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hexagonal/triangular, and so on, structures with very fine to very coarse
resolutions. Results from experiments on the unsupervised segmenta-
tion of real textures indicate their importance for image processing
applications. Real geometric moments computed in Gabor space also
provide for very powerful texture features, but lack the clear geometrical
interpretation of complex moments.

tric ts, Legendre
p Zernike moments, Gabor spectral decom-
position, texture features, unsupervised segmentation.

Index Terms—N -folded symmetries, real g

I. INTRODUCTION

A local spectral decomposition by means of a bank of anisotropic
filters allows to discriminate between different textures. Many studies
have been performed, demonstrating in one way or another the
significance of the local power spectrum [11], [20], [25], [28],
[31] or phase spectrum [11], [14], [15]). However, the power or
phase spectrum itself is exploited, rather than extracting syntactically
or semantically meaningful primitives. Very few but semantically
significant parameters which describe the shape of the local power
spectrum can be quite powerful in texture discrimination. Du Buf
[16] has shown that a set of parameters indicating whether a texture
is isotropic or not, fine or coarse, rippled or rough, can be obtained
by approximating the shape of the Gabor power spectrum with a
Gaussian in a least-squares sense. Bigiin [4], [5] has shown that
the detection of many higher-order primitives can be modeled as an
abstract line detection problem. A multiscale version of the simplest
type of these primitives yields linear symmetry features. At each scale
these provide for local orientation estimates along with certainties,
therefore describing whether a texture is fine or coarse, isotropic or
anisotropic [8].

Real (geometrical) and complex moments have often been used for
object recognition. Hu [24] proposed invariants based on geometrical
moments as features for the discrimination between objects with
different shapes. Complex moments were proposed by Reddi [27] in
order to facilitate the derivation of geometric invariants. Next, we will
show that real and complex moments are both able to code the shape
of the Gabor power spectrum. While real moments enable a “blind”
mathematical description, and therefore a limited interpretability,
complex moments yield geometrically significant image attributes.
Complex moments are related to the line-fitting, cross-fitting, and so
on problems, actually giving optimal solutions in the least-squares
error sense. Therefore, complex moments when applied in Gabor
space allow for an interpretation of the local image content in
terms of N-folded symmetries. The symmetry order N refers to the
complexity of the image structure, because .N'/2 gives the number
of dominant local orientations: a two-folded symmetry means one
orientation and therefore a linear structure, a four-folded symmetry
means a rectangular structure with two orthogonal orientations, a 6-
folded symmetry implies hexagonal structures with three orientations,
and so on. We will use the terms linear, rectangular, and hexagonal
in order to address such structures, but we emphasize that any
structure with a N-folded symmetry is meant. Not only structures with
rectangular and hexagonal but also square and triangular primitives,
at fine as well as coarse resolution scales.

The rest of this correspondence is organised as follows. In Section
1I the Gabor spectral decomposition actually used in our experiments
is presented. Geometric and Legendre moments of the Gabor power
spectrum are introduced in Section IlI, and illustrated by a few
experimental results on unsupervised texture segmentation. Complex
moments of the Gabor power spectrum, together with experimental

T I

fot fo2 fo3 foa
fmin +ql- { ! —fmax
26 46 80 166

Fig. 1. The polar-separable filters give a rosette-like partition of the spectral
half-plane (top), frequency bands doubling in width (bottom).

results, will be presented in Section IV. This correspondence will be
concluded with a brief discussion in Section V.

II. THE LOCAL SPECTRUM AND THE GABOR DECOMPOSITION

The complex spectrogram of an image is defined as the Fourier
transform of the product of the image and the shifted version of a
window function:

Fl(o(X)g(T — To) ) Fo,Z0)
=/ o(&)g" (T — To) exp(—iohT)dEs, %))
FEE3

where E- is the two dimensional Euclidean space, ¢ is the image, and
g is the window function. As originally introduced by Gabor [22],
the discretization of the local spectrum can be achieved by using a
Gaussian

flz(®

T 242

g9(%) = xp( ) )]

