invariant with respect to the expected geometric and radiomatric
distortions. This, besides the distinctness, probably is the most
important requirement. The degree of invariance directly influences
the precision and the reliability of the matching

- Stability: The ‘selected points should be expected to appear in the
other images. Thus the selection should be robust with respect to
noise. In image sequence analysis the selected points should appear
in long sequences of consecutive frames.

- Seldomness: Whereas dlistinctness guarantees local separability of
points seldomness aims at global separability. This is essential in
images with partially repetetive patterns. In order to avoid confu-
sién elements of repetetive patterns should not be selected oxr at
least should get a low weight. Thus +the selection of seldom or
interesting points leads to reliable results, explaining the notion
"interat operator". A similar lirme of thought leads +to the notion
of salient features (cf. TURNEY eot. al.).

- lg;g;p;g;_b;;ijx_ The selection principle should be interpretable
in some sense, o. g. looking for edges, corners, blobs or other
simple but labeled features. This requirement is not essential from
an engineering point of view, but may be essential if the interest
operator is used for image analysis. :

The result of this first step are two 1lists with the n’ and n"
points selected in the two images I’ and 1", their pixel coordinates
and their description, e. g. in the form of +the 1local gray level
function in the selected window. The advantage of the selection is
obvious: it leads to a great information reduction, as we only have do
deal with the two 1lists not with all pixels. It explains the require-
ments for the selection principle as the selected points reliably have
to represent the total image content with respect to the matching
problem. .

Fig. 1 shows an artificial image pair. The black dots are the
centres of the 7 by 7 windows selected by the new interest operator.
The two lists of selected points with their weights are given in table
1. A closer 1look at fig. 1 reveils that the selected windows are not
totally invariant as they appear at different places whithin the same
corner. The reason for this seemingly deficiency and a remedy are dis-
cussed in section 4.

1.2 Preliminary Correspondence based on Similarity
From the n’ x n" possible pairs of points only a few are pairs of

corresponding points. In this step a preliminary list of candidate
pairs is built, which is based on the similarity of the points. Points
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are said to be similar if their description is similar. The similarity
measure should fulfill the following requirements:

- Invariance: The similarity measure should be invariant with respect
to the expected geometric and radiomatric distortions between the
images. E. g. the correlation coefficient is invariant with respect
to linear transformations of the gray values, but not with respect
to geomatric distortiomns. .. .

The problem with similarity measures is the form of the window
which usually is chosen to be square or circular and which in
general is not invariant with respect to scale differences or even
shears. E.g. affine invariant moments (HU 1962) of the gray level

function are invariant, only 1if the background is zero. Otherwise

the noninvariance of the window form with respect to affine distor-

tions, Dbecause of border effects, prevents the computed moments

from being invariant (ef. GEISELMANN 1984). If at least scale

differences between the images are to be expected the window size,

possibly also its form, has to be adapted. The . approach of BURNS

et. al (1986) for extracting edges reflects this requirement as’
they first determine the edge region, i. e. the window, dependent

on the local steepness of the edge, thus taking the - with respect

to an ideal edge - local scale into account.

- Seldomness: The similarity measure should be able to include the
seldomness of the individual points. Thus the degree of seldomness
of both points in concern should also decide whether they remain in
the preliminary list of the corresponding point pairs or at least
should influence the weight of the correspondence.

- Heuristics: A priory knowledge may be incorporated in this step. E.
g. the maximum parallax to be expected may be used to further re-
duce the number of candidate pairs. A special case would be the
condition resulting from the known epipolar geometry reducing the
search space by one dimension.

- Metrigc: For a thorough analysis it is convenient if the similarity
measure has metric properties, i. e. besides being a distance
measure it fulfills the triangle equation dij < dik + dkj. This e.
g. holds for the sum of squares of the gray level differences
between the selected windows. A large distance d may correspond to
a small similarity s = 1/d or s = 1-d.

