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Complex moments yield estimates of the local N-folded image
symimetry because they give optimal solutions to the generalized
line-fitting problem. Instead of computing them in the spatial
demain, they can be computed in the local frequency domain
because the local (Gabor) power spectrum is translation invariant
{or varying slowly in practice) inside homogeneously textured re-
gions. In other words, they make it possible to detect and discrim-
inate linear, rectangular, hexagonal/triangular, etc., structures.
When computed for different frequency bands they make it possi-
ble to distinguish between textures having different structures at
different scales. Experimental results on texture segmentation
confirm this. Furthermore, complex moments of the local power
spectrum are shown to be related to Lie operators as well as pro-
late spheroidal functions, which allow for implementations that
bypass the Gabor filtering. © 1995 Academic Press, Inc.

1. INTRODUCTION

Exploiting coordinate transformation theory, Bigiin
[2, 3] has shown that the detection of many higher order
image primitives can be modeled as an abstract line de-
tection problem. The simplest case is the detection of
linear structures, which results in a local orientation esti-
mate together with an associated certainty. Such an anal-
ysis can be performed at different scales, and the results
indicate whether a texture is fine or coarse, isotropic or
anisotropic [4, 5].. Other higher order primitives are spi-
rals, circles, and T-junctions and can be dealt with by
various differential operators [15, 16, 28]. All these ap-
proaches, which emphasize different types of invari-
ances, such as shape and size, are related to Hoffman’s
Lie algebra of vision {22], and some evidence for the
existence of polar and hyperbolic operators in the pri-
mate visual system has been found as well [19].
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Complex moments of a function p{x, y), which are
defined by

brn = fm ﬁ (x + iyy(x — iyy'plx, )y dx dy (1)
m, n = 0, 1, 2, ey

are strongly connected to rotation invariant functions.
Zernike [40] introduced them in relation with the design
of nonlinear optical devices. In solving a rotation invari-
ant differential equation, he obtained a set of radial and
orthogonal polynomials also known as Zernike moments.
Hu [25] derived real geometric moment invariants by us-
ing the algebraic theory of quantics as developed by
Boole and Sylvester [14]. These invariants have often
been applied to object recognition in the spatial domain,
when the contour or skeleton of an object is well defined
[13, 25]. Reddi {31] simplified the analytic derivation of
geometric moment invariants by showing that they are
related to complex moments, thus deriving what he
called radial and angular moments. A related approach
was proposed by Abu-Mostafa and Psaltis [1]. Their in-
terpretation is based on the Fourier expansions of the
spatial image along concentric circles. Other studies con-
cerned with moment invariants (geometrical and/or
Zernike invariants) in the spatial domain, for optical
character recognition in particular, can be found in (27,
34, 37, 39].

Freeman and Saleh [17] took a different approach by
combining complex moment magnitudes (Fourier—Mellin
descriptors) in the spatial and in the frequency domain.
Their approach iciates to the ideas presented here, be-
cause it stresses the importance of features based on both
domains. In addition, we will work toward a translation
invariant and local image representation as opposed to
the origin-dependent and global representation as em-
ployed by Abu-Mostafa and Psaltis [1]. We achieve this
by computing complex moments on the basis of the local
{Gabor) power spectrum for each position in an image.
This focal power spectrum is obtained by filtering an im-
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age with a complete set of complex Gabor filters, each
with real and imaginary point spread functions, and com-
puting the squared magnitude of all complex responses
(the filtering is done in the frequency domain of course).
Therefore, the local power spectrum is translation invari-
ant inside homogeneously textured regions, provided
that the Gabor filters are tuned to frequencies not too
high. In other words, they may not act like line and edge
detectors [11].