2702 ©
as the (2-D) window function. The local spectrum and the image are
completely determined by the values of (1) on the Gabor lattice [22],
ie., To € X and &p € 2, with X and (2 being two “checker-board”
lattices associated with the spatial and the frequency domains. Since
we will perform the same operations at all positions o, we will drop
this variable or, equivalently, we will assume that o = 0. Moreover,
only the squared modulus of the local spectrum

plZ0) = |F(6(F)g(F))(0.30)| 3

will concern us. This function will be referred to as the local
power spectrum. Frequently we will use the notation p(w.,wy) in
Cartesian or p(w,..w,) in polar coordinates when meaning p(&) for
the sake of readability. Different choices of discretization lattices
have been studied, e.g., (2], [18], [26]. However, for image analysis
purposes the fixed size Gaussian is a handicap since it inevitably
excludes harmonics with low frequencies. Another drawback is that
it implicitly assumes a uniform frequency distribution, whereas real
textures often have a linearly decreasing log power spectrum [19].
For these reasons, and in order to obtain isotropy in the orierntation,
we will choose our transfer functions variable in size and our
discretization lattice as a rectangular checker-board in the log-polar
frequency coordinate system.
Now, assuming polar-separable Gaussian transfer functions, the
spectral half plane is partitioned into A frequency and N orientation
bands:

—(.u.—.uo. )2 —(wy -8 )2
Gij(wrwy) = exp {T'} - exp {T

' @)

. —
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(a)

)

©

Fig. 2. Configurations used to compute real moments, from left to right the asymmetric, the symmetric, and the double-angle configuration.

with1 <i < M and 1 < j < N. The index pair 7, j refers to a
filter’s position as well as its radial and angular bandwidth, whereas
{wl}i o {ng }; defines the discretization grid.

The application of polar-separable transfer functions results in a
rosette-like partition of the frequency domain, see Fig. 1. The transfer
functions are taken to overlap in such a way that neighbouring
filters have equal values 1/+/e at a distance o, and o,, from their
corresponding grid points. The N orientations are taken equidistant,
consequently ¢, = n/2N. The angular bandwidth of the filters
therefore equals m/N and the N filter orientations are

Wy, =20,(j-1): 1<j <A 5)
The M frequency bands are approximately distributed in octave steps,
such that the radial bandwidth doubles for each next hi gher-frequency
band. Introducing wy,;, and wmax which position the inner and outer
bounds of the rosette on the frequency scale (Fig. 1), it follows that
0 = (wmax — wppin)/2(2" - 1) . Hence,

= “mip {14327 - 1)} } 1<i<M. (6

)

o, =0-2'"

Applying this filter bank to an input image and computing the
squared modulus of the complex filter results, we obtain an estimate
of the local power spectrum for each position in the input image.
The number of orientation and frequency channels is an important
choice. Increasing the filter bank implies a better resolution of the
local spectrum, and this will influence the frequency and orientation
components which can be discriminated. We will use M = 5 and
N = 6 as a reasonable compromise between CPU time and spectral
resolution.

III. REAL MOMENTS OF THE LOCAL POWER SPECTRUM

In order to code the power spectrum with less parameters, one can
also apply real moments [9]. These will be briefly reviewed here,
and the results obtained with them are compared with those obtained
with complex moments later on. Geometric moments of the discrete
Gabor power spectrum are defined by

Mpy = Ewi‘.,ugjpul,.gy]) )
LR

with p,¢g = 0,1,2,---. Introducing . mio/moo and <y
mo1 /Mmoo, we can compute the central moments

Hpq = Z(wl-, = W) (wy; —wy)plwrcwy,). 8)
i

Although real moments m,,, (or y,,) provide a complete represen-
tation (Weierstrass approximation theorem), the basis set whwd is
not orthogonal. In addition, we will limit the order to p 4 ¢ < 4
in our applications. Complete and orthogonal basis sets on the

interval [~1,1] are provided by the Legendre polynomials P,(w.)
and P,(w,), with

1

_ 2
/_1 PuOP(OIC = 52t ©
and
n 1 n "
PuO =Y o' = gt (@ =1 o)

=0

Legendre moments of the discrete local power spectrum are then
defined as

1 1
(%;2(21+_) 3 Bows ) Palwy,)p(wswy,)s (1)
i,

Apg =

in which w,;; and w,; are scaled on the interval [—1,1]. Further
details on Legendre moments can be found in [30].

