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Abstract

A theory for detecting general curve families by means of symmetry measurements in
the coordinate transformed originals is presented. Symmetries are modeled by iso-gray
curves of conjugate harmonic function pairs which also define the coordinate transfor-
mations. Harmonic function pair coordinates render the target curve patterns as parallel
lines, which is defined here as linear symmetry. Detecting these lines, or generalized linear
symmetry fitting as it will be called, corresponds to finding invariants of Lie groups of
transformations. A technique based on least square error minimization for estimating the
invariance parameters is presented. It uses the Lie infinitesimal operators to construct
feature extraction methods that are efficient and simple to implement. The technique,
which is shown to be an extension of the generalized Hough transform, enables detection
by voting and accumulating evidence for the searched pattern. In this approach complex
valued votes are permitted, where the phase of the vote identifies the member of the fam-
ily of patterns that are detectable. Experimental results illustrating the theory and its
application to real as well as synthetic images are presented.

1 Introduction

Traditionally, edge images of the original image have been used to detect symmetries or complex
structures. From a theoretical point of view, the Generalized Hough Transform (GHT), [27, 16],
has been the most widely used in addressing the general curve detection problem in images. It
uses edges and their orientations in order to conclude whether or not a template/curve exists
in an image. Apart from being computationally expensive, its inability to cope with gray level
images, implies difficulties for its use in image processing chains e.g. multiscale decompositions
in texture segmentation. Nevertheless, it remains a conceptually important tool to which, the
symmetry techniques developed here will be related. Other methods of capturing the shape
information include moment invariants [28], Fourier descriptors [44, 20, 3] and morphological
shape descriptors [37].

Encouraged by support of the relationship of Lie operators to the biological vision systems
on the functional level [25, 26, 42, 36], pattern recognition and measurement tools based on
coordinate transformation (CT) have been emerging. The latter is fully equivalent to the study
of Lie groups. The application of CT theory to the modelling of general shapes has been studied
in [10, 18, 23, 19]. Also, the work in [35, 43, 39, 40, 22] is related to CT theory although their
emphasis is not on the theory. Motion parameter detection can also be formulated by the Lie
groups of infinitesimal transformations, [29, 17, 6, 15].

The theory developed in Kass and Witkin, [30], is related to that of Bigiin, [4, 11, 10].
These two independently developed theories share some fundamentals, but their tools and
conclusions address different applications i.e. enhancement and reconstruction versus pattern
recognition. Although some applications and tools of the theory of Bigiin have been published
earlier [8, 6, 7], a comprehensive and accesible version of the work in [4, 11, 10], has been lacking.
This paper addresses that need. Another related work using local orientation measurements in
shape detection is the work of Granlund and Knutsson [31]. However, they do not provide a
theoretical analysis.

The objective of this paper is to provide a general technique, for detection of patterns
possesing linear symmetry, with respect to a known harmonic function pair (HFP). Since very
complex patterns can be described by such CTs, the technique is a general toolbox for geometric



pattern detection. We also develop a unifying concept based on [10, 8, 6, 27, 16], for geometric
shape feature computations based on symmetries in the coordinate transformed images. In this
theory, detection of repetitive patterns (texture) as well as non-repetitive patterns i.e. any given
prototype, or analytical curve such as circle, cross junction, spiral, pencil of lines, is possible
using the same tool box with different filters. We present four experiments which use real data
as support for the validation of the theory and synthetic data as for determining accuracy. The
data in our experiments include i) aerial images for automatic texture segmentation ii) under-
water images and iii) electronic circuit design photographes for general object recognition. Our
investigation shows that detection of even complicated target objects is equivalent to a problem
of symmetry detection in the HFP coordinate system.

Although the proposed technique is equivalent to finding symmetry axes in the HFP co-
ordinate system, it does not perform CTs explicitly. Instead, Lie operators are applied to
Infinitesimal Linear Symmetry (ILS) of images. This extracts the generalized linear symmetry
(GLS) features.

In Section 2 we develop the concept of locally orthogonal CTs and pattern families generated
by them. A theory is presented in Section 3 for using CTs in order to represent and detect
curves, by means of linear symmetries. In Section 4, the solution of the problem and its
properties are discussed. In Section 5 we present the generalized linear symmetry detection
technique for the traditional image grid, i.e. original Cartesian coordinates. Experimental
results are presented in Section 6. Finally, Section 7 contains discussion and conclusion.

2 Generating symmetric patterns by conjugate harmonic
functions

In this section we define families of symmetric patterns which are modelled and quantified.
We illustrate symmetric patterns generated by HFP’s through four examples. As will be seen,
the local orthogonality of the HFP’s simplifies the algorithms for estimating the symmetry
parameters.
Let £(z,y) be a harmonic function, that is, its partial derivatives of the first two orders are
continious and it satisfies the Laplace equation:
825 0?%¢
Af=_——+ ﬁ =0. (1)
Due to the linearity of Laplace’s equation, linear combinations of harmonic functions are also
harmonic. If two harmonic functions £ and 7 satisfy the Cauchy-Riemann equations:
o6 _on 95 _ n 2
dr 9y’ Oy Oz
then 7 is said to be the conjugate harmonic function of £&. Equivalently the pair (£, 7) is said
to be a HFP.
The imaginary part of any analytic function is the conjugate harmonic function of the real
part. Without loss of generality we can assume both £ and 7 to be single valued by imposing
proper restrictions. Then by definition (2) a curve pair,

& = &(z,y) (3)
n = n(z,y) (4)



has orthogonal gradients at the same point. For non-trivial {(z,y) and n(z,y), (3-4) define a
CT which is invertible almost everywhere.

Let an image be represented by the real function fi(z,y). Another representation of the
image fo, can be obtained, by means of a CT using the HFP, f,(z(&,n),y(&,n)) = f2(€,n). The
term image will refer to both a sub-image and an entire image, depending on the context.

Definition 1 The image f(&,7), is said to be linearly symmetric in the coordinates (§,7) if
there ezists a one-dimensional function g such that f(&,n) = g(a&+bn) for some real constants,
a and b. Here £(x,y),n(x,y) is a HFP and the symmetry direction vector, (a,b), has its length
normalized to unity, i.e. vVa? + b* = 1.

»

The notion “linearly symmetric in (£, 7)” is motivated by the fact that the iso-gray curves
(or shortly iso-curves) of such images, are parallel lines in the &, 7 coordinate system. Also such
images have a high concentration of their spectral power along a line through the origin.

Starting with the trivial, unity, transformation we give examples of CTs for pattern families
which can be modeled and detected by the toolbox to be presented.