Below we will show that complex moments computed
in the local frequency domain can yield a local and trans-
lation invariant description of an image. This new and
elegant interpretation completes in the mathematical
sense the linear symmetry description of a neighborhood
[4] and introduces N-folded symmetries. Furthermore,
we will link complex moments to the local or Gabor
power spectrum, which is very ‘‘en vogue’’ in texture
analysis, e.g. [26, 30, 32], but with the goal of deriving
semantically meaningful image features. The generaliza-
tion of linear symmetry to N-folded symmetries, for
which we present only one application here, namely tex-
ture segmentation, also completes other theories like
steerable filters used for example in orientation estima-
tion [18, 20, 29]. The steerable-filter approach for orienta-
tion detection is limited to linear symmetry cases,
whereas complex moments are capable of addressing
general symmetries, thereby obtaining not only the sym-
metry information but also the orientation information.
This makes it possible to construct operators which can
detect very specific structures like a rectangular structure
having a given orientation.

We emphasize that our main concern here is with the-
ory. We will focus on the mathematical proof of the gen-
eralized line-fitting problem by means of complex mo-
ments, the interpretation of the complex moments, and
the theoretical relations with Lie operators as well as
prolate spheroidal functions. The latter methods allow
for different implementations which bypass the Gabor
filtering stage.

Furthermore, we will only illustrate one application,
texture segmentation, in order to underline the power of
the complex moment approach. However, we will not go
into details because a second study is concerned with
extensive tests and comparisons with alternative meth-
ods {7]. These include different sets of real moments of
the local power spectrum which lack a clear semantical
interpretation. Although experimental results are quite
comparable, the advantage of the complex moment inter-
pretation makes this approach preferable. In addition,
the same test images and the same processing scheme
have been utilized in other studies in which other texture
feature extraction methods have been compared [4, 6].
The results obtained were clearly inferior.

The rest of this paper is organized as follows, The solu-
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tion of the line-fitting problem utilizing complex moments
is presented in Section 2. This problem is generalized to
N-folded symmetries in Section 3. Important aspects of
the application of complex moments to the Gabor power
spectrum are discussed in Section 4 and illustrated by an
application, namely unsupervised texture segmentation.
The relations between complex moments of the local
power spectrum and Lie operators as well as prolate
spheroidal functions are studied in Section 5.

2. THE OPTIMAL LINE-FITTING PROCESS

Suppose that we want to fit a line to a two-dimensional,
continuous, real, and nonnegative function p(X), X € E;,
in a least-squares error {LSE) sense. Furthermore, we
are only interested in fitting a line which goes through the
origin, see also Fig. 1 (right). Here E; represents the two-
dimensional Euclidean space, and the error to be mini-
mized over k, with ||&]| = 1, is

e® = [ I - FDRPo) a, @

where ||¥ — (k'%)k| is the distance of a point ¥ to the line
through the unit vector k. This problem can be solved by
using straightforward differential calculus, but we will
present a solution based on complex moments because
this will be exploited in a more general sense later on.
From (2) we obtain by algebraic manipulations

e®) = [ I%IPo(®) dF ~ euP. €)
Here e,(k) is defined as
e = [, 1RZPp(®) d, @

o

FIG. 1. The cross-fitting problem is solved by applying a coordinate
transform first, followed by a line-fitting in the new coordinate system.
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and the translated problem is to find

max e(k).
=1

(5)

Before solving this problem we introduce the following
notation. We had ¥ € E;, that is, ¥ is a vector with two
real components:

X = (x1, ). ®
Then £ is the complex number which corresponds to the
point represented by I

=)

=x; + ix,. @)
Conversely, let £ be a complex number. Then Zis a vec-
tor in E; which corresponds to %:
&
£ = (Re(%), Im(#))". (8)
As aresult, the symbol at the top of a variable determines
the final interpretation, e.g., £ and X represent a vector
and a complex scalar originating from a complex scalar
and a vector, respectively. The basic motivation for this
notation is that we want to use the exponentiation, e.g.,
squaring properties of the complex number field while
exploiting the geometric projection properties of the vec-
tor fields, at the same time.
The scalar product of two vectors X and ¥ can be com-
puted in the complex number field by using

7 = (X*y + X¥*)/2 = Re($*7). 9)

Using (9), e,(k) of (4) is rewritten as

&) = [, Re(E*5)0() dx

“ 3 fen!