Application to Texture Segmentation

We use a bank of 30 filters, and compute real moments up to
the fourth order. This means that we reduce the number of texture
features in a first step from 30 to 15. From these 15 features we have
to select a subset, the selected subset to be segmented by Spann and
Wilson’s {29] unsupervised quadtree-based segmentation algorithm.
A completely unsupervised segmentation can be obtained by an
automatic feature reduction utilizing either a global Karhunen-Logve
transform (GKL) on the feature image set, or by means of a local
Karhunen-Lo‘eve transform (LKL). In the latter case the local scatter
matrices are computed on Gaussian-weighted neighbourhoods, taking
only the eigenvector with the maximum eigenvalue. From these local
eigenvectors the global covariance matrix is then computed, and the
resulting global eigenvectors are applied to the feature image set.
The LKL transform has been shown to perform better than the GKL
transform [6]. In all experiments we took the transformed feature
images which correspond to trace-normalized eigenvalues greater
than a prescribed threshold value (we used A > 0.01). We note
that the same Gabor decomposition, LKL transform, and quadtree
segmentation were applied in all experiments performed; this fixed
procedure allows for a comparison of the different feature extraction
methods.

In the experiments, we considered both central and Legendre
moments, and varied the frequency coordinates but only in computing
the moment sets. This means that the Gabor spectral decomposition
was always performed by applying the fixed filter set with five
frequencies and six orientations as described above and depicted in
Fig. 1, but that moments were computed on the basis of manipulated
frequency coordinates as illustrated in Fig. 2. In other words, {p} is
considered as a set of values which can be associated with points in a
plane in different ways. The reason for doing so is that moments are
strongly influenced by the geometric configuration or a deformation
thereof, sometimes improving texture discriminability. The three
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configurations applied in the present study were: the asymmetric filter
coordinates (see Fig. 2(a)), the symmetric coordinates (Fig. 2(b)),
and the double-angle coordinates (Fig. 2(c)). The latter coordinate
system is inspired by the fact that the filters with j = 1 and j = N
are neighbours [23], and corresponds to a special case of computing
complex moments; see further on. The three configurations discussed
above were also tried by using equidistant radial frequencies, that is
(log wr;, we ,)» giving six possibilities in total.

All six possibilities have been considered in computing central
moments and Legendre moments, segmenting several test images by
applying the LKL transform and the quadtree segmentation method.
Figs. 3 and 4 show best results obtained with two test images, each
containing 7 textures from the Brodatz album [12] and from aerial
imagery, respectively. These seven textures are combined in a sixteen-
patch mosaic in such a way that all combinations share a common
boundary at least once. It should be mentioned that the image in
Fig. 4 is extremely difficult to segment by using other texture feature
extraction methods available in our lab, see [3], [13], giving very poor
results in general. Best results, as shown in Figs. 3 and 4, have been
obtained by central moments using the asymmetric configuration (Fig.
2(a)). The other configurations, equidistant radial frequencies, as well
as Legendre moments gave worse results, that is four to six classes
detected in general. In the case of Fig. 3, all regions could be detected
and the boundaries found are very accurate. In the case of Fig. 4,
two texture classes have been lost. In conclusion, excellent to very
acceptable results can be obtained by computing central moments
of the local power spectrum. However, the drawback of using real
moments is that they yield a “blind” mathematical representation of
the local power spectrum. In contrast, complex moments of the local
power spectrum, to be described below, provide for a geometrically
interpretable description of the local image content.

IV. COMPLEX MOMENTS AND SYMMETRIES
A. Brief Review

Complex moments arise naturally in connection with rotation
invariant 2-D real functions. A version of these based on a set of
radial and orthogonal polynomials, also known as Zernike moments,
were introduced by Zemike [32] in 1934. In pattern recognition
they appear much later although rotation invariant optical character
recognition has been dealt with by Hu [24] already in 1962. The
latter author proposed a set of rotation invariant features, known
as moment invariants, based on geometrical (real valued) moments.
Reddi [27] introduced a set of functions, similar to the complex
moments which will be exploited here, simplifying considerably
the analytic derivation of geometric moment invariants. He used
the terms radial and angular moments for this set of functions,
and showed that geometric moment invariants can be obtained by
manipulating complex moments in a simple way, such as computing
their magnitudes. These complex moments are defined by