Example 1

w(z) =z =&(x,y) +in(z,y) =z + iy

Since w is an analytic function in z, (x,y) is a HFP. For illustration, we let the one dimensional
function g be

g(t) = (1+cosT)/2 (5)

while bearing in mind that g can be any 1-D function. The argument, 7, is replaced by a& + bn
to generate the family of iso-curves defined by this transformation. Figure 1 (top) illustrates
the two basis patterns g(§) = constant, and g(n) = constant respectively. Since g is general,
not only parallel lines but also an image consisting of one edge or one line is part of this family.
The lengths of the “parallel lines” in the image are formally infinite. We will see that this

assumption is not a serious restriction even if the image is finite in size e.g. a neighborhood.
sksk sk sk sk ok ok ok sk sk sk sk sk sk ok sk ok sk Figure 1 about hiare** ¥k kokkk ko koK koK Kk

Example 2

By using the same ¢ as in Example 1, we can illustrate the transformation defined by,

w(z) = log z = &(x,y) + in(x,y) = logy/22 + 42 +itan™ " (z,y)

which is analytic every where except at the origin. We assume the principal branch as the value
set of w in order to avoid multiple valued functions. Figure 1 (bottom) shows the basis pair
of this transformation. The local orthogonality can be seen by superimposing the two figures
so that the origins coincide. The linear combinations of the basis pair, a& + bn, generate the
family of “logarithmic spirals”. Some members of this family are displayed in Figure 4. We
note that the sign of a - b determines the chirality of the spirals, i.e. whether they are twisted
to the left or to the right. Thus, by measuring the orientation angle of the vector (a,b) it is
possible to tell apart left-handed and right-handed patterns, as well as whether it is circular or
star shaped without actually knowing the exact form of the pattern, g, in advance.



Example 3
We use the analytic function 22 to obtain the HFP, &, n

w(z) = 2> =&(z,y) +in(z,y) = 2% — y* + i2zy (6)

which are illustrated in Figure 2 (top). The generated pattern family, a£+bn, is given by Figure
6 and corresponds to rotated versions of a basis pattern. The asymptotes of the generated
hyperbolic patterns are orthogonal and the orientation of the cross is given by the orientation

of (a,b) which, as will be discussed further below, represents the orientation of a “cross”.
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Example 4
The analytic function /z:

w(z) = vz =E&(z,y) +in(x,y) = \/;exp(z'g) = ﬁcos(%) + i\/;sin(g). (7)

generates the basis patterns which are illustrated in Figure 2 (bottom). The pattern family
generated by this pair consists of rotated versions of one of the basis patterns, that is the
rotation angle corresponds to the orientation of the vector (a,b).

3 Pattern recognition by linear symmetries

Here we briefly review the essential parts of the theory of the differential operators in order to
detect symmetric pattern families. The degree of “belongingness” of a pattern to a symmetric
pattern family will be measured by the amount of its invariance when exposed to differential
operators characterizing the family. These operators perform CTs which are all equivalent to
translations when represented in invariant coordinates.
We start by performing translations of f in & and 7 coordinates, begining with £&. The
translated coordinates yield: .
=¢+ 6
Tl (ga 7, 61) { 77* =7 (8)
Two successive translations are equivalent to a single translation which can be obtained by
using the parameter combination rule:

o(e1,0) = €146 9)

¢ is analytic with respect to both of its arguments and fulfills the group axioms with € = 0
being the identity element of the group. These properties make 77 a one parameter Lie group of
transformations. With each Lie group of transformation an infinitesimal generator is associated.
In this case this is £ = 3%. When applied to f the CT results in a translation of the iso-curves

of f along the basis vector, {-C , which is the curvilinear basis related to £&. L£; applied to any
function whose iso-curves consists of £(x,y) = A, delivers the tangent fields of £&. £; is a basis of
an abstract vector space of dimension one at a given position and can be utilized to represent
a tangent vector or vice-versa interchangeably. Furthermore it can be shown that as long as



the functions representing the components of a vector field, v*(z!,z?), with ¢ = 1,2, in some
coordinate system {z'}, with i = 1,2, have continuous partial derivatives with respect to z‘,
this vector field is a tangent vector field. Arbitrary amount of translations in {? direction can
be obtained by applying the exponential form of £,

2

FE ) = At aly+ 5L+ )f () = exp(eL2) f(€.) (10)

which is a Taylor expansion of f(£ + €1,n) around (£,7n). Thus, the CT (£*,1*) is completely
determined by L;’s actions on the &, n coordinates. As a special case, if the iso-curves of f
are given by & = constant, i.e. f(§,n) = g(&) for some g, then we have L;f = ¢'(§), leaving
the iso-curve families of f invariant. £(x,y) = A are integral curves of £, that is the iso-curve
&(z,y) = A maps to another iso-curve £(x,y) +€; = A which is within the same family. A more
powerful invariance is obtained, if f(&,n) = g(n) for some g. This yields £;f = 0 that is the
iso-curves n(z,y) = A, are invariant. That is one iso-curve maps into itself.

Similarly, T5(&, 7, €) which translates the n coordinate, is a one parameter Lie group of
transformation:

=<
T. = 11
with the corresponding infinitesimal generator
0
Ly =— 12
.= 5 (12

As before, one can reconstruct 75, by means of the operator exp(e2L2).
We can formally define a new infinitesimal operator

L = cosfL; +sinfL, (13)

which is linear in £;, £ and expect to have a one parameter group of transformations, T'(£, 7, €)
corresponding to it. This expectation can be realized precisely because L; and L, are tangent
vector fields of a coordinate basis, by construction. (For general vector fields represented by %
and %, in order that a coordinate basis generating them via tangents exist, the vector fields
must commute and be independent) Consequently, the commutator [£;, Lo] vanishes, so that
a finite motion along the integral curves of £ can be obtained by successive exponentiations

(Taylor series):
exp(eL) = exp(ecos 0L) exp(esin OL,) = exp(esin OL,) exp(ecosOL) (14)

This reveals that £; and L, together act as an operator basis pair for any translation, [12],
which in turn make £ a classical directional gradient but in the curvilinear coordinates (&, 7).
The corresponding one parameter Lie group of transformation is given by

£ =&+ ecostl

n* =mn+esinf (15)

T(ne1) = {
with € being a “directional” constant, characterizing a unique family of the invariant curves of
the operator £, (13).

