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Abstract

Design of 3-D filters for tmage sequences is ad-
dressed. A family of filter banks which is capable of
mimmicking low level human motion perception i.e.
being sensitive 1o low spatial frequencies moving fast
and high spatial frequencies moving slowly, is proposed.
The sensitivity is modelled quantitatively as existance
of many filters with small band widihs in a range of me-
asurements. The speed, orientation, and spatial frequ-
ency tunings as well as the corresponding sensitivities
are controllable in an explicit fashion. Implementation
results are discussed.

1 Introduction

Design of linear 1-D and 2-D filters have been at
the center of attention for many applications which in-
volve pattern analysis and synthesis, [4, 13, 3]. Often,
the success of a pattern recognition or a compression
scheme depends crucially on whether the utilized filters
effectively capture, for human, essential features of the
signal or not. A functionality of the vision systems of
primates, is that the organisms are capable of analy-
sing the visual field locally, among others, by means of
a vast number of linear filters, [1, 11, 9] which are tuned
to given orientations of moving oriented line patterns
such as moving edges or gratings. The hyper columns,
which can be seen as toolboxes, of the receptive fields
include cells whose optimal spatial frequencies decre-
ase with increased eccentricities of the receptive fields,
[10]. Although many of the cells in a given “toolbox”
have an allpass character when responding to different
speeds of the gratings, a very large population have a
bandpass character, i.e. they are speed tuned. The
optimal speed of such cells increase with increased ec-
centricity of their corresponding cells. Since the spatial
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frequency sensitivity of the band pass cells in any hyper
column is inversely proportional to their corresponding
receptive field eccentricity, [12], the linear cells in the
visual cortices of primates are very sensitive to i) gra-
tings with high spatial frequencies moving slowly and
i1) gratings with low spatial frequencies moving fast.

We will propose a Gabor filter bank design techni-
que in order to fulfill these criteria. It involves a uni-
form sampling of the Fourier spectrum after a non-
linear coordinate transformation. The transformation
can be seen as consisting of two parts, i) the transfor-
mation of the spatial frequency coordinates by means
of the harmonic polar transformation, ii) a temporal
mapping which is applied to the temporal, and the spa-
tial frequency coordinates jointly. Frequency domain
deformations yielding uniformly distributed orienta-
tion and log-frequency band pass filters have been used
in 2-D pattern recognition, e.g. [13, 3], as well as co-
ding, e.g. [4, 13]. For example, a common characte-
ristics of the efficient image compression schemes is to
avoid large quantization errors in the low frequency
parts of the local or global spectra which is a direct
consequence of non-uniform sensitivity of the human
visual system to spatial frequencies.

Much of the earlier work which deal with 3-D lo-
cal spatio-temporal analysis by linear filter banks con-
cern local motion estimation, which is equivalent to
the problem of plane and line fitting in 3-D, rather
than characteristics which concern filter distribution
and design strategies, e.g. [5, 2, 7, 8]. Although, Fleet
and Jepson, (5], and Florack et. al., [6], proposed speed
sensitive filters they have not discussed the filter distri-
bution and the sensitivity issues. By contrast, we will
propose a tesselation technique which will simplify the
non-uniform sampling, [13], of the local spectra also
with respect to the temporal direction.



2 Sensitivity and deformation

Consider the coordinate transformation (deforma-
tion),

z1 = exp(£1)cos(éz) (1)
z2 = exp(£1)sin(és) (2)
zz = exp(§1)tan(0(¢1,£3)) (3)

We will assume that 2;’s correspond to the cartesian
frequency coordinates while ;’s correspond to the new
coordinates. Here z3 is the temporal frequency co-
ordinate. The choice of x; and z» to harmonic po-
lar transformation has been made extensively in 2-
D image analysis since it yields octave (Geometric
progression) bandwidths and uniform orientation tu-
nings independently, [3, 13, 4] and mimics the spatial
characteristics of the human visual system. Therefore,
and in order to simplify the problem, the harmonic
polar mapping has been chosen here too. Since we
wish that speed versus spatial frequency sensitivities
be equally valid for all spatial orientations we have as-
sumed that z3 is independent of ;. Furthermore, we
note that the velocity, v, of a planar wave is tan §, the
behaviour of which with respect to the spatial frequ-
ency and temporal frequency coordinates £; and £3 we
wish to study. The angle # controls the speed via the
injective function tan #. The functional determinant of
the total maping is thus:

dVx = exp(3¢;)(tan%(8) + l)gTodVg 4)
3

Roughly, the desired sensitivity corresponds to cell
sizes (filter supports) which are represented by Figure
1. The factor exp(3¢;)(tan?(0)+1) in (4), which repre-
sents the infinitesimal volume, does not behave accor-
ding to Figure 1 i.e. it increases with increasing p and
0, along the lines (1) and (a). Thus, we must mani-
pulate 88/8¢s in order to correct for this deficiency.
Since, exp(3¢1)(tan®(6) + 1) is an increasing function
in £, and 8, the overall behaviour of 89/9¢5 will be the
overall behaviour of dVik. Heuristically, we choose the

products of linear functions in order to model Figure
1.

