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Abstract. This paper deals with the elements of a multi-modal person
authentication systems. Test procedures for evaluating machine experts
as well as machine supervisors based on leave-one-out principle are de-
scribed. Two independent machine experts on person authentication are
presented along with their individual performances. These experts con-
sisted of a face (Gabor features) and a speaker (LPC features) authen-
tication algorithm trained on the M2VTS multi-media database. The
expert opinions are combined yielding far better performances by using
a trained supervisor based on Bayesian statistics than individual modal-
ities aggregated by averaging.

1 Introduction

Person authentication has been gathering considerable interest due to the easy
access to computers and communication technologies. Recently, the audio and
video based authentication techniques have been jointly used [5] in an attempt
to find dependable solutions for the challenging problem of person authentica-
tion. The need for multi-modality is motivated by the fact that the speech and
image based mono-modal authentication technologies are starting to reach a
performance saturation.

With the increase of computation performance, authentication using multi-
modalities, in particular vision and sound, is becoming more realistic. A funda-
mental reason for multi-modality is the inherent limitations of the information
in a single modality. Biological systems tend to solve the problem by using
multiple cues. It is more difficult to find people who resemble each other picto-
rially and vocally than for example to find people who resemble each other only
pictorially. Consequently, the multi-modal authentication is helped by this low
prior-probability. We investigate two modalities to be used in person authenti-
cation.

However, using multi-modal techniques require an automatic mechanism, a
machine supervisor, for conciliating (sometimes contradictory) machine “opin-
ions” to a single and more reliable opinion. It also requires test procedures for
evaluation of algorithms constituting the machine experts and the machine su-
pervisor which delivers a joint opinion by calibrating and aggregating the expert
opinions, [1]. The supervisor algorithm used here is based on [2] which was orig-
inally developed for human experts assessing the risks for rare events such as



catastrophes. This is motivated in that erroneously rejecting a client of a system
or accepting an impostor can be assumed to be a rare event for a machine expert,
as they are designed to reduce the risk of these events.

Here we describe the elements of multi-modal person authentication by using
speech and face sensors which are not perceived as intrusive by their users. The
works of [8,12,19] share conceptually similar interests with this paper.

2 System Model and Definitions

2.1 Identification versus Authentication

Person authentication and person identification are of primary interest for a
number of security applications. Both will be briefly summarised as there is an
important distinction, which has practical consequences, between the two.

In authentication applications, the clients are known to the system whereas
the impostors can potentially be the world population. In such applications the
scenario is cooperative, that is the users provide their pretended identities which
are known to the system. In case the candidate provides an unknown identity,
he will be rejected without further check. Authentication is the focus of the
concepts developed in this work, although many of these are also useful for
person identification.

In identification applications, the scenario is non-cooperative and therefore
there is no identity claim. The situation is very much like that of a database
query. The candidate is compared to the entire database, and the correct iden-
tity should be among the best matches. This is the simplest form of identification
which is also called closed-universe identification. In the more elaborate versions
of the identification, the candidate may or may not belong to the database. In
the case of the latter, the system should detect this and reject the query in
order to reduce the identification error. This is called open-universe identifica-
tion. The rejection process in open-universe identification systems is an implicit
authentication step.

2.2 Supervisor and Experts

We have a system consisting of one supervisor and m experts. The supervisor
does not interfere with the computational processes of the experts. It only asks
the experts their opinions about the claims of a candidate. Below is a list of the
major notations we use throughout the paper, see also Figure 1. Other notations
only important for a module are described in place.
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X; The authenticity score
Y, True authenticity value
Z;=Y,- X; The misidentification

i index of experts
j: index of shots

S;= The variance of Z,

Fig. 1. The system model of multi-modal person authentication.

A take: A data package (e.g. speech+image) of a candidate, without

identity claim

A shot: A data package of a candidate with an identity claim

1,7

K,L:

Indices of the experts, ¢ € 1---m, and of the shots, j €
1--on,n+1.

The number of persons and takes in a database

Authenticity score delivered by expert ¢ on shot j’s being a
take of the claimed client

The variance of X;; as estimated by expert <. The experts are
allowed to provide a quality of the score which is modelled
to be inversely proportional to s;;.

The true authenticity score of shot j’s being that of a client.