L. = / / (r+ 1y)1,l(-l' - iy)”/)(l'a y)d.l'dy.

m,n=0,1,2,---. (12)

A related approach to the derivation of geometric moment invariants
using complex moments, and a visual interpretation of these, was
proposed by Abu—Mostafa and Psaltis [1]. Their interpretation is
based on the Fourier expansions of the spatial image along concen-
tric circles. Although useful for object boundary recognition, this
interpretation is not suitable for the local image characterization
problem addressed here, since this expansion is essentially origin
dependent and global, rather than translation invariant and local.
Freeman and Saleh [21] proposed the use of spatial and frequency
domain complex moment magnitudes (Fourier-Mellin descriptors as

—

)

Fig. 3. (a) Test image with seven Brodatz textures in 16 patches, and (b) an
unsupervised segmentation result obtained with 5 feature images which were
computed by applying the LKL tranform to central moments. The boundaries
in the original image are shown dashed for comparison.

they refer to them) as features. Although they considered these in the
context of object recognition, this approach is more in line with the
ideas presented here, because it stresses the importance of features
based on both domains. Next, we will present a novel interpretation of
complex moments. This interpretation completes (in the mathematical
sense) the linear symmetry description of a neighbourhood [8], and
introduces N-folded symmetries. We will start with a reformulation of
the line-fitting process, and generalize it to the cross-fitting process
and beyond.

B. The Optimal Line- and Cross-Fitting Processes

Assume a two dimensional, real, and non-negative function p(Z),
T € E,. We would like to fit a line to this continuous function in the
least-squares error sense (LSE). Fig. 5 (right) illustrates this problem:
min e(k) = / I7 = (K DRI p(2)dEs,  (13)
lIklI=1 PN
where || ¥ — (k'F)k|| is the perpendicular distance of a point Z to a
line represented by the unit vector k. This quadratic problem can be
solved by using straightforward differential calculus. An alternative,
the proof of which goes beyond the scope of this correspondence,
is to use the complex moments (12), see [10]. For convenience we
use the “bar-hat” notation: Let ¥ € Eo, that is, T is a vector with
two real components:

(14

= t
T = (&p.2) .
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(b)
Fig. 4. (a) Test image with seven textures from aerial imagery, and (b) an
unsupervised itation result obtained with central moments.

Then Z is the complex number which corresponds to the point
represented by I:

r=ux; + irs.

(15)

Conversely, let # be a complex number. Then & is a vector in E;

which corresponds to #:

# = (Re(#),Im(#))". (16)

As a result, the symbol at the top of a variable determines the final
interpretation, e.g., ¥ and ¥ represent a vector and a complex scalar
originating from a complex scalar and a vector, respectively. The
solution of (13) results then in the following Theorem:

Theorem 1: The second-order complex moments I;; and Iso
determine an optimal line fitted to the function p(Z) in the LSE
sense. The magnitudes of these moments are related to the absolute
minimum and maximum error as

|Izo| = 6’(Z‘max) - é’(’:
It = e(kmax) + e(Fuin)
and the minimum and maximum error lines are determined by

o
[I20]”

22 I 22
‘lllill = |I | and ]\‘lll'dx =
20

an

T

Fig. 5. The cross-fitting problem is solved by applying a coordinate trans-
form first, followed by a line-fitting in the new coordinate system.

We will now be interested in fitting a cross to p(Z) in the
LSE sense. The error function associated with this problem is not
as straightforward to formulate as in the previous section. The
approach is first to map p to another function through a two to one
transformation, and then to apply the line-fitting problem in the new
domain. The transformation

(13)

is two to one and maps a cross to a line, see Fig. S. Hence, Theorem
1 can be applied to the transformed function

p1L =29

or(7) = |5 (pu.ﬂ, el
in order to fit a cross to the original function p. It can be shown
that this transformation is not explicitly required because the result
follows directly from the complex moment I4o(p). A straightforward
extension of the cross-fitting process to N-folded symmetry fitting,
see [10], gives us the following general theorem.