The preliminary list of candidate pairs, resulting £from this step,
{a a further information reduction: Whereas in the previous step we
still kept the full description of the individual points we now only
need their position and the weight of the correspondence, unless it is
needed for achieving consistency.

Table 2 shows the selected candidate pairs derived from table 1.
The selection was based on the correlation coefficient of the gray
level  functions whithin the windows of the point pairs, which had to
be > 0.5 and the maximum parallax, which was assumed to be 15 pixels

in both directions.

1.3 Achieving Consistency

The local one-to—-one comparison using the similarity measure and
,the heuristics in general is not able to yield a globally consistent
matching result. Consistency here is understood as the fit of the data
with respect +to an object model or at least to a global model for
the mapping function between the two images. In order to arrive at a
final solution we therefore have to

1. provide a 3D-model of our object. The strength of the model direct-
ly influences the quality of the solution. The model may also be
setup for the mapping function between the 1mages, which - using
the invers perspetive relations - can be then interpreted as a
3D-model. BARNARD and THOMPSON (1981) e. g. require the parallax
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differences to be less or equal 1 pixel for points within a certain
radius of a point in concern, say 15 pixels, also allowing
exceptions. For the normal case of a sterec pair this is eqivalent
to assuming the object surface to be piecewise horizontal or hardly
sloped. Often the object model 1is not stated explicitely but is
hidden in the algorithmic solution.

2. choose a consistency measure which is able to determine the close-
ness of fit of the data with the model. The choice of the target
function is difficult in cases where different types of deviations
between data and model have to be balanced. A classical problem is
the proper relative weighting of the measuring errors, the smooth-
ness of the surface and the frequency of discontinuities. A common
theoretical framework, which e, g. allows maximum likelihood esti-
mation, seems to be of great advantage for a thorough setup.

3. choose an algorithm +to find a solution of optimal or at least
satisfying consistency. There are various algorithms in use: In
image sequence analysis nearest neighbourhood methods are very
common (cf. KORIES 1986), they correspond to the minimal mapping
approach proposed by ULLMAN (1979). Relaxation schemes as e. g.
used by BARNARD and THOMPSON (1981) are very popular, as they may
incorporate quite different types of consistency conditions. The
clustering approach proposed by STOCKMAN et. al. (1982) shows in-
tuitively that a global solution is aimed at.

Table 3 contains the final result of the new procedure. It is a
robust estimation for the 6 parameters of an affine transformation
between the two images, corresponding to a tilted plane as object
model. All peoint pairs of the 1list of preliminary correspondencies
together with their weights were introduced. The corresponding points
are shown in fig. 2. The algorithm thus yields two results, which may
be the basis for further analysis:

a. a list of pairs of points which are consistent with the global
model and additional points in both images where point transfer
promises to be accurate.

b. parameters of the mapping function, which allow a point transfer of
other points, possibly not selected by the interest operator.

The next sections describe the three steps of the new procedure in
detail.

The object model is setup in a parametric form to be able to esti-
mate the parameters using maximum likelihood (ML) methods. This is no
severe restriction as very general surfaces, specifically piecewise
smooth surfaces can be represented in parametric form.

2.1 Object Model

. For a first implementation of the algorithm a simple object model
has been chosen. The surface of the object as far as it is shown in
the images is assumed to be a tilted plane. This is a reasonable
approximation if the images are not too large, say 40 x 40 to
120 x 120 pixels of size (20 um)?. This object model is identical to a
linear mapping function between the images. Thus in genmeral we obtain
the linear model for the parallaxes px = x” - x’ and py = ¥y” - y’ of
the corresponding points:
pxi + vpxi 3 X
= +

Lo
PyL + vpri d i

Pxi 1 1 0
D = - (2-1)
Pyt wg |O 1

0y O
) 0>

Solving for the 6 unknown parameters a to f yields the result of the
2D-matching result. In case the epipolar geometry is known we obtain d
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= e =f =0 1f the parallaxes in the normal image are used. The para-
meter @ measures the slope along the epipolar line, which is assumed
to be roughly parallel to the x-axis, the parameter measures the
slope across the epipolar line, and ¢ the parallax. If only points in
one epipolar 1line are used for matching +the parameter b has to be
excluded, as 1t i3 not estimable. The 2D-matching in this case reduces
to 1D-matching of a gray level line.