The error score of an expert Z;; =Y; — X;;

Hard decision threshold (accept or reject)



Single variable indices, e.g. s;, Pj, Z; represent aggregated (supervisor) vari-
ables instead of expert variables. In the context of supervisor design, we assume
that the shots 1---n are new shots of the clients, i.e. the experts have trained
on other shots of the corresponding clients. Shot n + 1 is the shot of a candidate
which neither the experts nor the supervisor have trained on. Therefore shot
n + 1 can be considered to belong to a future instant, or an instant when the
system is in full use. During supervisor training, we also assume that the training
phase of the experts is already achieved.

3 Evaluation

3.1 Methodology

The machine opinions are pairs of (X;;, s;;). They are originally in form of dis-
tances to the reference model. But for comparison purposes these are mapped
to the ]0, 1] interval by the experts themselves. The a priori threshold for sepa-
rating acceptance and rejection is assumed to be 0.5. By varying it in the ]0, 1]
interval, one can influence two types of error rates: for example, if the threshold
increases, the false acceptance (FA) rate decreases, but the false rejection (FR)
rate increases. Several ways of displaying the behaviour of the error rates are
possible. Receiver Operating Characteristics (ROC) curves show the false accep-
tance versus the false rejection. The threshold value is an implicit parameter of
the curve. The terminology is taken from radar technology where the problem is
to detect a target. When comparing two such curves, the one closest to the axes
corresponds to the best method. However, the sensitivity of a point on the ROC
curve with respect to the threshold is not possible to view as the threshold is
implicit. This is sometimes desirable since threshold explicit curves reveal how
easy it is to find the best operational threshold. By varying the threshold, one
can reach a point where the FA and FR rates take the same value. This value,
called Equal Error Rate (EER), provides a way to characterise a method with a
single number, allowing a quick comparison.

Normally, by using a threshold 7', the inequality X;; > T can be turned
to a decision of accept when fulfilled, or to a decision of reject otherwise. We
rewrite this inequality by subtracting it from y; yielding Z; ; < y; — 1. The
inequality yields an acceptance decision when it is fulfilled, rejection otherwise.
Therefore an acceptance is a false acceptance when the inequality is fulfilled for
y; = Ty = 0. Likewise a rejection decision represents a false rejection when the
inequality is not fulfilled for y; = T; = 1:

False Acceptance & Z;; < Ty —1T = =T (1)
False Rejection & Z; ; >T, —T =1-T (2)

Consequently, the integral of the frequency function of Z taken over the
semi-axes defined by (1) and (2) represent the FA and FR functions. To be more



precise
rau) = [ f)/cds=F 1) (3)
FR(T) = / _J@)fCde=1—F(1, = T) (4)

where f(z) is the frequency of Z, and C' is a normalisation constant so that F',
the integral of f, is a distribution function i.e. F'(co) = 1.

This conclusion is interesting since f can be estimated via the histogram
of Z in practice. As both histogram and summation (integral) routines are
widely available in computer environments, the implementations of FA(T) and
FR(T) computations are particularly simple, as compared to a straightforward
approach, in which 7”s must be varied. This approach is also the one adopted
here. FA, FR and the Total Error TE, which is FA + FR, are functions of the
same threshold. The FA and FR discussion is valid for both experts and super-
visors.

3.2 Test Protocols for Experts and Supervisors

Authentication algorithms need to be compared. For this reason databases which
represent realistic situations should play a central role in evaluating verifica-
tion technologies. The M2VTS database, [21], is a digital multi-media person
database which, to the extent limited by storage requirements, takes into ac-
count the demands of current speech and image based authentication technolo-
gies. This database contains speech and video data of speaking persons and
images representing head rotations of each person. Due to storage requirements,
the speech is restricted to utterances of the digits 0..9. The database is made
up from K = 37 different people and provides L = 4 takes for each person. The
takes were recorded at one week intervals or when drastic face changes occurred
in the meantime. During each take, people have been asked to count from 0’ to
’9’ in their native languages (most of the people are French speaking).

For evaluation experiments, a database should ideally be split into three sub-
sets: a training set, which is used for designing the system, an evaluation set,
which is used for determining thresholds and which should consist of data in-
dependent from the training set, and a test set for estimating the performance
of the system, i.e. the system is completely determined and works in the au-
thentication mode. The error rates are estimated on the test set. Here, as few
persons are available due to the nature of the multi-modal authentication, we
prefer not to consider an evaluation set, and use a priori chosen thresholds for a
functioning system.

Several methods have been described in the literature in order to maximise
the use of the information in a database during a test [16]. However, it appears
that only variants of bootstrap sampling are relevant for applications such as
authentication. The details of our Ezpert Protocol, which has similarities with
the Jack knife sampling and uses the leave-one-out principle, is given below.