—sin 0¢ + cos On = constant (16)



The converse is also true, i.e. (16) uniquely represents £. In our approach £ and 7 are known a
priori, but not . We try to fit a family of curves as defined by (16) to an image by minimizing
the error energy

B(O) = [ 1£5(&n)[dgdn = [ |(cos 01 +sin 0.L2) (€ m) e (17)

with respect to 6, since Lf = 0, almost everywhere, whenever F(§) = 0. Throughout this
paper we assume that the integrals are of Lebesgue type. By using Equation (10), Equation
(17), can be seen as the total error in a small translation.

For illustration, we go back to Example 2 and note that the operators a% and a% have the

curves n = tan"!(z,y) = constant and & = log(v/22 + y2) = constant as invariants. Since

L= a% acts as a zoomer and Ly = a% as a rotator, the direction given by 6,,;, represents the

amount of scaling versus rotation leaving f unchanged (in practice least changed). The E(6in)

contains information as to whether 6,,;, which represents symmetry is or is not significant.
The basis of recognition is that E(#), is small for some . We define

A

k(6)=(cos 8, sin 0)’ (18)

(A
/

where
form

represents transposition and we rewrite the error function in the well-known quadratic

o\ (01 of
) = 0) | 3 —, = | k(0 = k(0)"Ak(0
w0 = [0y (5 ) (5655 Kowen = koyar (19
where we have defined A as

8 % qedn [ 2L% ded

déd gﬁgyfldd
3§3,,§77 fa—na—,,ﬁﬂ

Since A is a symmetric semi positive definite matrix (because E(f) > 0), the minimum of E(f)
is the smallest eigenvalue of A, A,;, > 0. This is attained when the corresponding eigenvector
is utilized as k. When we know A we can, not only minimize E(f) but also maximize it. That
is for a certain 6,45, F(0maz) = Amaz- Furthermore, the maximization will prove to be useful
when determining whether the error obtained is large or small, since we do not have a-priori
knowledge about which ranges of the error can be considered as large or small. Because of its
information redundancy, since it is always orthogonal to ky,in, kmasz 1S of no practical interest.
Remembering that ki, = (€0 Opmin, Sin Oy )’ can be determined by one parameter, it is clear
that the information content in A is equivalent to that of the tuple

()\mina )‘maza 0) = (E(emm)a E(emaz)a 0)1 (21)

When A is known, finding the tuple (21) is very simple, since the solution can be expressed
in closed form following elementary algebra schemes. However, representation using complex
numbers leads to efficient data structures in implementation and also easier visual interpreta-
tion.

Applying Parseval-Plancherel identity in elements of matrix A (20) gives

_ | m2o(IFP) pa(1FP)
4= ( L1 ([F?)  po2(|F|?) ) (22)

7



Hence, elements of A correspond to second order moments of the power spectrum |F'|?, which
is obtained by Fourier transforming the image f in (£,7) coordinates. The power spectrum
always has its mass center at the origin since f is real valued. For Cartesian coordinates it
has been shown that fitting a line to the power spectrum in the LSE sense is equivalent to
minimizing (17), e.g. [6]. The line fitting interpretation is also valid for harmonic coordinates.
The second order moments can also be equivalently, represented by the second order complex
moments, I,, with p+ ¢ = 2:

Iy = [ (@ +iC)"(w = iC)* |F (w0, ) duwd( (23)

We note that I, = I,, and hence given I, I, is redundant. Therefore, we have only the
second order complex moments Iy, (complex), and I1; (real) which are informative. By using the

next theorem, our minimization can be carried out utilizing the complex moments formalism.

Theorem 1 For the function |F|%, the minimum error line (through the origin) as well as the
minimum error are determined by the second order complex moments of the power spectrum,
in & and n coordinates.

|120| = E(emaw) - E(omm): arg 120 = 20mm (24)
Ill = E(emaw) + E(Omzn) (25)
(26)

The mazimum error line is orthogonal to the minimum error line if Isy # 0. In the degenerate
case when Isg = 0 no single orientation performs better than any other, i.e. E(f) = constant.

We omit the proof since it is similar to the proofs of the same theorem in Cartesian or harmonic
polar coordinates, [4, 5, 8]. As a direct consequence of the theorem we have the following result,
which will be used in goodness of fit assessments.

Corrolary 1 The inequality
[Too| < Iy (27)

holds with equality if and only if f is linearly symmetric with respect to &, and n, i.e. when

By applying the definition of the complex moments, (23), and using the conservation of the
scalar products, the second order complex moments of the power spectrum can be written as

Iy = / (w+iC)? [F(w, Q)P dwd( = pao — o2 + 24111 = / (L1f(&m) +iLaf (€ m)) dedn (28)
and

Iy = [(@+iQ)w = i0) [F(w, Q) dwdl = piag + oz = [ 1£:£(6,m) +iLaf (€,m)dedn ~(29)
We define the infinitesimal linear symmetry operator , ILS, as

S(f)(E&n) = (Lif(Em) +ilaf (& M), (30)



which is non-linear in f and complex valued. S(f) is all that is needed in order to explicitly
perform the minimization of E(f) since the quantities (I, I1;) are the mean values of S(f),
and |S(f)|, respectively.

Iy = [ S(F)(En)dsdn (31)
L = [IS(F)(&mldgdn (32)

The parameters represented by Iy, and I1; will be called the GLS parameters.

Representing the eigenvalues and eigenvectors of A by means of the scalar pair (Is, I11)
is appropriate since it provides all information about the line fitting process directly. From a
mathematical view point, the tuple is of-course equivalent to the elements of A, or to the tuple
given by (21). However, since the notion image may correspond to a local image and therefore
the minimization process would need to be carried out many times, the data structure and the
computation of eigenvalue and eigenvectors of even a simple matrix must be designed carefully.
Next we will comment on the magnitude and the argument of Iy.

First the ILS as operator is applied to the image, then the averages of S(f)(£,n), and
IS(f)(&,m)| are taken (in analogy with tensors in physics) so that the GLS parameters are
obtained. The magnitudes of the components have direct interpretations which are related to
the errors. For example, |Iy| & 0, predicts a very poor fit when |l << I3, or conversely
0 << |Iy|, represents a very good line fit when |Iy| &~ I;;. Provided that f is non-zero, the
corresponding |I5| can be made arbitrarily large or small by multiplying f with a scalar. Since
|I50| < I, in which the inequality holds with equality exclusively when E(6,,;,) = 0, measuring
I;; establishes the level of |I5] to expect when there is a good fit of line independent of the
contrast in the image.

The argument of I, is 260 which maps 6 and 6 + 7 to the same angle making the numerical
representation of £ unambiguous and continuous. This is important because GLS parameters
can then be smoothed further, for example for sub sampling purposes. The smoothing of kg
vector is not appropriate as the average of the two orientations kg and —ky -+ 7 which represent
identical patterns, and hence can very likely occur in the same neighborhood, is 0, instead of
kg or —kg.