The model eq. (2-1) for the parallaxes 1s assumed to be valid for
all corresponding points. The covariance, or dispersion matrix for the
parallaxes depends on the type of the point, specifically its texture,
and on the similarity between +the left and the right image of the
object point. Due to the selection principle of the interest operator
for 2Dmatching the x- and y-parallaxes are assumed to be uncorrelated
and of egual precision. Thus we have one weight for the parallaxes of
each point pair. .

The non corresponding point pairs can be treated as outliers with
respect to the model. As we start from the 1list of preliminary
correspondencies, not knowing the true ones, all parallaxes may be
assumed to belong to a long tailed distribution. The most reasonable
assumption for this distribution would be the outlier model F = a N +
(1 - a) H being a mixture of a normal distribution N and a very broard
arbitrary distribution H. More simple approximations to F are the
Laplace-Distribution £(x) = ¢ exp(—|x|) or the Cauchy-Distribution £ =
c/ (1 + x*).

2.2 ML-Estimation

In order to eliminate the effect of outliers onto the result one
now can use ML or ML-type estimators. Then, instead of the (weighted)
sum of the squares of the residuals vi the sum of a less increasing
function T(vi ) is minimized (HUBER 1981):

2 t(vi) => min (2-2)

which reduces to ML estimation if T(x) is proportional to the negative
logarithm of the density function.

1. Chossing t(v) = v*/2 gives the least squares estimator, neglecting
the weights for the moment.

2. Chosing t©(v) = |v|P /p yields the estimator minimizing the Lp-norm.
A special case 1is obtained for p = 1: Minimizing 3t(v) = 2|v] is
the well known least sum method being the ML-estimate for the
Laplace-Distribution. It is the multiparameter version of +the me-
dian.

3. The choice of Tt can be guided by the socalled "Influence Curve”

' (IC) (HAMPEL 1973) being proportional to the derivative 6(v) =
dt/dv of the minimum function. IC(v) or 8(v) give an indication how
strong the influence of an outlier is onto the estimates in depen-
dency of the size of the outlier.

4. The solution of eq. (2-2) can use eoxisting programs for least
squares solutions by either modifying the residuals or by modifying
the weights, as

St(vi) = % !‘21 =3 w(wi) !*2-'- => min (2-3)
using the weight function
wivi) = W% (e << vi2/2) (2-4)

In an iterative solution the Iweights of all observations are up-
dated depending on their residuals from the previous iteration.
5. If the function T(v) is convex, thus 6(v) is non-decreasing, and
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the model 1s 1linear +then convergence is guaranteed under broard
conditions (cf. HUBER, 1981, sect. 7.8).

Thus minimizing the Li-norm seems to be optimal, as it is robust, and
convergence is guaranteed. This method has, however,two disadvantages:
1.) T(v) has no derivative at 0, thus, IC(v) is not continuous, which
does not guarantee a unique solution and 2.) IC(v) = sign(v) is not
zero for large values. Thus even large outliers have still an influ-~
ence onto the result, which is not desirable. We <therefor propose to
use the following weight functions:

1. In order to ascertain convergence and a unique solution we slightly
modify the minimum function of the Li-norm (cf. fig. 3)

Tri(v) = 2 (£ 1T ¥FV¥/2 -1)
wi(v) =4 ({1 +v3/2 -1) / V? (2-5)

B1(v) =v /41 + Vv/2
T1(v) is strictly convex with decreasing curvature for large v.