The experiments have been conducted by leaving out both one person (all
her takes) and one take (all persons). Alternatively, each person is labelled as
an impostor, while the K — 1 (i.e. 36) others are considered as clients. For
each combination, L — 1 (i.e 3) takes of the K — 1 clients build the training
set and the L’th take (i.e. 4’th) series is used as evaluation set in the following
way: each client tries to access under the correct identity, and the impostor
tries to access under the identities of the K — 1 clients. This makes K — 1
authentic tests and K — 1 impostor tests. The procedure is repeated L times,
by considering each take as the test series alternatively. In total, the client and
impostor verification amount each to K x L x (K — 1), which evaluates to 5328
shots for the M2VTS database. Testing impostor access with persons belonging
to the training set has not been used, as it is considered too easy to discriminate
between persons present in the training set, even if the data themselves are not
present in the training set. The Expert Protocol is summarised in Figure 2. All
experts are supposed to give their opinions on a particular shot, according to
the Expert Protocol. Therefore for a given expert such an opinion description
can be unambiguously represented by a tuple

(ET_LABEL,CID,Y;, X, ;, P; ;) (5)

where ET_LABEL and C_ID represent the unique identities of the expert train-
ing set and the claimed identity (of a client). For simplicity we use the combina-
tion of the left-out person identity and the left out take in order to obtain the
ET_LABEL. For example the tuple (BP_04,CC,0,0.4,0.8) represents an impos-
tor (since Y; = 0, this is an impostor claim and ET_LABEL=BP _04 reveals that
the actual identity of the person is BP) trial which obtained the score of 0.4,
and the quality of the score 0.8.

Such opinions and ground truths are used to estimate the two main per-
formance characteristics of the authentication, namely the FA rate and the FR
rate of an expert. However, assuming that the experts deliver their opinions ac-
cording to the Expert Protocol, we need another test procedure for evaluating
the performance of the multi-modal system. We call this protocol, the Supervi-
sor Protocol as it is slightly different than the Expert Protocol, even though it
embraces the same principle.

The Supervisor Protocol uses the opinions and the ground truth delivered by
the Expert Protocol for each expert, as given by (5), yielding 2 x 5328 such tuples
for the M2VTS database. This leaves out all opinions related to the identity of
a single person. That is, tuples with ET_LABEL or C_ID (whichever contains
the identity of the person to be left out) are left out. The left-out opinions are
used to test the supervisor, while the inliers are used to train the supervisor.
Consequently the supervisor training set, ST_LABEL, can be represented by
using the left out identity.

To fix the ideas let the left out person be ST_LABEL=BP. As a result of the
procedure, there are 4 x L x (K — 1) = 576 opinions in the test set which leaves
2x K x Lx (K —1)—4x Lx(K—1) = 10080 opinions for the training set by leaving
out all BP related opinions from the Expert Protocols. By rotating the left out



person one can obtain K = 37 training and test sets yielding 4 x K x L x (K —1)
expert opinion descriptions represented by tuples:

(ST_LABEL, C.ID,Y;, X, P;) (6)

in which the supervisor and the expert training sets have no, or reasonable de-
pendencies. These can be aggregated by taking their means in order to compute
FA and FR curves for a supervisor. A complementary way of testing two su-
pervisor performances independent of the experts relies on simulating expert
opinions, see [3].
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Fig. 2. Expert Protocol. The database is divided into a training set of L —1 = 3 takes
of K —1 = 36 persons and a test set consisting of all K persons. Each configuration
brings a total of K — 1 authentic accesses, and K — 1 impostor accesses.

4 Face Expert

Attributed graphs describe objects on sparse locations, by attaching to each
node a feature vector that contains information on the local neighbourhood of
the node location. Here, we use the modulus of complex Gabor responses as
features, from filters with 6 orientations and 3 resolutions. For a discussion on
their usefulness for image analysis applications, see [6,10].

4.1 Elastic Graph Matching

Each face is represented by a set of feature vectors positioned on nodes of a
coarse, rectangular grid placed on the image. Comparing two face images is
accomplished by matching and adapting a grid taken from one image to the
features of the other image [20].

FElastic Graph Matching (EGM) consists in locating an attributed graph on
the image that is as close as possible to the reference graph. The distance between
two graphs is evaluated by a distance function, that considers both the feature
vectors of each node and the deformation information attached to the edges.