= 1 o [P GR + @y + A2 i

(k* 52 + (k3% + 2kk*) $5p (%) dX

1 PV | 2
- 2 il 2
TEE, |x| p(x}ydi + 2 Re (k J;?EE:

5 x2p(%) df) :

(10}

where kk* = lElz = 1 has been applied to obtain the third
line., Hence, our maximization problem is once more
translated into another one, namely to maximize es(k)
which is defined by

- =t
= Re(k?*?) = (k2 2

ex(k) (11)

BIGUN AND DU BUF

where £ is a complex moment (1) which is independent of
k.

t=ly=|_ #pEadr. (12)

I€E,

Obviously, the projection of Z onto the same direction as
itself is maximum among all other projections:

P = & 13)
2 ‘
Consequently, we obtain the optimal error
= . _1 20 1,
emi) =3 [, 17 slel a9

In a similar way, a direction kpa, which maximizes e{k)
of (2), thereby minimizing e of (11), can be found. This
yields the error

(15)

By using (14) and (15) we also note that the sum of the
maximum and minimum error is a complex moment,
namely I, Moreover, we note that if &,;, minimizes (2),
so does —kpi,, and the solution is unique up to =4, The
direction given by £y automatically solves this ambiguity
and we represent the optimal k by k2. The line-fitting
process described up to now constitutes the proof of the
following theorem:

THEOREM 1. The second-order complex moments I,
and Iy determine an optimal line fitted to the function
p(x) in the LSE sense. The magnitudes of these moments
are related to the absolute minimum and maximum error
as

e(Emax) - e (Emin)
e(Emax) + e("?min)

(o]
Iy

il

and the minimum and maximum error lines are deter-
mined by

2 L 2 I
ki = szg”l and  kha = — |‘f§ﬁ‘| (16)

3. FITTING AN OPTIMAL CROSS AND BEYOND

We will now be interested in fitting a cross to p(X)in
the LSE sense. The error function associated with this
problem is not as straightforward to formulate as in the
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previous section. The approach taken here is first to map
p to another function through a two to one transforma-
tion, and then to apply the line-fitting problem in the new
domain. After presenting our solution to this problem, we
will generalize these results by means of a theorem which
includes both the line- and cross-fitting processes as spe-
cial cases. The proof of the theorem will not explicitly be
carried out since it is a straightforward extension of the
method described here. However, to facilitate further in-
vestigations, we will be slightly redundant and write 4/2
instead of just 2. We will show that I, withm — n = 4
(fourfolded symmetry) fits a cross to the function p(X) in
the LSE sense. Without loss of generality we consider [y
throughout this section. We first perform a Cartesian to
polar transformation of the integral defining I:

Io = LEE, (%) d¥

(17)
2r [
= J:J L r* exp(ide)p(r, @rdrde.
Using the transformation
4
0 =50, (18)
the above integral can be transformed once more:
Y21 e 2
I‘IO = 2 J I r exp(‘z‘Pl)P( 4/2 +.] 4;;)
1
an rdrde; )
2m(472) ! 42 2T
_-J’ J' [r exP(f‘Pl)}z E ¥ (r 4/2 J4/‘2)
n /2 rdrde, .