2. After having reached convergence, one can assume to have good
approximate values for +the parameters. In order to eliminate the
influence of large outliers one could take one of the following
minimum functions:

Starting from a Cauchy-Distribution on obtains:

T2a(v) = 1ln(1l + v*/2)
w2a(v) = 2 1n(1 + v¥3/2) / v* (2-6)
62a(v) =v / (1 + v3/2)

No convergence 1s guaranteed in the general case. Also as B8(v) is
descending for 1large v, no unique solution is guaranteed if ar-
bitrary approximate values are allowed. This is meaningful as the
Cauchy-Distribution has neither mean nor variance.

The following minimum function is proposed by KRARUP et. al. (1980)
which considerably reduces the weights of false observations due to
its exponential form:

T2b(Vv) = v /2 exp(-v*/2)
w2b (v) = exp(-v2/2) (2-7)
02b(v) = v (1 - v /2) exp(-v*/2)

This weight function fulfills practically all requirements for a
well behaved weight function (HAMPEL 1973, WERNER 1984). It, how-
ever, cannot be derived from a density function, thus does not lead
to a ML-estimate.

The functions are shown in fig. 3 together with the minimum-,
weight- and influence-function of the least squares To(v) = v*/2.

2.3 Algorithmic Solution

In each iteration of +this robust estimation, the parameters, the
residuals, the precision of the estimates and the average weight are
determined, and the weights are adapted for the next iteration. If a
weight is smaller than a certain percentage (say, 10 %) of the average
weight, it is set to zero, eliminating this point. The first few (3 or
4) iterations are performed with the weight function w1, after which
the redescending function wzb is applied. The algorithms stops if
either the regqired precision of the parameters is reached, not enough
corresponding points are left, or a preset number of iterations is
reached. The residuals of the last iteration are then tested and with
all points passing this test one additional iteration with equal
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weights is performed to obtain the final parameters.

The obtained 1list of corresponding points may then still ©be
ambiguous, as the same point in one image might correspond to several
points of a cluster in the other image. The list of pairs of points is
then cleaned keeping those correspondencies which have the smaller
residuals (cf. table 3).

The result obtained this way has to be checked independently in
order to be able to guarantee for its correctness. For this purpose a
global correlation coefficient is calculated from the gray levels of a
regular grid, taking the estimated mapping 4into account. If this
correlation coefficient is below 0.5 the result is rejected, which may
be caused e. g. by non-sufficient approximate values. We made the
experiance that this indicator is very reliable: it never suggested a
false solution to be correct.

lh_smiazixy__unm

The estimation procedure requires initial weights for the observa-
tions which in our case are the parallaxes of the point pairs in the
list of preliminary correspondencies. Hence the majority of the obser-

vations are ocutliers and assuming equal weight would prevent the solu-
tion from getting started.

Now the weights can be obtained from the covariance matrix of the
estimated shifts if we would apply LSM to all point pairs. It is given
by (cf. FORSTNER 1986): .

z & 2 gxegy|-1
C=0D = g* = o2 Q (3-1)
Py a2 |2 gy-gx I gy? A8

where g is the gray level function of the object, restored from g' and
g", Oag® is the estimated variance of the gray level differences thus
the nolse, and gx and gy are the derivatives in x- and y-direction
resp.. The sums are to be taken over all pixels of the window around
the points in concern.

The covariance matrix fully describes the precision of the match
between the gray level functions g’ and g" and can be visualized by an
error ellipse. A good match therefore must fulfill the following two
reqirements:

Ci: the error ellipse should be close to a circle, otherwise the
match is not well dfined in one direction, e. g. at an' edge.
C2: The error ellipse should be small.

The interest operator is based on these two criteria. As the cova-
riance matrix directly measures the curvature of the 2D-autocovariance
function within the window, the interest operator, except for the nor-
malization, i3 essentially identical with HANNAH’s operator. It is
however, much more simple to be calculated.