We consider distance measures where the contribution from nodes and edges are
independent, more precisely:

N, N,
d(I\R) = dn(Iy,, Rn,) + A _de(I;, Re)), (7)
=1 Jj=1

where I,, and R,, represent the Gabor feature vectors at the ith node of the
test and reference grids respectively. The edge vector of the test and reference
grid are represented by I, and R.,. N,, N, are the number of nodes and edges,
respectively. A is a weighting factor which characterises the stiffness of the graph.
A plastic graph which opposes no reaction to deformation corresponds to A = 0,
while a totally rigid graph corresponds to the limit case A = co.

The matching procedure consists of two consecutive steps [20]. The first step
is used for obtaining an approximate match, with a rigid grid, which is equivalent
to setting a high value of \. Starting from this initial guess, the grid is deformed
in order to minimise (7).

4.2 Coarse-to-Fine Matching

The computation of a feature vector for a node at a given location requires a
filtering operation for each feature. If Gabor filters are used with 6 orientations
and 3 resolutions, 18 filtering operations are required. As this can be computa-
tionally demanding, we suggest the use of coarse to fine matching when doing
the rigid Gabor response matching.

For a graph matching, the filter responses may be needed only on a reduced
subset of points in the image. Depending on the number of points visited, it may
become computationally less expensive to compute the Gabor responses only at
required points by convolution in the spatial domain.

We consider a multi-resolution description of the image. First, the lowest
resolution image is considered for matching. As a consequence, the objective
function is smoothed, and the matching may be undertaken on a sub-sampled
lattice. This property is intimately related to the fundamental sampling theo-
rem: as the objective function has been low-pass filtered, it may be sampled at a
coarser step without loss of information. Figure 3 shows that the low-resolution
image provides a smooth objective function, while the high frequency informa-
tion generates a forest of local minima. However, the minima are more precisely
localised when the high frequencies are incorporated. Consecutive refinements
are obtained by incorporating higher resolution information and by searching on
a finer grid around the current estimate.

Coarse-to-fine strategies may get trapped in local minima [15]. A remedy to
this weakness consists in the elaboration of mixed fine-to-coarse and coarse-to-
fine strategies. However, if only one head is present and occupies a significant
part of the image, we noticed that this problem does not occur.

In practice, a Gaussian pyramid is built [9]. In a pyramidal implementation,
the size of images depends on the resolution. The pyramid is built recursively, by
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Fig. 3. Objective function for the rigid translation of the graph on the search window.
Gabor responses on three resolutions are used. Here, the contribution of each resolution
is shown separately. (a) original image from which the reference graph is taken. (b)
reference graph superimposed on the reference image. (c¢) matched graph superimposed
on the test image. (d) objective function with only the lowest resolution. (e) objective
function with only the medium resolution. (f) objective function with only the highest
resolution. (g) total objective function. While low resolution provide smooth, convex
objective functions, high resolution responses provide sharper minima, and are used
for refinement.



building a new, lower-resolution level from the previous one by low-pass filtering
and sub-sampling with a factor two, so that the size of the image is divided by two
at each iteration. The low-pass filtering was achieved with separable Gaussian
filters. With the pyramidal implementation, the lattice spacing in pizels is kept
constant through all levels: a displacement of 1 pixel at level n of the pyramid
corresponds to a displacement of 2™ pixels in the level 0 of the pyramid, which
is the original image.

The definition of filters is simplified by defining a set of filters for a single res-
olution and a complete set of orientations. These filters are applied to each level
of the pyramid, to obtain a complete set of resolutions. A significant reduction of
the amount of computations is obtained for low frequency responses, compared
to filtering the original image, as bandpass filters selecting low frequencies have
a large support.

4.3 Dimensionality Reduction and Local Discriminants

The first step of the authentication consists in matching the image with the
prototype grid of the claimed class (in the following, each person in the database
is considered as a class of the classification problem). This prototype is taken as
the mean of the feature vectors provided by all images of the considered person
in the training set. It is expected that if the claimed identity is correct, the
feature vector will be close to the prototype of the class; in case of an impostor,
the matching will perform poorly. Unfortunately, early experiments showed that
the Residual Matching Error (RME), i.e. d(G, R) after matching with A = 0, is
not sufficient to discriminate between an impostor and the authentic person, see
Section 4.4. This is partly due to the presence of noise in the measurement, but
also due to the fact that not all nodes are discriminative. Indeed, the feature
space considered here is very large: for an 8 by 8 grid comprising 18 Gabor
responses at each node, a total of Ng = 1152 features is obtained.

Reducing the dimensionality is an efficient way to reduce the influence of noise
[11,4]. From a training set consisting of several frontal views of each person,
one establishes subspaces which maximise the dispersion of all classes while
minimising the dispersion within the classes.