For a further simplification we need to show that the sum
in the integrand is 27 periodic:

4/2—1

4-2 ¢1+27T
2 "("’ anz

-2_17)_
Yzl =
( amTUHD 4/2)

4n-t
2 ré-2 (
J=0

4/2-1

2 pA-2
Jj=0

(20)

211')
35 T3

The last equality is obtained by observing that the integer
multiples of the angles 2#w/4/2 constitute a group, the
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cyclic group, with angle addition (circular} being the
group addition operation. Returning to (19), and using the
27 periodicity when splitting the integration interval [0,
24 3], the factor 1/4/2 is eliminated so that we obtain

la(p) = [, #pu(®) dF = bolpy, @)
where
. ., arg X 27:-)
X) = x|+ (f , + (22)
Similarly, it can be shown that
In(p) = In(p). (23)

Hence, according to Theorem 1, arg(ly) determines the
orientation of an optimal line fitted to the function p,(Xx),
and |I| is the difference between the associated largest
and smallest errors. In (22), we note that p, is obtained by
adding the values of p at 4/2 points and by weighting the
sum with a radial function. These points participating in
the addition lie on lines through the origin with equidis-
tant angle separations of 27/(4/2).

Hence, I4(p) first implicitly maps all points possessing
the same fourfolded symmetry (points on the same cross)
to a line in an additive manner. Then it fits a line to this
new function in the LSE sense; see Fig. 1. The error is
zero if and only if the points where p(¥) are nonzero
possess a fourfolded symmetry (points should lie on a
single ideal cross). A straightforward extension of the
cross-fitting process to N-folded symmetry fitting gives
us the following theorem:

THEOREM 2. A pair of complex moments 1,,(p) and
It nyzmimis (p), With a given m — n # 0, determines an
optimal fit of a set of lines possessing (m — n)-folded
symmetry fo a function p. A set of lines has (m — n)-
Jolded symmetry if the lines pass through the origin and
any of them can be obtained from another by an integer
multiple of 2wi{(m — n) rotations. The fitting process is
represented by

min (k) = min [__ | - RDk[ox) df,

=1 =1

where

arg X
(m o~ /2

x

pix) =

. {m=-n)2 -1
e TS

=t

iy 2 )
‘](m—n)/Z ’

and k, is a vector implicitly representing the grientqtion
of the symmetry, k™", through the relation k2 = fm-n,
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The minimum and maximum errors are given by

(24)
25)

Ilmnl e(Emax) - e(Emin)

I(m+n]l2,(m+n}f2 = e(kmax) + e(kmin)’

whereas the minimum and maximum error orientations
of the symmetric set of the lines are determined by

Im—n Am_ﬂ AH’!*.Tl
=177 and kpax = —Kmin .
Tl

(26)

4. THE LOCAL POWER SPECTRUM AND ITS
REPRESENTATION BASED ON SYMMETRIES

Theorem 2 can be applied to the spatial domain, but
also to the local frequency domain. The great advantage
of considering the local power spectrum is that it is trans-
lation invariant within homogeneous regions, i.c., local
phase information which makes it possible to discrimi-
natec between textures consisting of differently shaped
lines and edges is neglected, e.g., [11]. In other words,
only the geometrical structures are taken into account,
irrespective of the shape of the structure’s components.
As already discussed in the Introduction, transiation in-
variance requires that the filters employed are tuned to
frequencies not too high. Therefore, when there is a tex-
ture with one distinct orientation (linear or twofolded
symmetry) around an inspected point, the power spec-
trum will be concentrated to a line. When there is a tex-
ture with two, mutually orthogonal, directions (rectangu-
lar or fourfolded symmetry) the power spectrum will be
concentrated to a cross. It is stmilar for hexagonal/trian-
gular (sixfolded symmetry) and octagonal structures
({eightfolded symmetry). The arguments of the complex
moments give the orientation of the estimated N-folded
symmetry, whereas the magnitudes give measures of the
estimation quality, that is, certainties.