We now can . assume the error ellipses of all selected points to be
‘close to a circle. Then the weight can be directly derived from the
trace of the covariance matrix:

w=1/tr (°)=1/‘3Zg“ (Q) ) (3-2)

Observe, that the trace is invariant to rotations. Taking the gray le-
vel differences directly +to estimate 06a¢® has the disadvantage of
being blased if the two images have different brightness or contrast.
The correlation cocefficient 1s known to be a better measure. Now, 1if
one, for simplicitity, assumes the images g’ and g" to be related to
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the true image g by g’ = a’ (g +n’) + b’ and g" = a"“ (g + n") + b"
with 0®a' = o¢%n" = 0%n where a and b represent contrast and bright-
ness, the signal to noise ratio SNR* = og?/on®* is functionally related
to the correlation coefficient r by:

g o2
- _&'8g" _ g — __ SNR?® = I N
r = ;;:;;: < EZ—;—Ei = SR T 1 or SNR? = T—7 (3-3)
By using the approximations Zni* =~ N on? (N being the number of pixels
in the window), og? ~ og* og", tr G ~ 4 tr Q@ tr @ and oag® ~ 2 on?
we obtain the following relation for the weight of the parallaxes:

wad_£ ) 1 (3-4)
2

1 -r ag, og" 4 tr @ tr Q

1. The weight depends on four <terms. The number N of pixels in the
windows is equal for all points, thus can be neglected. The second
one reflects the similarity between the two points in concern and
needs to be calculated for all pairs of points. Actually only those
correlation coefficients are calculated where the parallaxes are
less than a prespecified task dependent threshold. The other terms
depend on values obtainable separately from both images and are
provided from the interest operator.

9. The traces tr Q' and tr Q" measure the distinctness or the locat-
ability of the points and are critical for the selection of appro-
priate points. The reason is, that the noise level can reasonably
be assumed to be constant in both images (cf. eq. 3-2).

3. The weight 1is a generalization of the one used by BARNARD and
THOMPSON (1981). It is independent of brightness and contrast and
takes the texture of the points into account.

4. A simple and reasonable criterion to reject pairs of points based
on the correlation coefficient is r < 0.5. This is equivalent to
requiring SNR to-be larger than 1.

5. As the correlation coefficient, thus the similarity measure 1is not
invariant with respect to scale, rotation and shear, the approxi-
mate values for these unknown parameters still have to be Dbetter
than 30 %.

6. However, the separation of the different terms in eq. (3-4) has
the advantage in its ability to include other measures of similari-
ty. The correlation coefficient needs not be derived from gray le-
vels but may use other features of the points, e. g. one could use
a small set of features just to decrease the computing time, e. g.
the low frequency terms of a cosine transformations or one could
use structural information, the result of a classification or a
linguistic description in combination with statistical measures,
in order to obtain invariance with respect to the expected geome-
tric distortions. The only requirement for the measure is to have
the properties of a correlation coefficient, or r/(1-r) to be a
metric distance measure.

4. _The Intereat Operator

The interest operator has to find points with the two req rements
for the error ellipse which one would obtain from point transfer: Cl:
it should be close to a circle and C2: it should be small. Now, the
error ellipse can only be calculated using a the gray levels within a
certain window, which usually is chosen § x 5 oxr 7 x 7 pixels. The
centre of the window in general is not the best point for matching, as
the transformation of this point is not invariant to geometric distor-
tions (cf. fig. 4a). An optimal point within the window is the
weighted centre of gravity, which proves to have attractive features.
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4.1 Selecting an Optimal Window

We have required that the error ellipse representing the covariance
matrix of the parallaxes is close to a circle. Moreover, we require
that the point can well be located. Measures of both requirements
(C1l and C2), should, in a simple way, be derivable from the gray level
function of +the image patch, as they are +to be determined for all
Pixels, 1. e. all possible positions of a small window within the
images.