4 Estimation of symmetry parameters

Equations (31-32) formally describe how to obtain the GLS parameters. However in that form
these equations are not practical to implement since the representation of the linear symmetry
operator as well as the averaging, are in &, n coordinates. The canonical representation of the
transformation group, with the properties

,le =1 £17] =0
Ezf = 0 [,2’1'] = 1,
(33)

was motivated by the powerful interpretation (uncoupled translations) it offered during the
analytic treatment.



In different coordinate systems the representation of the Lie operators and the linear sym-
metry operator may look quite different despite the identical physical effect when applied to a
function. The representation of the Lie operators in the Cartesian coordinates can be obtained
by using the chain rule:

0 0 0 \%
Teo— + Yer— = 2&” s+ 25‘” sa = iv (34)
or Oy &+ E0x E+E0y [|VE

d d & 0 & 0 1€
x”a_+y"a_:_2 20r 2420y IVEIR

x y 24+ &0r 4oy Ve

Ly =

L, =

(35)

where the definitions &, = £& :c7y and V' & = (=¢§,,&;) are used for simplicity. Moreover, the
partial derivatives of &, and 7 are obtained by inverting the Jacobian of 7', and using the
Cauchy-Riemann equations, (2):

-1 ~1
a(.’L‘,y) — 335 ,’En _ <a(§,77)> — ( gac é‘y ) — 1 ( fz _é‘y > (36)
o0&on Ye Yn 0x0y Nz Ty §2 + 55 & &

We note that £, does not explicitly depend on partial derivatives of 1 with respect to x or y

which of-course is the consequence of the HFP assumption which binds the gradients of £ and

7n together.

For illustration we go back to Example 2, and see that the corresponding infinitesimal
operators are easily found by using (34-35) :

0 0
Ly = —y% +x %

These are, from the differential geometry, well known scaling and rotation operators.
When the Lie operators are represented in Cartesian coordinates, we can write the ILS
operator as

S(F)Em) = (Lof +iLaf)? = [(VE+VLE'VIP/IIVEI* (37)

However, since .
VE+iV, &= ( Z(%Z_—ZZ%/) > = (& — Zé‘y) < 1 > (38)

where &, — i€, is complex valued (scalar function), we have the result

sen = &EZi&)S [(u)(f“”)] (E= &) /i

|§m Z§y|4 fy |§m Z§y|4
SO g
EREGIED R %)

which we restate in the following theorem.

Theorem 2 Under a harmonic conjugate basis change given by &,n, the ILS operator changes
basis according to:
SO ) ¢

S(f)(&mn) = SO @ yP

(f)(z.y) (40)

10



Consequently Iy is given by

_ 9¢(z,y)
by = [S()(Endedn= / EarERT |25(f)(x, y) det( =5, > ©)dsdy
_ [ 5=, y) R
where the Cauchy-Riemann equations applied to the functional determinant
9(z,y) & & 2 2 *
D) | & &g 5@ (@2

has been used. In equation (41), we note that Iy is obtained by projecting the ILS of the image
in Cartesian coordinates, which does not depend on the pattern family £, on the kernel w?° which
depends on . Consequently, once the ILS of the image is available it can be tested for containing
a multitude of pattern families by changing the corresponding kernel w?® without recalculating
the ILS of the image. This is not surprising as the ILS of the image represents “universal”
information for pattern matching, namely the local edges and the double of their direction.
The double angle representation of local edges which preserves the numerical continuity of the
angle information under the smoothing operation, has been proposed by Granlund, [21], and
Knutsson [32].

Similarly, I;; which is the average ILS magnitude can be obtained yielding the following
interesting property.

Theorem 3 (Energy Conservation) The sum of the mazimum and the minimum error is
independent of the coordinate system chosen for symmetry investigation of the image f:

i = EBmas) + EOuin) = [ |S()(€,n)\dedn

0 0
= [150) @ dody = [ G+ (5w (43)
The theorem suggests that
0 < |Lo(|F(w, €)1))] < E(Omaa) + E(Omin) = I (IF' (', ¢)[?) (44)

where the I..(F') explicitly displays the function which is used to obtain the respective complex
moments. F'(w’, (") represents the Fourier transform of f'(¢',7') which is the original image f
represented in another HFP coordinates (£',7'). Since the upper bound is independent of the
chosen CT (&,7n), I11 can be computed in Cartesian coordinates. Equality occurs only when
the neighborhood is truly symmetric with respect to the chosen coordinates. The closer |Is|
is to this common upper bound, the better the chosen transformation describes the underlying
symmetry. Equation (42) is the projection of the magnitude of the ILS of the image to the
magnitude of w?® which is the constant function 1. From now on the term ILS of f, where f
can be the original image or the prototype of a target pattern, will be assumed to refer to the
ILS of f in Cartesian coordinates, that is S(f)(z,y) = (fz + ify)%

11



5 Discrete approximation

5.1 Estimation of the ILS image
For computation of GLS parameters, the ILS of the image f,

S()(x,y) = (f= +1ify)" (45)

must be computed on line and discretely. For simplicity, we will assume that f is band-limited
although analogues of the argumentation below will also apply to other classes of functions, e.g.
piecewise polynomial functions. A band-limited function «(z,y) can be represented by means
of its samples o; through interpolation functions 1);

z,y) =3 o5ti(x,y) (46)

provided that the discretization frequency, DF, is higher than twice the Nyquist frequency, NF.
The square of a band-limited signal is also band limited, since squaring corresponds to auto
convolution in the frequency domain. Then for 4NF < DF in each dimension we may write

= Y ayy(x.) (47)

over-sampling at least twice is not a severe restriction as images are either i) already over-
sampled that much, or ii) they can be easily over-sampled by using the discrete data. Therefore,
without loss of generality we assume that (47) is valid.

For band-limited functions, the interpolation function 1; can, theoretically, be obtained by
inverse Fourier transforming the frequency support function of the assumed band-limited signal
family. But it is also known that interpolation functions obtained by this formal procedure
have very large spatial supports with frequent sign changes, e.g. the Sinc function, and cause
numerical errors since numerous additions and subtractions must be carried out with limited
word lengths of computers. The family of Gaussians

Y(2,y) = Go(r,y) = Cexp (— ) (48)

where C is a constant normalizing the integral of i) to 1, is convenient for approximating all
images of practical interest and is often used as interpolation function in image analysis. This
is motivated by its simplicity, positivity, and its joint concentration in the Fourier and spatial
domain, and as well as for its other known advantages, [33]. We adopt it as well despite the
fact that its support is not finite in the frequency domain. The constant o, is a parameter
which is to be determined experimentally since in practice the image is already discretized and
one can only speculate over as to how much it is over-sampled or to which function family it
belongs to.