At this point we note that if the complex moments I
and fy of a local power spectrum with an energy concen-
tration having only twofolded symmetry is computed, the
magnitude responses will be high. However, these mag-
nitude responses will be lower than those in the cases in
which the spectrum shows four- and six-folded symme-
tries. The reason for this is that 2 is a factor of 4 and 6;
hence, such a concentration ‘‘leaks™ to four- and six-
folded symmetries. The converse is not true, which al-
lows complex moments to discriminate between these
symmetries, In the ideal case, a sixfolded symmetric en-
ergy concentration gives a zero response for complex
moments with m — n = 4 and 2. Likewise, a fourfolded
symmetric concentration vields a zero response for m -
n = 2 and 6. In practice, the discriminative power of
complex moments will be less when the energy in the
measured local power spectrum is spread. A simple con-
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sequence of the Cauchy-Schwartz inequality is Heisen-
berg’s uncertainty principle, W, W, = {; see [21], where
W, and W, are the effective widths of a function as mea-
sured by the square root of the variance in the spatial and
frequency domains. Hence, one can increase the orienta-
tion selectivity of the filters by taking very elongated
point spread functions, but this leads of course to averag-
ing across region boundaries.

Consider p(w,i, w,;) when @, is fixed to wy. In a Ga-
bor decomposition scheme with six orientation channels
(j=0,...,35) this subset of the local power spectrum
corresponds to the responses of all six filters with differ-
ent orientations tuned to the same radial frequency. As-
sume that only this subset is used in moment computa-
tions. There are four complex moments of order 6: [,
1y, Isy, and fy, since I, = I%,. There are no odd sym-
metries because the power spectrum is even symmetric.
The sequence {p(w 4, j(27/12)}}Ly is the power spectrum
covering the entire spectrum over a closed circle. The
inverse DFT of this sequence is given by

_ 1 .. 21r) ( _277)
P *Za exp(tﬂﬁ plow. i) (27)

By keeping in mind that the DFT causes p; = pf_,, it can
be seen that p,_,w8 = L., with m + n = 6. Since w, is
independent of p and is known a priori, the I,,,’s over a
frequency band represent the inverse DFT. Hence, I,
I, Is, and Iy, are actually the only moments required in
order to uniquely represent the power spectrum for a
given frequency band. This set of moments corresponds
to six independent real variables, because only Iy; and I
are really complex. This can be seen by evaluating p; for
! = 0 and 6. When such a computation in terms of com-
plex moments is carried out for each radial frequency w .,
one has actually applied an orthogonal transformation to
the entire local power spectrum, since the Fourier trans-
form is orthogonal and the moments cover nonoverlap-
ping frequency bands. The generalization of the relation
between the Fourier transform and the complex moments
for Gabor decompositions with arbitrary numbers of fil-
ters is straightforward and therefore omitted here.

In order to visualize the effect of computing complex
moments in the local power spectrum we have applied
sixth-order moments (ls1, fs, Is;, and Ig). Figures 2 and
3 show a test image with structured textures from the
Brodatz album [9] together with the magnitudes of some
moments in different frequency channels. The Gabor de-
composition was similar to that exploited before in other
contexts like the analysis of local phase information [10],
namely a filter rosetie in the frequency domain with five
frequency bands in octaves and six equidistant orienta-
tions. In order to address the textures in the test image
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we make use of the following coding:

T4 | T7 | T6 | T1 |
T2 | T1 | T4 | T5
T4 | T3 [ T2 | T7
T2 | T5 [ T6 | T3

The upper-right image in Fig. 2 is |Iy| in frequency
channel 1 (the lowest frequency band). Bright areas cor-
respond to large magnitudes, and thus to high confidence
linear symmetries. Texture T1, which roughly has this
property, is highlighted, but the boundary uncertainty is
large because of the low frequency of this channel. The
bottom-left image is |I;| in frequency channel 2, which
responds to the linear substructure of T2. The coarse
lincar pattern in the same texture excites || in the same
frequency channel, which is illustrated in the bottom-
right image (recall that 2 is a factor of 4).