% =[(1 = p1(p))(1 = p2(8)) + p1(P)P2(8)] + C (5)

where p1 = (P — pmin)/(Pmaz — pmin) and p2
0/0maz are linear functions of p and 6. They are cho-
sen in such a way that both p;’s assume values only
in [0,1]. For a small p, (or 8 ) the first term in (5),

which is a decreasing function, is dominant, conversely
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Figure 1: The distribution of the filter sizes. L =

Large, and S = Small.

the second term is dominant when p (or 6 ) is large.
Along a cross going through the central part of the fi-
gure, dV, practically, does not change. Without loss
of generality we assume that this cross is at the cen-
ter. For constant values of p, (5) is an ordinary diffe-
rential equation, with the natural boundary condition
0(£1,0) = 0 yielding:

1—;1;[1 —afs], ifp #
63) ifpl =

where, & = (py + C)/(1 - py + C).

Naturally, there are functions other than the
heuristically chosen one in (5), but the merit of the
current choice is that the resulting 6, is easily inver-
tible with respect to p (and thereby with respect to &;)
and &3 in terms of elementary functions. Consequen-
tly, the total transformation , (1-3,6), is invertible by
means of elementary functions. The invertability is an
atractive property, since we actually start from the x
domain, that is we map Cartesian grid points, which
constitute our frequency domain, to £ domain in which
the Gabor functions (filters) are defined as:

o(ee) = { ®)

1.
27
1

3.

exp(—(€ ~ €0(k, 1, m))*s~2(6 — €0(k, 1, m))/2) (7)

with S being a diagonal non-singular matrix represen-
ting the standard deviation of the Gaussian along the
coordinates ¢ = (£1,€5,€3)'. Equation (7) represents
Gaussian filters which only differ by their center fre-
quencies fo(k, l,m) the arguments of which are indi-
ces in &1, €3, &3 directions and are chosen as points on
a uniform cubic grid. Thus, such complete filter sets
constitute a Gabor filter bank.
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Figure 2: (Left) Spatial frequency distribution of the filters and their supports. (Right) Spatio temporal distribu-

tion of the filters. y axis is the temporal frequency axis.
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Pigure 3: The spatio temporal distribution of filters
when the number of filters is extremely large.

3 Implementation

The closed curves in our 2-D (and surfaces in 3-
D) figures represent the iso level curves of the filters
half-way between mesh points (in the ¢ coordinates
) visualised in the z; coordinates. At these curves,
the filter amplitudes have the value, 0.375. Conse-
quently, at neighboring mesh points the values of the
Gaussians decrease to 0.020. Figure 2 Left, displays
the iso level curves of a filter bank cutting the z1-2z,
plane in which the harmonic polar coordinates provide
for center frequencies and band widths increasing ge-
ometrically in the radial direction while they provide
for a uniform change, in the angular direction. The iso
level curves are oval rather than perfect circles. High
sensitivity to low spatial frequencies and low sensiti-
vity to high frequencies are achieved by means of the

186

corresponding filters have large and small band widths
respectively. Similarly, we illustrate the spatio tempo-
ral dimensions of our filters in Figure 2 Right. We note
that the highest spatial frequency filters have centers
which have smaller elevation angles, #, than the centers
corresponding to low spatial frequency filters. Also the
support of high freqency high speed filters cover a large
sector of the elevation angles i.e. speed, compared to
high spatial frequency low speed filters. This accounts
for low sensitivity for low spatial frequencies with high
speeds and vice versa. Here we observe an interesting
property. In order to adjust for the speed bandwidth
requirements at the same time as keeping the spatial
bandwidths to increase in a geometric fashion, the fil-
ters are gradually rotated. This has the effect of incre-
asing the speed bandwidths where it is desired, e.g. at
low spatial frequency and high speeds the filter main
direction is aligned with the corresponding filter coor-
dinate vector while for high frequency high speeds it
tends to be orthogonal to that direction. This is clearly
visible when we increase the number of spatial frequ-
ency channels, see Figure 3. However, filtering with
such a large bank is not very different than a DFT,
since the frequency supports are very small. Finally,
Figure 4 shows a 3-D view of a Gabor filter bank with
4 temporal channels.
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Figure 4: A 3-D view of a realized Gabor filter bank.
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