Now the eigenvalues of the covariance matrix are invariant to rota-
tions. We will wuse them <to determine +the closeness of the error
ellipse to a circle. Moreover, +the eigenvalues of +the coefficient
matrix, say Q', and those of the inverse N’ = (Q’)-1 are related by
w(Q’) = 1/m (N’)., Thus, let mi and u2 be the eigenvalues of N’, then
the ratio

= AT G by = 1 - Bkl (4-1)

is an adequate measure for the roundness of the error ellipse. If q =
0 (and not both w1 and p2 are zero) then det N’ is zero and the matrix
is singular. This means that gx and gy are lineariliy dependent thus
the point may ly on an edge (cf. NAGEL/ENKELMANN 1986). The case q = 1
is reached only if the eigenvalues are equal thus representing an
error circdle. The calculation of q needs not use the eigenvalues, but
rather the determinant and the trace of N’ which can be derived from
the sums Zgx?, Z2gy? and Zgxgy. We also do not need to invert N'.

Similarily we can derive an expression for tr Q’:
tr Q' = tr N’ / det N’ (4-2)

Thus the selection of the optimal windows can be accomplished for both
images separately in the following steps:

1. Determination*the elements of N, which essentially are three convo-
lutions, namely of the three derived images gx? (i, Jj), &gy?(i,J) and
gx(i,j)gy(i,J), with a separable kernel containing only 1’s, which
needs just 4 additions per pixel if calculated recursively.

2. Determination of tr Q and of q using eq. (4-1) and (4-2).

3. Determination of the interest value, being a preliminary weight for

each pixel:
- _ 1 /trQif @ > gqmin (e. g. 0.5) _
W= 0 else (4-3)

4. Suppression of all local non-maxima by setting the function wW(i,Jj)
to 0 at local non-maxima.
5. Extraction of all windows for which w(i,Jj) is not 0.

Until recently we treated the centres of +the windows as selected
points. The example given in section 1 is based on this selection
principle. For images with sharp edges this selection principle re-
veals severe deficiencies increasing with larger window sizes, which
has also been discussed by DRESCHLER (1981). There a specialized inte-
rest operator <for finding corners has been developped. This seems to
be too restrictive for general imagery. We therefore follow a diffe-
rent approach.

4.2 Selecting Optimal Points

The selection of optimal windows was based on the expected preci-
sion of LSM. By taking the relative maxima of w, the expected pre-
cision using the small window 1is better than the precision obtainable
with all neighbouring windows. Now it can be shown that this selection
principle also ylelds optimal precision for +three other tasks, which
lead to a normal equation matrix N with the same eigenvalues:
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. The determination of the welghted centre of gravity =z = (x, y)t of

the window leads to the following model:

x gxi? gxi-gyi
. W o= (4-4)
yi +vi = y gxi<gyi gyi®

Xt +wi

Thus each pixel contributes +to the weighted centre of gravity
according to the size and direction of the local gradient.

The same equation system would be obtained for LSM if x4 and
would mean local, 1. e. pixelwise estimates for the shifts x and y
from xi = (g" - g°’) / gxi and y+ = (gi" - gi’) / gyi. Because
derived from +the same gray level difference they are 100 % corre-
lated with the weight matrix in eq. (4-4).

The determination of the intersection of all gray level edges in
the window leads to the following model:

di +vi =cosai % + sina ¥ D(di) = g1'? (4-5)

with tan ai = gyi/&@xt, i = x4 cos ai + yi s8in ai, and gi’? =
gxi? + gyi?. Thus each individual edge-element contributes to the
intersection point according to the square of the magnitude of the
gradient.

. The determination of <the intersection of all local 1lines of

steepest descent, thus of slope-elaments, within the window leads
to the following model:

di +vi = -sinat X + cos a ; D(di) = gi'? (4-6)

with the same abbreviations as before. Thus each individual slope-
element, which is perpendicular +to the 1local edge-element, con-
tributes to the intersection point according to the square of the
magnitude of the gradient. If the gray level function is consisting
of one or several circularily formed edges the intersection of the
slope~elements is the centre of these circles.