Theorem 2: The complex moments In.(p) and Imin min (p),
with m —n # 0, determine an optimal fit of a set of lines posgessing
(m — n)-folded symmetry to a function p. A set of lines has (m — n)-
folded symmetry if the lines pass through the origin and any of
them can be obtained from another by an (integer) multiple of 1“2:'"
rotations. The error function of the fitting process is

)+ ol S 4 n)) 19)

min e(i)=/ 17 = (ki 2)k |11 (F)d B2
Ilky]I=1 FEE,

where

., argxr . 27
pUIF S + )
Jj=0 2 2

and k; is a vector implicitly representing the orientation of the
=2

am—n am—n

symmetry, ¥, through the relation k; = & . The minimum
and maximum error are given by

|Imn| = e(}:‘max) - P(Emin) (20)

Imgn min(p) = e(Ruax) + e(kuin). @b

while the minimum and maximum error orientations of the symmetric
set of the lines are determined by

Im—n

|[1nfn|

am—n 2m—n 2m—n

and = =Fuin - (22)

min ‘max

Although introduced in the general 2-D domain, Theorem 2
can be applied to the local power spectrum, yielding a somewhat
different geometrical interpretation in the spatial domain. This is
because the line-fitting process, for instance, in the local power
spectrum corresponds to the detection of any structures with one
dominant orientation, i.e., irrespective of the local phase spectrum.
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Fig. 7. Frequency weighting by octave bands.

One of the main reasons for exploiting the local power spectrum
in texture discrimination is its translation invariance within homoge-
neous regions. The concentration of the power to a line reveals the
existance of a texture with one distinct orientation (linear or two-
folded symmetry) around an inspected point. The concentration to
a cross means a texture composed of patterns with two, mutually
orthogonal, directions and therefore rectangular patterns with a four-
folded symmetry. Similarly, the existence of six-folded symmetry
means textures with 3 orientations (hexagonal patterns), and so on.
The arguments of the complex moments give the orientation of the
estimated .V-folded symmetry, while the magnitudes give measures
of the estimation quality, that is certainties.

C. Frequency Distribution Models and Experimental Results

When a complex moment is computed by integration over the entire
local power spectrum, we observe that the inherent minimization
process distorts the original function p radially before the minimiza-
tion actually takes place. The reason for why one might want to

compute complex moments on the basis of the entire local spectrum,
despite the distortion effect, is that otherwise one would obtain a high
dimensional feature space. This would impose severe computational
problems for succeeding clustering methods. The integration over the
entire spectrum is one way to avoid computing every symmetry order
for every frequency band. The inherent distortion is caused by the
radial weighting of the original function p with a factor »™*" (for
notational convenience we will use r and > instead of w, and w,
in the sequel). This can be seen by rewriting the complex moments
(12) in the polar form:

Ly, = / /- Fr)exp(i(m — n)e)p(r.p)rdrde 23)
o Jo

where

ptn

flry=

According to the Weierstrass theorem, moments and thereby complex
moments are complete in £2(C,), C\, being the unit circle. But the

24
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respective moments are still correlated. This problem can be cir-
cumvented by utilizing radial polynomials which make the complex
moments orthogonal, such as those proposed by Zernike [30], other
polynomials, or even other functions than polynomials which are less
correlated. In our segmentation experiments we computed complex
moments of orders 2, 4, and 6, and compared the following three
frequency weighting methods:

1) The natural weighting: This model corresponds to when f(r) in
(23) is chosen as r™*". The experimental results learned that
the associated features discriminate aerial as well as Brodatz
textures poorer if compared to the octave model to be presented
below. The comparison was done on the basis of the number
of classes detected and the quality of the class boundaries.

2) Zernike polynomials: In this model, we choose f(r) as Zernike
polynomials, and the complex moments computed with this
weighting are often referred to as Zernike moments. These
polynomials are now given and illustrated in Fig. 6:

f(r) = Rm-}-n.m—n(r)

™m

_ s (mtn=—s) (4, 0y
_Z( 1) s!(m—s)!(n-s)!r ’

s=0

(25)

Here, m, n, and m — n are assumed to be non-negative. In
terms of segmentation results, this model performed equally
well if compared to the natural weighting.