Thus, provided that the gradient image is densely sampled the ILS image can be written as

S(f) (xja y]) (fw + lfy) | (z,9)=(z;,y;) [(fwj + ny])]Q (49)

where f;, is the value of % at the grid point (z,y) = (z;,y;). The sampled gradient image
represented as a complex scalar, is obtained by applying partial differentiation to (46):

0
s+ ify = Zfl o T @—y (@ = 21,y — Y) [@w)=(zj.5;) = [fr * Wy + 00y [(z5,9;)  (50)

12



where * represents discrete convolution. Technically, ILS image is nothing but a non-thresholded
and squared edge image when the edge image is interpreted as a complex image rather than a
vector image. The estimation of GLS parameters consists of projecting the ILS image and its
magnitude to the discrete kernels w3 w;', respectively, as will be seen next.

5.2 Estimation of I5: case 1

Here we assume that V¢, and therefore S(€)(z,y) is known for continuous z,y. In section 5.3
we will study the case when this continuous information is not available. An approximation of
I, can be obtained by substituting the reconstructed (from its samples) S(f),

S(N(,y) =D v(= — 2,y —y;)S(F) (), 95) (51)
into equation (41)

oo = Y S5 3) [ 0l = a3 = w)lig el o dady = 3 S(Dlaz ) @) (52)

)

20 . .
where w3" is given by

W= [ 0@~ 5.~ ) exp(2tan ) (€,.,)dady (53)

20

Here, we observe that the discrete kernel of Iy, that is w;”,

continuous kernel defined through equation (41) as,

S€)(z,9)
15(&) (@, y)]

onto the space of band-limited signals. We note that the continuous kernel has modulus 1
except at VE&(x,y) = 0, where S(§) is undefined. At these points, w?® can safely be assumed
to be 0, as the values of the integrand on a set of points with zero measure does not affect
Iy. Technically (53) is a low-pass filtering followed by discretization, which is also known as
perfect sampling. Thus equation (52) is essentially a matching of the orientation of the basis
tangent vector field with the tangent vector field of the image. This observation will prove to
be useful, in Section (5.3). Naturally, the closed form of the integral in (53) is not possible
to obtain for most &’s. However, wJQ-O can be computed numerically and off line, e.g. [8], for
pattern recognition purposes. In one important case, when £ = x, though, (53) can be derived
analytically and reduces to w3’ = 1

Is it really worth computing w?-o exactly through (53) in order to obtain a useful approxima-
tion of I5)? The answer to this question depends on the application at hand. The computation
of w2 through equation (53) and then substituting it in (52) yields robust approximations of
I since the weight zero is automatically given to the appropriate points of the kernel at the
same time as all kernel coefficients vary smoothly. If the digitized image f;, represents a small
neighborhood it might be worth to compute wJQ-O in the afore-mentioned “orthodox” fashion (i.e.
by projection on the band-limited functions), as this yields less biased estimates. However, this
may not be appropriate, if the number of singularity points is negligible compared to the total

is obtained by projecting the

w?(z,y) = = exp(i2tan™ (&, &) (54)
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number of the image points, since the bias of the singularity points will be negligible. In this
case one can use the approximation,

_ Jexp(i2tan™" (&, &) lo=ajy=y;, if VE(T;,95) 7 0;
Wi= {0, ’ T Vf(x;,yj-) = 0. (55)

5.3 Estimation of I5: Case 2

Often a digital image of a prototype pattern, éj is all that is known and one would like to know
whether &; occurs in a discrete image f; or not. One can not assume that iso-curves of the
prototype are sampled iso-curves of harmonic functions, i.e. the iso-curves fulfill the Laplacian
equation, as this is i) difficult to verify for an arbitrary digital prototype ii) it is not very helpful
when 5 is not strictly harmonic. The tilde in éj is used in order to note that we do not know
whether £ is harmonic or not. We can exploit the fact that the computation of I is essentially
a matching between on the ILS image and the sampled version of the normalized ILS of the
prototype. As an algorithm implementing the discrete ILS operator according to equation (49)
is assumed to exist, we can apply such an algorithm to éj to obtain,

We can then proceed as if éj is a sampled harmonic function and find the kernel w]2-0 as
w2.0 — exp(i? tanil(gzjagyj))’ if Vg(xja yj) 7é 0; (57)
J O, if Vf(l‘j, yj) =0.

Then, in analogy with (52), Iy can be computed as

Iy = Y S(/) (w5, 35) () (59)

The classical alternative to the case dealt within this subsection is to match (correlate)
directly the two digital images, f;, and éj, without filtering them through the ILS operator.
However, matching the ILS image with an appropriate kernel has certain advantages. In the
ILS approach it is the edges of f; and not the gray values which are aligned in case of match.
As a consequence we can expect a high localization. However, this is only a by product, the
main advantage is the complex voting process and its rich interpretability as will be discussed
in Section 6.

5.4 Estimation of [q;

According to equation (43), I;; is obtained as

I = / \S(f(z,y))| - ldzdy = / |S(f)(~”3ay)||w20($,y)|d3:dy (59)
Consequently, the continuous kernel of I;; is

wll — |w20| (60)
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By using the reconstructed |S(f)|, and in analogy with (52),

Iy —E|S x]ayj 1 (61)

where the discrete kernel
= [ V(@ — a5,y — ;)™ (z,y)|drdy (62)

is the projection of the continuous kernel w!!(z, %) onto the space of band-limited signals. Using
the kernel w}l in equation (61) yields I;;— the biased estimate of I1;— as is shown below. The
discrete kernel w;' is the perfect sampling of w''(z,y). The magnitudes of the two kernels
fulfill the inequality [w3°| < w;' which is a weaker relationship than the equality relationship
in the continuous case, (60). Consequently, when |w?°| < w;' even for one kernel coefficient j,
we get

Lo = 1 D0 S(F) (@), y)wi™ | < Z [S(f) (s, y5) | lwj?| < Z 1S() (@), yp)lw;' =Tn (63)
i

This implies that, with this inequality |I5| will not attain the value I;; even if the image is
linearly symmetric. By using the triangle inequality, it can be shown that |I5| will attain
the upper bound only when the discrete ILS of the image and the kernel coefficients are co-
linear. This behavior is similar to the continuous case, as can be seen by applying the triangle
inequality to (41) and comparing the result to (43). In order to avoid the bias introduced by
the discretization process, we will use the discrete kernel

w;' = |w?] (64)
instead of Equation (62), in order to compute

I = Z|5 (2, )| w3 (65)

where w?°

5.3.

is assumed to be available through the processes described in Section 5.2 and Section

6 Symmetry detection is GHT with complex votes

The GLS parameter estimation is more than a correlation of edge magnitudes. It carefully takes
into account the directions of the edges, too. Here we show that the GLS detection extends
GHT, to a complex GHT in which the votes are allowed to assume complex values.