. The selection of windows, which are optimal for matching are also
optimal for determining +the weighted centre of gravity, the inter-

section point or the centre of a circle or a set of rings.,

The numerical solutions of problem 1. and 2. coincide, i. e. the

weighted centre of gravity is identical to the intersection of all

edges in the window. ThisA can be seen by setting up the normal

equations. The solution is z = (ZWi)-1 (Wi =zi ), with za=(xt, yi)t.

. The estimation of <the images of corner points of polyhedra |is

invariant to rotatioms in space, if based of +the model eq. (4-5).
This is probably the most far reaching consequence of this deriva-
tion..

. The number of edges within a window needs not to be known in ad-
vance in order to be able to estimate the intersection point (cf.
fig. 5: 1-6,13-15)

. Similarily the number of edge-rings within a window needs not to be
known in advance (cf. fig. 5: 10-12)

. Also mixtures of intersecting edges and lines can be determined.

Moreover, +the end polnt of a line can be estimated due to the
existende of an edge-element at the end of the line (cf. <£fig. b5:
7-9, 18-18).

The ML-estimate provides the precision of the estimated point. The
standard deviations of the estimated coordinates usually are below
1/4 of a pixel.

. The classification of the point can be based on the closeness of
fit with respect to the 3 models (general point, intersection
point, centre of rings), which has not performed in the examples in
fig. 5.
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Fig. 4 shows the centre of the selected windows (4.a) and the se-
lected points (4.b) for a checker bord in +twoorientations. Nearest
neighbourhood resampling was used for the rotated one. In fig. 5 seve-
ral image patches are shown together with the edge- or slope-
elements, the estimated point and the confidenrnce ellipse derived from
the fit of the gray levels with respect to the model. The true point
with a probability of 99 ¥ lies within the confidence ellipse, provi-
ded the model holds. The edge~ and slope elements are positioned
between +the pixels as Roberts gradient has been used. The examples
clearly demonstrate the capabilities of the point selector.

4.3 A Measure for Seldomness

The preliminary weight W = 1 / tr Q (ea. 4-3) for the points selec-
ted this way only takes the local gray level function into account,
thus is independent on the other selected points. In images with re-
petetive patterns one, however, should give those points a higher
welight whose features are seldom, in order to increase the reliability
of the initial estimate.

The problem of finding seldom, thus specific structures for
matching is a very general one. There are basicly two solutions:

a. The supervised selection of features uses the information of cor-
rect matches of a representative sample. Thus those features are
selected, which in a training phase gave best results. The approach
by KAK et. al. (1986) follows this line.

b. The unsupervised selection of features is based only on the mutual
similarity of the points or objects in concern, specifically how
dissimilarity can be expexted to influence the matching result. The
approach by TURNEY et. al. (1985) follows this line.

For supervised selection the representativity of the training
sample is crucial, whereas for unsupervised selection the underlying
mathematical model for matching is decisive. We are only interSted in
a relative weighting of the points and , because of the inherent limi-
tations of training procedures, do not want to rely on a - possibly
large - set of correct matches. We therefore propose the following
simple method for measuring the seldomness of the selected points,
which can be derived after the selection from the set of points in
each of the images alone.

Seldom points have features which are different or dissimilar from
those of all other points. As we used the correlation coefficient for
measuring the similarity of points in different images we now also use
the correlation coefficient for measuring the similarity (or dissimi-
larity) between points within one image. Let R = (rij) be the correla-
tion matrix of all selected points within one image, derived from the
gray levels within the window around the points. Then the seldomness
Si of point i, similarily to eq. (3-3) for SNR, can be obtained from:

S = (1 - ) / s forri > 0, Si = = else (4-6)
where r1 is a correlation coefficiant measuring the similarity of

point i with all other points. There are at least two choices at hand
for deriving such a summarizing value:

1. rt = max (rij) (4-7.1)
‘ J#
2. m'® =1 - [(R1)i]-1 = nt R-1 (4-7.2)

The first choice ri just measures the maximum similarity of i with
all other points j. The second choice ri’ is the socalled total corre-
lation, which for instance is proposed by JACOBSEN (1982) for evalua-
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ting the mutual dependency of additional parameters for selfcalibra-
tion. It needs the diagonal elements of the inverse of the correlation
matrix. In eq. (4-7.2) r+ is the i-th column of R without the diagonal
element Rii = 1, and Ri is the correlation matrix without row and
column 1. Obviously ri' is the weighted average of all correlations of
point i1 with the other points. ri’' is theoretically more attractive
than ri, as it measures the separability of point i and the other
points (cf. FORSTNER 1983). It can be algebraicly related to the in-
formation theoretic notion of seldomness in the sense of low probabi-
lity. This is, because for small ri', thus for a point well separable
from the others, the information, measured in bits, necessary to
describe this point, given the others, is large, indicating the point
to be a seldom one. This forms a 1link to the supervised selection
principle for structural features proposed by KAK et. al. (1986).

But, as can seen from 2 x 2 matrices, for which m® = r2*' = |Ri2|
holds, ri’ cannot discern positive and negative correlations. We
therefore propose to use the, also more simple measure ri for deriving
the seldomness.

In both cases large correlations between the points, thus large
off-diagonal elements in R lead to large summarizing correlation co-
efficients ri, thus to small seldomness measures, as should be expec-
ted.

Example: The correlations of the 3 first windows of fig. 5 are ri2 =

0.92, r13 = 0.29 and r2a = 0.39. We obtain:
1: S1 = 0.09, S2 = 0.09, S3 = 1.56
2: S1’ = 0.43, 8§2' = 0.40, 83’ = 2.29

both choices indicating the +third window to have <the most seldom
characteristics from these three windows, which corresponds to intui-
tion. The total correlations are r1’2 = 0.85, r2’2 = 0.86 and ra’'? =
0.16.

The preliminary weight Wi from eq. (4-3) of each point can now be
corrected for seldomness by multiplying it with Si. Altogether the
weight of a preliminary correspondence between point i in image I’ and
J in image I" with eq. (3-4) now can then be written as:

wu--g Ifii-u 0,1..0, W W « 8T ¢ S; (4-8)
g’ &’

The main effort for deriving these weights is the calculation of the
correlation coefficients of the points within and between the images.

2. Conclusions

The feature based matching algorithm described above has been imple-
mentad on a photogrammetric measuring device, a Zeiss Planicomp C100,
within the program PALM (SCHEWE/FORSTNER 1986) for automatic line and
surface measurments developped for the mensuration of car body sur-
faces. The algorithm supports the least saquares matching algorithm by
providing reliable and accurate approximate values if necessary. The
precision of this FBM procedure has been shown to be appr. 1/3 of a
pixel in case the centre of the selected windows are used as feature
points and the images show enough texture. The time for matching two
images of 120 x 120 pixels is about 2 seconds on a VAX 11/780. On an
HP1000 A900 computer the time for two images of 40 x 40 plxels is
appr. 8 seconds. The accuracy can be expected to be significantly
better if the weighted centres of the windows according to sect. 4.2
are used as feature points, then yielding accuracies which may be
sufficient for robot control or inspection tasks. The concept is able
to include a similarity measure, being invariant to the ' expected
geometric distortions without changing the interest operator and to
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extend the object model to much more general surfaces. The ability of
the interest operator +to find and accurately locate corners with
arbitrary number and orientation of edges or lines need further in-
vestigation, specifically for supporting image analysis.
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a)
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Table 3 Result of Robust Affine Transformation

a) wuncleaned list, containing ambiguities
b) cleaned lisc, final result

(cf. Figure 2)
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