However, the number of training samples is small compared to the num-
ber of features. Also, the features on two graph nodes may be considered as
independent. Therefore, it is reasonable to address dimensionality reduction in-
dependently at each node of the graph. If features are considered locally, the
number of training samples is larger than the dimension of the feature space,
which allows to apply feature reduction methods.

Local Discriminants Suppose that the dimensionality of the considered fea-
ture space is small compared to the number of training elements in each of the
¢ considered classes. One would like to establish a decision criterion for the ac-
ceptance or rejection of the candidate. This criterion should be “small” if the
candidate is the right person, and “large” in case of an impostor. Obviously, this
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decision has to be made on the difference between the prototype of the claimed
class and the measured feature vector. The components of this difference do not
bear the same significance, as some may be more relevant than others for the
given class. Therefore, we propose the following discriminant criterion:

2

NS'
de(r) = | D onlri =) | = (vhr — )" ®)

for class k,k = 1...c, where r; are the components of the measurement vector r,
Ny is the dimension of the local feature space. Here, the local spaces are chosen
as the sets of all orientations for a given resolution at a given node, so that
Ny = 6. p,;, is a mean of vectors r averaged over a set that will be precised in
(9). The unknown coefficient vector vy’s are determined on the training set by
minimising the ratio:

ZTESk dk(r)
Zre(Sf,S‘k) d ()
2 res, v (r — ) (r — ) oy,
ZrE(S—Sk) v (1 — ) (1 — ) oy
vi Wy
= UV 9
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where Sy, is the set of training vectors belonging to class k, S is the whole training
set, so that (S—Sy) is the set of all impostors for class k. Here, p,, is the mean on
Si. By this, we are back to a two-class classification problem, where the classes
are Sy and (S — Sy ). This formulation leads to a generalised eigenvalue problem:
Wwv, = ABvy, and v is given by the eigenvector corresponding to the smallest
generalised eigenvalue. This is very similar to Fisher’s discriminant ratio [11].

All local responses have to be combined in order to provide a unique, global
dissimilarity measure for the considered face. Here, we build the global response
by simply adding the contributions from the local discriminants. This discrimi-
nant measure will be abbreviated as LD.

Separation Parameters It is necessary to choose a threshold for defining
acceptance/rejection intervals in the domain of possible responses from training
data. Here we assume that the system will provide a soft decision between [0, co],
therefore a mapping between the original response interval and the interval ]0, 1]
is needed.

A natural invertible mapping from [0, co[ to ]0, 1] is provided by the hyper-
bolic tangent function. For our purpose, the soft score S €]0, 1] should be 1 for
an identity claim acceptation, and O for an identity claim rejection, whereas the
global discriminant value tends to 0 for a perfect matching and to infinity for a
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maximum mismatch. We suggest the mapping:

S(x) = tanh (lofﬂt> (10)

4

where ¢ is an empirically chosen constant. Since by definition S(¢t) = 0.5, ¢ will
be called the Separation Parameter (SP), as it acts like a decision point on x
between acceptance and rejection intervals. In the case of a soft decision the
SP acts as a parameter selecting the mapping function. In the case of a hard
decision SP is simply the threshold. We have chosen it as the minimal distance
measure among the training impostors.

4.4 Experiments with Face Authentication

Local Feature Reduction for Authentication In order to motivate the
process of dimensionality reduction, we first want to show that the Euclidean
distance between features, i.e. the residual matching error d(G, R) with A = 0,
is not sufficient for a reliable decision. Figure 4 shows as an example distances
of training and test samples with person 15 used as reference. It turns out that
the distance to the reference view is clearly not sufficient to detect impostors.

Distance to reference grid for person 15

Global discriminant measure for person 15
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Fig. 4. Plot of distances for person (or class) 15. The distance of the grids of different
kind of images, namely impostors in the training and the test set, members of the class
in the training and test set, are shown. If one uses the minimal distance on the training
impostors as a threshold for the decision, some members of the class in the training
and test set are misclassified if the residual matching error is used (Left), whereas all
members of the class are correctly classified with the local discriminants (Right).

A representation of discriminant values for the same person is also shown in
the same figure. Now the discrimination of impostors is much more powerful.
One can notice that there seems to be some over-training, as the discrimination
measure is almost zero for all members of the considered class in the training
set, and significantly larger for images of the same class in the test set, while
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remaining smaller than the threshold. This is due to the small number of training
samples for each person in the database.