3) Octave band weighting: Inspired by the Laplacian pyramid
[17] we pairwise subtract the complex moments of subsequent
orders, which results in the following weighting function:

Gt (P) = Qg™ = by TR
Gmtn(T) i Guga (r) > 05
1+ = . 26
Frtn(r) {0. otherwise. (26)

The scaling constants a,,, 4+, and b,,.+,, are needed to force the
maximum of f,,,4, to be 1 and to occur at the exact octave
filter positions. Figure 7 shows the frequency distribution for
this model. Since each moment order is uniquely adapted
to a specific frequency band, the complex moment order
corresponds directly to the frequency order, i.e. a high m + n
indicates fine structures while a low one points towards coarse
structures. This model is the only one among the three that we
studied which attaches a geometric meaning both to the moment
order m + n and the symmetry order m — n at the same time,
thereby keeping the number of feature images relatively low.

The experimental results obtained with octave band weighting were
far better than those obtained with the natural weighting and Zernike
polynomials. A segmentation obtained by complex moments with
the octave band weighting is shown in Fig. 8 . Six classes have been
found. Fig. 9 shows the result when the octave model is applied to
structured textures with two-, four-, and six-folded symmetries. In
this case all seven classes were found.

V. DISCUSSION

We have seen that real geometric moments of the local power spec-
trum provide for powerful texture features suitable for an unsuper-
vised image segmentation. Best results were achieved by computing
central moments on the basis of the asymmetrical frequency coordi-
nates (Fig. 2(a)). Results obtained with the symmetric and double-
angle representations (Figs. 2(b) and 2(c)), as well as these represen-
tations with equidistant radial frequencies, were clearly inferior. This
effect can be explained by the strong asymmetry in the representation,
which leads to moments with an increased discriminability. However,
this effect also depends on the local power spectra and therefore on
the textures present in an image, and cannot be generalized.

I

Fig. 8. Unsupervised segmentation obtained by octave-band weighted com-
plex moments.

Fig. 9. Segmentation result by applying octave-band weighted moments to
structured textures with two-, four-, and six-folded symmetries.

Despite the good results, real moments lack a clear interpretation
of geometric structures. Complex moments allow for such an
interpretation because they provide for optimal solutions to the
line-fitting, cross-fitting, and so on, problems. When complex
moments are computed with an octave-band weighting of the Gabor
power spectrum, they enable a geometrical description at different
frequency scales. Complex moments will perform best for textures
with N-folded symmetries, in accordance with their geometrical
significance. However, for stochastic textures such as in Fig. 8
their performance is less obvious because of the absent symmetries.
The good segmentation result shown in Fig. 8 therefore indicates
that complex moments, as for real moments, can provide for a
complete representation of the local power spectrum, or an adequate
representation if the moment order is limited.

There are a few practical problems which need further attention.
The boundary artifacts as illustrated in Figs. 4 and 8, but which
were more or less prominent in all experimental results, are caused
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by the fact that certain (if not all) moments, real or complex, are
sensitive to the mixture of two local power spectra at a texture
boundary. This leads to deviant feature values at the boundaries.
Hence, the prominence of this effect also depends on the segmentation
method applied. We used Spann and Wilson’s [29] quadtree based
segmentation algorithm throughout our study, which allows for
a comparison of the different moment models. This method is
what is called region-based. The boundary refinement subprocess is
clearly disturbed by the deviant feature values at the boundaries. An
alternative, as discussed in [16], would be to combine region- and
boundary-based methods.

Furthermore, the maximum moment order has to be somehow fixed
or determined. This is not a trivial problem, because a large feature
dimensionality leads to practical problems in the feature reduction
and segmentation processes. Since we apply complex moments to
the discrete Gabor power spectrum, the order depends on the number
of orientations in the Gabor decomposition. This, in turn, depends on
the pattern discriminability required. The very good results obtained
by applying complex moments of order 6 to the spectrum of rather
stochastic textures (Fig. 8) shows that isotropic textures can be
dealt with. For structured textures, the symmetries present require
an appropriate moment order and therefore a corresponding number
of orientations in the Gabor filtering. However, this reasoning is
not quite realistic because of the overlap of the modulation transfer
functions of the filters. A spectral component which lies between
two filters will result in a less peaked but broader contribution to the
local power spectrum. In addition, the larger the symmetry order, the
smaller the differences in orientations. Perhaps a number of six or
eight orientations, leading to complex moments of order six or eight,
is already sufficient for most applications.
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