GHT has been popular for its robustness even when the prototype Ej is partly missing in
the image f;. It consists of a table look-up and a voting procedure; see also [1]. The table
entries are discrete edge directions of the edges of the prototype. To each entry corresponds a
list of edge positions, expressed relative to a unique reference point (origin) of the prototype.
Given the table one can easily reconstruct the unitary gradient of the prototype , or inversely
construct the table, given the unitary gradient of the prototype. By unitary gradient we mean
the gradient vectors with unity (edge) or 0 (non-edge) magnitudes. This is because edges
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participating in the GHT poll are binary, i.e. they either exist or do not. Consequently the
table is essentially another representation of the unitary gradient of the prototype. It can be
shown that the GHT procedure is identical to i) sliding the unitary gradient of the prototype
over the unitary gradient of the image and counting the number of unitary gradient agreements
(edge and direction matches) per sliding position ii) the process of assigning this count to the
current sliding position, which qualifies as a reference point if enough votes are cast for it. The
determination of the threshold for qualification as a referenc point is a step that can assume
varying degrees of complexity, but it is not of interest here. The votes cast for a point to be a
reference point is then,

Az, y5) = 32 0(¢" (@ + a, yf +9f) — (2l 97)) (66)
l

where ¢P(x7,y]) is the direction of the prototype edge pixel at the position (z,77) in the
unitary gradient of the prototype. ¢"(z7 + 7, yi + y) corresponds to the direction of the edge
at the position (:L'; + a7, y; + y’) in the unitary gradient of the image, whenever it is an edge
pixel, or i00. That ¢" is defined to be 00 is purely symbolic and serves to make ¢" different
from P, resulting in the vanishing of the ¢ function. A(x;,y;) represents the vote accumulator
of a pixel position and can be compared to,

Lo(zjy3)) = > S(F)@f +af, 95 +yD)w™ (2], )
l

= Y expli2¢”(af +af,yf +yf) — i2¢P (a7, )] (67)
l

The latter assumes that the same unitary gradient of the image, and the unitary gradient of the
prototype as those used in the computation of A are employed, in order to obtain S(f)(z;,y;)
and w?(z;, y;), via (57), and (58). Consistent with equation (66), ¢" = ico whenever it is not
defined, i.e. when a pixel position does not represent an edge pixel position, the contribution of
that point to Iy is reduced to 0. While A(z;,y;) is the count of the positive matches only, |Iy|
is the positive matching score adjusted downwards with the amount of negative matches. At
the reference point, when the image is the same as the prototype itself, we obtain the maximum
match with both of the techniques

where L represents the number of edge pixels in the prototype. When 100% of the edge
directions mismatch maximally i.e. when all prototype directions are orthogonal to the image
directions we obtain,

while if 50% of the edge directions match perfectly and 50% mismatch maximally we obtain,
L
A= In=0 (70)

Now, it is clear that in computing I (z;,y;) the scores of the positions with contradictory
unitary gradient matches will see their scores reduced compared to the GHT scores, A(z;,y;).
The GHT is without score reduction since a score of A(z;,y;) is only allowed to increase (in
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case of unitary gradient match) or it is unchanged (in case of mismatch). For GHT this is a
necessity, because negative scores would not be meaningful in case they were given to empty
accumulators, while in the case of Iy this is allowed as this simply corresponds to a vote for a
pattern which is locally orthogonal to the prototype, anti-prototype. Clearly, the computation
of Iy is a voting process in which not only negative but also complex votes are allowed.

However, this has to be carefully considered: Formally, non-prototype ILS-images are pos-
sible to generate by a phase shift of the prototype ILS-image:

exp (o) exp(i2 tan™*! ({;:x] , éyj ) (71)

But to which real patterns ¢g # 0 corresponds, as this new ILS-image is a purely synthetic
construct, is not obvious. This is because a phase shift of the prototype ILS may result in
tangent fields which are not always imaginable or intelligible by visual inspection of (71). To
give every ¢( an exact meaning, i.e. to find a §; which approximates {-:j, an estimation should
be made by numerical methods. For pattern recognition purposes, however, this will not be
necessary given the control possibility I1; offers. If, for an image for which 0 << |Iy| ~ I4,
o = arg Iy # 0 is obtained, the non-prototype is known in reality too (as the gradients come
from a real image). Thus in practice only when |Iy| << I;; may pose interpretation difficulties
of arg Iy in which case no member of this class is a good fit to the data anyway.

7 Experimental results

>k >k 3k kKoK skookok okook sk ok sk sk skosk kookokokokok Figure 3 about here >k ok ok >k >k ok skokokoskookok kook sk k ok sk kock

Experiment 1: Linear symmetry as texture measure

Unsupervised texture segmentation consists of the sub tasks: feature extraction, feature selec-
tion and segmentation.We will concentrate on the theory of the feature extraction part and
will show that some already proposed, [4, 5], and independently tested [6, 7, 39] texture dis-
crimination measures are covered by the pattern recognition theory developed here. Thus we
do not propose a new set of texture measures, but rather show that the detection of repetitive
patterns as well as the detection of non repetitive patterns, see further below, share the same
theory.

In texture analysis one wishes to design features (measures) which can discriminate textures
having the structural properties

1. “No” particular dominant direction (isotropic), versus “One” dominant direction (direc-
tional)

2. “Fine” (rich in high spatial frequencies) versus “Coarse” (rich in low spatial frequencies)

A band pass decomposition (non-directional) of the image can provide the necessary measures
to test for Property 2, e.g. Laplacian pyramid, [13]. Independent of their orientations fine
textures will appear in high frequency bands while they will be suppressed in low frequency
bands. Coarse textures will have an analogous response in the decomposition. However, this
decomposition can not offer information to discriminate isotropy from non-isotropy e.g. whether
a texture which is fine and has a dominant direction versus a texture which is also fine but has
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no direction. Here we propose to measure this property by use of the transformation £ = z
which models the linear patterns with a dominant orientation. Since we dispose two goodness
of fit measures we can discriminate textures with one dominant direction from those without.
That is, a directional texture will be characterized by 0 << |Iy| ~ I;; while an isotropic
texture will be characterized by 0 ~ |Iy| and 0 << I;;. We observe that the symmetry model
¢ = x implies that a line is fit to the local power spectrum in the Cartesian coordinates. It
is known that the Gabor responses are discrete approximations of the local power spectrum
(windowed Fourier transform) e.g. see [2, 14]. The second order moments of the Gabor power
spectrum which are equivalent to Iy and I;; when £ = x as in this experiment, are known
texture measures with high discrimination power, [32, 38, 9.