At that point, the discriminant values in the [0, oo interval are normalised
to the [0, 1] interval, so that they can be combined with or compared to other
verification modalities like speech [13]. As an illustration of the usefulness of the
discriminant measure over all classes, we show the ROC for the residual matching
error (RME) and the local discriminants (LD) in Figure 5. Such curves reflect
the performance of a given solution averaged on all classes. The points on the
ROC were obtained by scaling the minimum threshold displayed in Figure 4
with a varying factor. Clearly, the LD outperforms the RME everywhere. At the
threshold value 0.5, the false alarm rate is 6.8% and the false acceptance rate is
3.6%.

ROC curve based on minimum of training impostor
10 T T

10°F

false acceptance rate

_ — Local discriminants
0 Residual matching error

4
L L

107

1075
10
false rejection rate

Fig. 5. Experimental ROC curve for the residual matching error and the local discrim-
inants in a log-log scale. Results were obtained with A = 2.

Figure 6 shows the LD measures for a particular person, revealing which
nodes have little relevance for discrimination. The LD approach provides an au-
tomatic way of suppressing the nodes which do not contribute to authentication.

Evaluation of Elasticity Significance In order to assess the effectiveness of
grid elasticity, we compare an elastic and a non-elastic graph matching proce-
dure. The non-elastic graph matching is obtained by skipping the second step of
the matching procedure described in Section 4.1, which is equivalent to choosing
a very large A in (7). A completely “plastic” grid is obtained with A = 0: as the
second term vanishes, each grid node is free to move in the image. By running
the simulations according to the expert protocol of Section 3.2 with several val-
ues of A, it is possible to assess the usefulness of the elastic step, and also to
study the tolerance of the discriminant approach with respect to the rigidity of
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Fig. 6. LD measures at each node, for three resolutions. The lowest resolution is shown
left, the highest resolution is shown right.

the grid. To the best of our knowledge no such quantitative analysis of A has
been documented before. For preventing any convergence problems at low values
of A\, the number of iterations on the elastic matching was limited to 100.

Figure 7 shows the total error rate defined by TE=FA+FR, for the rigid
matching and the elastic graph matching, for both types of discriminant mea-
sures. Clearly, the presence of the local discrimination has a larger influence on
the results than the elastic deformation.

Total Error Rate

Discriminant (rigid)
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O Discriminant (elastic)
+ Matching Error (rigid) ‘,;m:[
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Fig. 7. Total error rates according to the threshold for the rigid matching and the
elastic graph matching, with A = 2.

Results at the 0.5 threshold are shown for several values of A in Table 1. The
Equal Error Rate (EER), defined as the point where FA = FR, is also shown.
There is a transition from elastic to rigid matching. The local discrimination is
able to provide almost constant results for A between 0.5 and 3.0. For larger
values of A, the performance degrades. The elastic graph matching improved the
rigid graph matching, which can be observed by inspecting Figure 7. Table 1
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shows that the EER is improved from 14% down to 11%. However, combining
the rigid graph matching with local discriminants is better than elastic graph
matching. Not surprisingly, combining the elastic deformation with local dis-
crimination yielded the best results.

[ A[FR]FA[EER] [ A[FR|FA[EER]
oo[29.7[2.1] 144 o[133[3.7] 85
10.0[26.3[ 2.2 12.0 10.0[11.1[3.6] 73
5.0] 25[2.3] 11.9 5.0[10.7[3.5] 84
1.0[22.9[2.5] 12.1 40[11.3[3.6] 9.2
3.0[22.9[2.4] 12.3 3.0 6.9[3.6] 6.5
2.0[22.3[2.2] 11.8 2.0] 6.8[3.6] 6.1
1.0[21.6]2.3] 11.2 1.0] 7.1[3.9] 54
0.5[21.6[ 2.0] 10.8 0.5] 6.8[4.3] 6.2
0.0[24.3[1.6] 11.6 0.0 9.4[4.0] 6.0

Table 1. Error rates at the 0.5 threshold and Equal Error Rates. (a) with residual
matching error as dissimilarity measure, (b) with local discriminants. The rigid case
corresponds to a very large A, denoted here by A = co. The equal error rates are
obtained by interpolation.

As a conclusion, it has been shown that a small degree of elasticity provides
an improvement of the performance. The behaviour remains constant over a
certain range of A, but from a certain rigidity on, the performance degrades.