The upper-right image in Fig. 3 corresponds to |lg| in
frequency channel 3. This symmetry type represents hex-
agonal as well as triangular structures. The textures T35
and T6 have this property. The response to T2 in this
image can be explained by the fact that this texture in-
cludes substructures with two-folded symmetries (2 is a
factor of 6). It is worth noting that the converse is not
true, that is, the response of |I,| to textures with a hexag-
onal structure is low (see upper-right image of Fig. 2).
The bottom-left image in Fig. 3 shows |/5)| in frequency

FIG. 2. Upper left, input image; upper right, | Iy in frequency chan-
nel 1 (lowest frequency); lower 1eft, |14 in frequency channel 2; lower-
right, |f5;| in frequency channel 2.
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FIG. 3.
nel 3; lower left, || in frequency channel 4; lower right, || in fre-
quency channel 5.

Upper left, input image; upper right, |1y in frequency chan-

channel 4. Due to their rectangular structure, T4 and T3
respond in this image. The modulus of Iy, in frequency
channel 5 is shown in the bottom-right image. Here most
of the texture boundaries are visible because they do not
respond to this symmetry. The reason for this is that the
mixture of two power specira at boundaries normally
lacks a single orientation and thus any linear symmetry
(the uncertainty principle again). In conclusion, we have
shown that the different moments in different frequency
bands respond to specific structures, that some symme-
try orders leak to multiple moments, but that the entire
set of moments makes it possible to discriminate all tex-
tures. This can be exploited in texure segmentation; see
below. However, if region-based segmentation methods
are to be employed, we can expect some artifacts at re-
gion boundaries.

One might think that the arguments of the complex
moments which represent k2, &%, . . . according to Theo-
rem 2 need to be divided by 2, 4, . . . for a straightfor-
ward representation of the ortentations. Likewise, the
moduli of these moments do not provide for the minimum
error directly. Although it is simple to compute this by
solving the minimum error in (37)-(38), we will argue that
for pattern recognition purposes the complex number
representation of I, has advantages which make it possi-
ble to circumvent the following three problems. First, the
continuity of the orientations is preserved in the sense
that two orientations (orientation of the lines, crosses,
etc.) which differ a small amount also differ a small
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amount in their numerical representations. That is, a
nurnber arbitrarily close to 0 is not arbitrarily close to 2,
whereas the corresponding physical angles are; see [20].
In the Cartesian representation the complex numbers are
continuous with respect to changes in their arguments,
including the angle of 0. Second, the factor m — n makes
the representation of the orientation of the symmetry
unique. A line with an angle of /6 is the same as the line
with (7/6) + =, as are a cross with a (rotation!) angle of
/6 and the crosses with angles of (n/6) + (%/2), (w/6) +
2(m/2), and (7r/6) + 3(m/2). However, eliminating the fac-
tor m — n would discard the physical equivalence of
these cross rotation angles, causing what is called the
group representation problem. Since the argymenis of
the complex moments actually correspond to 7", such
an ambiguity does not exist because all angles are multi-
plied by m — n. Third, knowing the value of e(k,,;,) alone
is not sufficient to judge the quality of the estimate; one
must know whether this error is large or small (the range
problem). The comparison with the worst case, i.e.,
e(kmax) — elkmin), provides a means to assess the quality.
Again, I, already represents the difference of the errors
through its magnitude. Alternative quality measures can
be found easily. As an example we mention the energy
independent ratio

{n

1, (m+a)2 . (m+n)il

E(Emax) — e(Emin) -
e(Emax) + e(Emin)

(28)

FIG. 4.
band weighted moments to structured textures with two-, four-, and six-
folded symmetries. From [7].

Unsupervised quadtree segmentation by applying octave-
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FIG. 5.

Segmentation of aerial textures. From [7].

which is always in the interval [0, 1] and attains the end-
points 0 and 1 if the quality of the fit is totally uncertain
and totally certain, respectively. The continuity, group
representation, and range problems might easily imperil
the performance of, e.g., a clustering method which
could follow the extraction of orientation and certainty
features, if an adequate representation of these features
is lacking. By using complex moments in the Cartesian
representation one can avoid these three problems.