As already mentioned, w; = 1 for the symmetries characterized by £ = z. Since GLS
parameters are to be computed for every neighborhood, we approximate the ILS image of the
windowed image with the windowed ILS image. Consequently, 5, for every neighborhood is
an image which can be computed by smoothing S(f)(xz;,y;) with the windowed kernel, (the
hat underlines that it is a windowed kernel)

2 2
T tY;
202

W3 = Gy, y;)w; = exp(—

)1 (72)

The original image Figure 3 (a), has been used for evaluating the performance of texture
analysis methods in our laboratory. It is composed of real aerial image patches (7 in total)
repeated in such a way that every combination of texture boundary crossover is present. The
patches represent an urban area, natural forest, cultivated forest, and agricultural fields all
imaged at the same height above the ground.

The different ILS images are obtained by using a o = 0.25 in (48-50). By choosing 3 levels
in the Laplacian pyramid we obtained 3 sub-bands which differed roughly, in octaves. Since we
have 3 real images per band, we obtained 9 feature images which differed in size. In order to
make use of the segmentation method, [41], we had access to, we equalized the image sizes by
proper interpolation.

We asked for 7, 6 and 8 classes from our unsupervised segmentation algorithm and obtained
the results in Figure 3 (b)-(d) when 9 linear symmetry features are used. The segmentation was
unsupervised, that is training was not employed in class center determination. Class centers
were determined by automatic clustering in the feature space so that only labels e.g. “A”, “B”...
appear as class names in Figure 3 (b)-(d). Nor was an automatic feature reduction mechanism
enhancing the segmentation result but obscuring a direct illustration of GLS parameters, was
utilized. For a complete segmentation strategy that includes these improvements, refer to
[41]. The number of classes needed to be specified as the classifier uses the fuzzy c-means
clustering, and a pyramidal boundary estimation technique in order to obtain the labels and
the boundaries. In the case of Figure 3 (d) there are 7 classes despite asked 8 since the
segmentation algorithm is designed to merge close classes. However, the boundaries are better
estimated when the true number of classes are requested, (c). The boundaries of (b) are closer
to the true boundaries than those of (c¢) with the drawback of one class is missing. In conclusion,
these results indicate that the linear symmetry features have the ability to discriminate between
natural textures even without refinements. For extensive comparisons with other features and
the extension of the linear symmetry features using the same test images we refer to [6, 7, 9].
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Experiment 2: chirality determination

In many registration or object position identification problems, one would like to identify the so
called singularity points e.g. neighborhoods which may look like a “circle”, or a “star”. This is
because these neighborhoods offer invariance to many geometric transformations such as zoom-
ing and rotation. Also, with the increased use of digital imaging in applications the automatic
determination of chirality of the visual objects, i.e. left handedness versus right handedness are
gaining importance. For example, in chemistry and material sciences, it has been known that
the chirality of molecule chains often dramatically affects the organic properties (e.g. natural
sugar and diet sugar), and image processing is considered as an analytic tool see [24].

In Figure 4, we are interested in whether I5y can be used to discriminate between classes
left handed, right handed, circular patterns, and star shaped patterns. To the right half of the
image, Gaussian white noise is added in order to test the orientation measurement sensitivity at
low SNR’s. Every pattern in the left half also exists in the right half but with noise added. In
Figure 5 we are interested in detecting the sea anemones present in the under water photograph.

Letting

¢ = log(r) (73)
is appropriate for both tasks since these basically represent the same problem in our formulation.
We assume that the notion image corresponds to a local image, that is we compute GLS
parameters at every pixel by using a Gaussian window function as in the previous experiment.
Since we know the analytic expression of V& we obtain the kernel of I5y, by employing (53):

03’ = Go, (), y;)w;’ = Go, (x5, ;) - /G(,(x — x5,y — y;) exp(i2 tan ' (z, y))dwdy (74)
The kernel w;' is given by [@3°].
functions can be found in [8].
Figure 4 displays the original superimposed with lines representing the fit £, i.e. arg(ly)
is used for orientation. The ILS image was obtained by using ¢ = 0.85 and o, = 2.8. The
lengths of the lines are proportional to |Is|. We observe that |I5] & 0 for patterns with low
frequencies which fall outside of the frequency band supported by the derivation filters. Such
patterns can be detected by using larger ¢’s. The role of ¢ is primarily to select the frequency
band at which the detection is effective. Clearly, a classification based on the arguments,
and the magnitudes of Iy as well as on [;; can identify the objects which are left or right
handed ...etc. Furthermore, the arg I5 on the right half of the Figure 4 (Right), indicates a low
sensitivity of the orientation parameter estimation to Gaussian noise. The line lengths, which
are modulated by |Iy], in the right half of the image are slightly shorter suggesting a relatively
good quality estimation compared to the noiseless pattern. This is not surprising since the
least-square models are optimal for Gaussian noise. Optimal estimates assuming other noise,
(such as impulsive noise) are possible to obtain by applying order statistics, [37], to the ILS
of the image instead of averaging. But a discussion of this type of extension is too much of a

digression from the purpose of this paper.
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The exact values of @>° for Gaussian window and interpolation

In Figure 5, overlayed to the original (Right), three black patches display the result of
supervised box classification (component wise thresholding) on the |Iy|, arg I5, and Iy; as they
were obtained for the under water photograph. We used a different window size, o,, = 11.2,
since the anemones cover larger portions of the image than the spirals in the previous test
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image. Despite that, the anemones differ in size and appearance 3 (4 present in the picture)
were detected. The missing anemone deviates too much from the model. By including further
features, e.g. the gray value itself, it is possible to detect all anemones. Here we wanted to

show the properties of the GLS features.
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Experiment 3: orientation determination of crosses

To illustrate that the located L’s (i.e. orientation in the & — n space) are meaningful and
accurate, we attempt to detect the curve family represented by

22 = E(x,y) +in(z,y) = 2% — y* + i2zy (75)