4.5 Eye Detection by Saccadic Search for Normalisation

It is known that, if face images are normalised, the authentication performance
of the matching system is improved. Normalising the ocular positions is such a
procedure which can be implemented in an active vision based face authentica-
tion. Here we suggest to detect the eye positions of a person by using the Gabor
responses dynamically. We use a rigid graph composed of nodes on concentric cir-
cles obtained by log polar mapping as in Figure 8. As the procedure is not person
specific it can also be used in identification applications. The performance may
be of course improved if person specific eye models are used. However, the face
expert we described above functioned without eye normalisation on the M2V TS
database. The eye normalisation technique suggested below is not intended for
a database in which the person is already in the central part of the image and
has approximately the correct size, but rather a dynamic environment where the
camera is active in order to get the best takes of a face.

Saccadic Search At the beginning of the search, the retinal sampling grid is
placed at a random position on the image and the corresponding set of Gabor
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features at grid nodes, represented by the set Gy, is extracted. Each vector in Gy,
after division by its Euclidean norm, is subsequently matched against a reference
vector eg,. In order to construct the latter, the average Gabor responses from the
centre of the right and left eye of six persons are computed. These two standard
vector responses are then geometrically averaged component-wise so that ey,
captures the features which are common to the right and the left eye. The point
of the grid for which the Euclidean distance from e,, is minimal is selected as
the target for the next saccade. The search is terminated when saccades become
short, here shorter than 1/6 of the sampling grid’s outer radius. If no saccade
target whose distance from e, is reasonably low can be found (which can be the
case if the search starting point happens to fall in a blank region of the image),
the search is restarted from a random position.

The Eye Model The a priori knowledge about the appearance of the left and
right eyes of the generic person is respectively encoded into a left eye model and
a right eye model. The models are constructed from the sets £ = (J, I}, and
R=U o La of Gabor features obtained by placing the retinal sampling grid on
either of the eyes (Figure 8) and computing the Gabor responses I, at each of
its points.

20 40 60 80 100 120 140 160

Fig. 8. The retinal sampling grid placed on a person’s right eye for model creation.

The features in £ and R are then rearranged in a collection of matrices
M = {M,},, so that each one of the M, contains the responses for a fixed Ga-
bor frequency radius w and a given spatial circle with radius r of the sampling
grid. The rows and columns of each M, therefore correspond to the varia-
tion of the angular coordinates in the spatial and frequency domains. Matri-
ces M, are then normalised separately with respect to the norm defined by

IM,,| = /Trace(Mt M, ), which is equivalent to the Euclidean norm if M,
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is interpreted as a vector. All Gabor features from a single frequency channel w
belong to the same matrix M,,,. Since each frequency channel is characterised
by a specific bandwidth which is common to all the orientations, normalisation
takes care of the variation of filter bandwidths across the frequency channels.
Also, by grouping together all the points of the sampling grid circle of radius r
in a single M,,, and then normalising, one makes sure that illumination changes
are compensated for.

The eye model for the left eye, L, is computed by combining the collections of
matrices M? obtained by placing the grid manually on the left eye of six persons
according to the relation

L={L},, = {|ziMiwl

The same procedure is applied to obtain the eye model for the right eye.

Matching of the retinal grid samples | extracted from an image with the
model is performed (e.g. in the case of a left eye) by minimising the value of the
function d(l,L) = >, |lrw — Lrw]-

Refining the Search After the saccadic phase of the search has converged to
the target pattern, the Gabor responses in the points currently “viewed” by the
grid are compared with both the left and the right eye models described in the
preceding section. According to the model which obtains the best result, the
candidate eye is assumed to be a left or a right eye. The appropriate model is
then selected and the exact position of the local minimum is determined. If the
resulting displacement is larger than a few pixels the saccadic search is restarted
from a random position.

Experiments have shown that the saccadic search may detect some erroneous
local minima (e.g. the corners of the mouth, ear-rings or details in the hair). In
order to discriminate such fake targets, the difference is computed between the
candidate’s distance from the attributed eye model and its distance from the
alternate model. The ratio of this difference to the minimum distance, which we
call the asymmetry, measures the amount to which the chirality of the detected
feature contributes to the match. In our experiments, the asymmetry always
turned out to be grater than 0.1 for correct matches, while it generally dropped
of one or two orders of magnitude in the case of spurious identifications. The
errors thus detected are treated by restarting the search from a random position.

Looking for the Other Eye After localisation of one eye, the system performs
a saccade in the presumed direction of the other eye. Normal saccadic search is
then performed until an eye is found. Due to scale differences between images,
the initial saccade may not turn out to be long enough to prevent the system
from finding again the same eye. In this case, further attempts are performed
with an increasing starting distance from the known eye until the other eye is
found. In case the search refinement detects a low asymmetry target, search is
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restarted with a random offset. If this condition persists for several attempts,
it is assumed that the position of the first eye has been incorrectly assigned
and eye detection is restarted from scratch. Although the assumption that faces
are presented in an upright orientation is used to speed up the detection of the
second eye, no strict constraint is imposed on its position relative to the first.
Therefore, detection remains robust also in the case of subjects having their head
tilted to one side.