Finally, Figs. 4 and 5 show the result of one applica-
tion, namely unsupervised image segmentation. These
results were obtained by complex moments with octave-
band frequency weighting. This weighting is employed in
order to compute the moments in different frequency
bands, rather than summing over the entire local power
spectrum. Such a procedure also viclds a scale selectiv-
ity. Then a local Karhunen-Loé¢ve transform (LKL) (see
(61) was applied to the 14 real and imaginary parts of the
complex moment images, and the reduced feature set
was segmented by means of a quadtree method. For full
details, and a complete experimental test which includes
real moments as well, see [7]).

Here we note that the applied LKL transform is or-
thogonal; i.e., it preserves distances in the feature space.
The complex moments of the Gabor power spectrum
constitute a linear transform which is in general not or-
thogonal. Consequently, the complex-moment transform
cannot be bypassed by applying the I.LKL transform di-
rectly to the Gabor power spectrum, since not all linear
transforms are reachable by orthogonal transforms.
However, it should be mentioned that orthogonal com-
plex moments exist, namely the Zernike moments {40].
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From Figs 4 and 5 we see that complex moments pro-
vide for very strong texture features, yielding good seg-
mentation results. Not only for highly structured textures
with N-folded symmetries but also for aerial textures
which are less structured.

5. OTHER INTERPRETATIONS AND
IMPLEMENTATIONS

In this section we investigate the precise physical
meaning of the line-fitting, cross-fitting, etc. processes
explored above. First, we relate the error function to
some differential operators which offer not only another
theoretical derivation of the same method but also an-
other implementation in which the Gabor decomposition
can be circumvented. Then we will do the same by con-
sidering prolate spheroidal functions.,

5.1. Relation to Lie Groups of Transformations

By using the theory presented, a conceptive relation
between complex moments of the local spectrum and
some of the Lie transformation groups can be estab-
lished. This relation is particularly strong because it gives
an interpretation of the error function, which was origi-
nally formulated in the Gabor space, directly in the spa-
tial domain by means of physical operations, that is,
small translations. In order to analyze the significance of
complex moments computed from the local power spec-
trum, but now in the spatial domain, we will use the
continuous representation

I = j_ |@]m+ exp(itm — n) arg &) F (@) df
wEE;

— ) 2 =
n'IEE;w iFll dx,

where F, is a remapped version of the local Fourier spec-
trum, F(@) = F(¢@) e(x) (i), ¢ is the original image,
and g is a window function. According to Theorem 2, the
magnitudes of /,,, determine the minimum and maximum
of E(E) or, equivalently, they determine the minimum of
e(k) in analogy with Eq. (4):

min e (TE) = min _ E:a 2| F (a 2 g7
Ild=1 ! | Fi=1 ‘LEEz ( ) ‘ 1 )|
» (29)
= min f (COS 6t 4 sino —afl) dx.
g XEE; ax ay

Here f; is the inverse Fourier transform of F, and &k =
{cos 6, sin #Y, and we have applied Parseval's theorem in
order to pass to the spatial domain. The operator &£, de-
fined as
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d . d
= — + —
F==ccost P sin & 3y’ &]0)]