The patches in Figure 6 consist of the members of this family. The procedure of detecting and
identifying the members is analogous to that of the spiral family presented in Experiment 2.
In fact, the only difference is in the used windowed kernel, u??-o, which is given by the complex
conjugate of (74). Overlayed the original, the crosses in Figure 6 represent the found members
at the center of the patches. They show a good degree of orientation fit to the asymptotes. The
crosses are generated synthetically with orientations as found by the method which delivers 46
with 6 being the angle representing any asymptotic direction of the four possible. As already
pointed out the arg Iy, automatically solves the numerical representation ambiguity. The size

of the crosses are modulated by |l
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Experiment 4: Arbitrary patterns

Figure 7 a,b display an electronic circuit picture taken by a CCD camera with 256 gray levels
at the output, along with the prototype transistor which needs to be identified. The ILS of the
prototype and the original were quantized to two levels ( thresholded ) with respect to their
magnitudes which essentially capture the edge strength. The arguments of the ILS images are
twice the gradient direction angles, which were also quantized and stored as an image with 256
gray levels.

Figure 7 c,d display |Iy| and I;;. Both values of these measures are equal and high i.e.
0 << |Iy| =~ I;;, only at very localized points corresponding to the true positions of the
transistors i.e. the center of the prototype image (compare to |I5|). No other points than the
true transistor positions have such a high agreement of the |I5| and I1; indicating that only the
prototype, ¢o = 0, and no other patterns of the same family, ¢y # 0 exist in the original. The
results were practically unchanged when we varied the quantization levels of the magnitudes
or the arguments or when not applying the quantization at all.

Figure 7 e, illustrates the accumulator image when the GHT transform with 256 directional
entries were applied. The peaks of the transistor positions have several orders of magnitudes
difference and therefore only the largest peak is clearly identifiable. This behavior is expected
as the § function in (66) rejects to cast a vote even when the directions differ only by a small
amount, whereas the exp(i-) function in (67) processes these differences in a continuous manner.
However, because of this insensitivity to quantization the localization is somewhat worse in the
GLS than in the GHT approach for the found transistors (one for GHT).
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Since GLS parameters can be obtained by means of convolutions, we have chosen FFT to
compute them while GHT was implemented in a straight forward manner resulting in longer
computation times.

8 Discussion and conclusion

In the theory presented and in the experiments, we have dealt with GLS parameters that
measure the fit of the linear symmetry to the original image. Knowing that |I5| < I;; holds
with equality exclusively when the examined image is a member of the pattern family, i.e.
symmetry exists, allowed us to interpret the scalars |I|, and I;; as quality measures. However,
one can define

D == 111 - |120‘ (76)

which measures the lack of symmetry. In particular when & = x, D represents “non-lines”, i.e.
corners, high curvature points, T-junctions, ...etc. This is illustrated by Figure 8, where the
result represents lack of linear symmetry with respect to Cartesian coordinates (¢ = 0.5 and
0w = 1.0). Thus, other uses of these two scalars are possible since their significance is well
understood.

We have derived a method to model symmetries of the neighborhoods in gray value images
for pattern recognition. It is based on the iso-curves which are invariants of commutative Lie
groups of transformations. It uses the gray image directly without intermediate thresholding.
It is shown that the GLS parameter extraction can be performed in the spatial domain by
means of projections and squaring, yielding two scalars, Iy (complex) and I; (non-negative).
In case the “image” represents a neighborhood, these scalars are obtained through filtering
of a complex valued image (ILS image). The magnitudes of the resulting pair represent the
degree of symmetry with respect to the a-priori chosen HFP. The degree of symmetry has a
clear definition which is based on the maximum and minimum error and can be used in order
to quantify the “symmetry orientation” estimation quality. The argument of Iy, represents
the member of the Lie group operator family, generated by the HFP, that leaves the image
invariant.

We have also shown that GLS filtering is equivalent to a voting process similar to that
of GHT with the extension that complex votes are allowed. The complex votes, permit the
detection and identification of “prototypes” as well as “anti-prototypes” concurrently.

In the paper we have neither addressed how to optimally select the filter parameters for a
pattern/curve recognition task nor have we addressed the automatic selection of models (CTs).
These problems need further investigation. A pragmatic way to circumvent the problem is to
try many parameters, as in Experiment 1 where the same filter parameters were applied to
many resolutions, or many CTs. GLS parameter estimations are implemented via matched
filters applied to the complex valued ILS image. Techiniques allowing selective application of
matched filters to few locations in images rather than exhaustive application to the entire image,
need to be developed. Currently, if the image represents a local neighborhood, estimation of the
GLS parameters are equivalent to the steps i) Linear filtering (one complex FIR filter which
is the sum of two separable FIR filters) ii) pixelwise complex squaring iii) Linear Filtering
(one complex FIR filter). For general CT’s, step (iii), which is the most computationally
expensive, can be implemented using Fast Fourier Transform. For the CT ¢ = z the step (iii)
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can be implemented efficiently through separable filters as this step is equivalent to ordinary
smoothing.
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Figure 1: The figure illustrates the HFPs used in Example 1 (top) and in Example 2 (bottom)
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Figure 2: The figure illustrates the HFPs used in Example 3 (top) and in Example 4 (bottom)
respectively.
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Figure 3: The texture image to be segmented in an unsupervised manner (a), and the segmen-
tation results (b), (c), and (d), when 7,6, and 8 classes are requested from the unsupervised
segmentation.
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Figure 4: (Left) The figure illustrates some neighborhoods included in the harmonic polar iso-
curve model. The orientation of the model corresponds to the “twistedness” of a neighborhood.
(Right) The “symmetry” of the spiral family are shown as lines. The orientations of the lines
permit classification between, circular, radial, left handed, and right handed objects.

Figure 5: (Left) The image is a sea bottom photograph. The objective is to identify the sea
anemones. (Right) The labels are obtained as a result of box classification.
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Figure 6: (Left) The figure illustrates neighborhoods included in the hyperbolic curve model.
The orientation of the symmetry parameter represents the orientation of the two orthogonal
asymptotes. (Right) The crosses which correspond to the asymptotes are overlayed the original.
The orientations and the sizes of the crosses are the result of modulation with arg Iy and |y
respectively.
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Figure 7: The electronic circuit and transistor detection. a,b: the original and the prototype.
c,d: |I| and I1;. e: GHT accumulator with 27 /256 angle resolution. The circle is inserted to
show the location of the peak.
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Figure 8: The original and D, measuring lack of symmetry (¢ = x ) which can be used to
identify corner, junction, high curvature, ....etc points.
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