is an infinitesimal generator of the two-parameter Lie
group of transformations, the translation group {8]. The
invariant curves of this group are constant lines with the
directions determined only by 8 since they satisfy £f) = 0
for any & > 0, Thus I,,, determines the closest member of
this Lie group in the LSE sense. Whenm — n = 2, fi is
the original local image f, and [, represents the direction
along which a translation leaves the local image invariant
(actually the direction yielding the smallest variance if
translated). This can be seen easiest by inspecting Eq.
(29} and noting that in the ideal case it equals zero. Thus
the nonnegative integrand and thereby £f itself vanish.
In the nonideal case this complex moment represents the
LSE approximation of the solution lines of £f = 0. For
higher order symmetries, the exact analytical interpreta-
tion of /.., in terms of invariants is analogous to the sec-
ond-order symmetries, In this case I, represents the
translation invariant direction of an (m — n)/2 “*folded””
local image. Because the folding is actually carried out in
the local power spectrum this corresponds to equalizing
the orientations differing with 2#/(m — n) in the spatial
domain. Using infinitesimal operators (or, equivalently,
local deformations caused by coordinate transforma-
tions) has been argued to be the most systematic way of
analyzing a geometrical structure [2, 16, 23, 33]. One
advantage of the complex moment approach relative to
the Lie operator is its simplicity: it does not require more
than ordinary algebra in order to derive the implementa-
tion. By contrast, the Lie algebra requires a thorough
understanding of differential operators, but could result
in more efficient implementations.

5.2. Relation to Prolate Spheroidal Functions

Another interesting connection to a known theory can
be obtained when the complex moments of the local
power spectrum are written in polar coordinates,

Lun = [___ rorm=n explitm — m)g)| F@)? di
weE,

- 2 om—n 1T e
J;_)e&r wm | F(@)? dx

3 . a (m—n)2 _ 2 N
= Jren. [(5; + 1-5—;) f’(x)] dx,

where r = (@], ¢ = arg @, and f' is the inverse Fourier
transform of »"F. The distortion of the local spectrum
through a weighting with radial pelynomials can be com-
pensated for by frequency weighting functions (see also
£71), or it can be seen as part of the discrete interpolation
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function as will be explained below. Equation (31) makes
it possible to compute the complex moment features di-
rectly in the spatial domain; see [4] for m — n = 2. Equa-
tion (31) can be approximated through smoothing the
square of the complex-valued image

9 (n—np2 B
) (%)

P (32)

h(f):z,ﬁ(%+i

on a discrete spatial checkerboard grid employing the
theory of band-limited functions. Here u, is the interpola-
tion function governing the behavior of the discrete im-
age between the grid points and f; is the original discrete
image. In practice such an interpolation function is cho-
sen to be a rotationally symmetric compact function (a
function of ||x]|}. It can therefore be assumed that y; also
contains the isotropic compensation for r. In that case h
corresponds to the convolution result of the input image
with a complex filter of the form

gmal| X)) exp(i n 2_ i

arg f), (33)
where g,., 1s a one-dimensional function which, apart
from m and n, also depends on the choice of the interpo-
lation function. A special subset of these filters are pro-
late spheroidal functions [35]. The advantages of this
type of filter in connection with rotation invariant pattern
recognition have been argued in [12, 38], however, with-
out referring to moments of the local power spectrum as
discussed here. As for the Lie operators discussed
above, operators like (33) can lead to more efficient im-
plementations because the Gabor decomposition does
not need to be incorporated in them. The operator set
size (one spatial convolution per operator) instead of the
Gabor filter set size (repeated filtering in the frequency
domain) then determines the efficiency.

6. CONCLUSIONS

1. Complex moments provide for optimal solutions to
the line-fitting, cross-fitting, etc., problems.

2. If computed on the basis of the local power spec-
trum, they yield estimates of the N-folded symmetry of
the local image content.

3. If computed for all frequency bands individually,
they allow for a simultancous symmetry description at
different scales. The moment set for each frequency band
forms a complete representation.

4. The complex number representation is advanta-
geous in circumventing the continuity, group representa-
tion, and range problems in pattern recognition.

5. Complex moments of the local power spectrum are
related to the use of infinitesimal operators in the spatial
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domain, and therefore to the Lie algebra. They are aiso
related to prolate spheroidal functions. Hence, they can
be implemented by means of direct operations in the spa-
tial domain. This could allow for a fast computation on
special systems (e.g., pipeline or massively parallel archi-
tectures).
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