Experimental Results The algorithm has been tested using a Gabor decom-
position rosette consisting of six texture orientation sectors and five frequency
magnitude octaves, ranging from {5 to 7. The retinal sampling grid employed
had 5 rings and 16 rays, with the ring radii being distributed between ppi, = 3
and ppax = 30 pixels.

Fig.9. The + and x signs denote the best match with the right and left eye models
respectively. Numbers identify successive starting points for saccades. Eye detection
for the left picture required 51 fixations. Note how saccadic search 1 was considered
uninteresting and therefore discarded. A random restart (2) then lead to detection of
the left eye, after which saccadic search resumed (3) near the location of the right eye.
In the case of the right picture, information from the outline of the orbit allows eye
detection even if the person’s eyes are shut. During this trial the centre of the sampling
grid explored 99 pixels and 14 targets were rejected after comparison with the eye
models.

Our test set consists of forty takes of twenty persons from the M2VTS
database. The image resolution is 143 x 175 pixels. Differences between the
takes of the same persons consist in tan changes, haircut, makeup, eyelid posi-
tion, head position (heads are often slightly rotated) and slight scale changes.
Several persons in the database wear eyeglasses.

Single takes from six persons were used to extract the left and the right
eye models. Repeated testing was then performed on the whole set without any
mismatch being found. Information obtained from the outline of the orbit al-
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lows correct detection of the features even when the subject’s eyes are closed
(Figure 9). In our trials we found the median of the number of fixation points
to be 49 for the detection of both eyes, that is to say that the centre of the
retinal sampling grid explores 0.2% of the image pixels. The number of fixations
is considerably increased (typically 100) for subjects wearing glasses with strong
reflections or having their eyes shut. This is mainly due to the fact that since
the algorithm knows nothing about facial features other than the eyes, no al-
ternative cues can be used to infer their spatial position when their visibility is
low. Nevertheless, detection is always correctly accomplished at the end. How-
ever, the results are indicative. The performance of the method should be tested
using an active camera setup in the future.

5 Speech Expert

5.1 Feature Extraction

One of the earliest applications of speech features as biometrics is forensics. The
physical and behavioural phenomena which help making the speech so personal
include, the characteristics of the vocal tract, the shape of the oral cavity, the
nerve signals, and muscle dynamics. The interplay and the exact role of the
different elements influencing the characteristics of the speech is too complex to
be identified through the resulting one dimensional signal, the voice. However,
many personal characteristics are possible to capture in the local power spectra
of this signal.

The Linear Prediction Coefficients, (LPC) as derived from the Cepstrum
information, is the local spectral information which is most frequently utilised
in speech processing in general and speaker authentication in particular. The
LPCs, their first and second order time derivative approximations (first and
second deltas) are commonly used together as a feature vector describing the
characteristics of speech, in typically 10 ms of partly overlapping time inter-
vals, [22,17].

5.2 Text Dependent Speaker Authentication

The techniques described here define the second processing step of a speech
expert. As our speech expert, an implementation of the work in [18], uses the
fusion of decisions coming from three matching algorithms to deliver a final
opinion, we present these below. The final combined graded opinion which is
obtained by weighting the individual decisions with the distance to the decision
threshold (used in decision making of each method) for each client. The LPCs
are used as feature vectors in all three methods. The ROC curves of the speech
expert alone is given by Figure 10.

Dynamic Time Warping This is a template matching technique which has
many similarities with our face authenticator technique in that the reference
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Fig. 10. The total error rates of speech modality as compared to face modality.

feature vector sequence is warped (geometrically distorted) towards the test
sequence and a scalar product is performed between the two. The time warping
attempts to align the test and the reference speech features in that the changing
speed with which the speech is uttered, is normalised and the feature vectors are
possible to compare with each other after the warping, [24].

Sphericity The reference LPC sequence z defines the covariance matrix

1
_ it
X = E_l T, (11)

where M is the total number of the local analysis intervals. Similarly the test
LPC sequence covariance matrix, Y is obtained. If the dimension of the X is
m X m the sphericity measure is defined as

m ! trace(Y X 1)
m(trace(XY —1))—!

u(X,Y) = log (12)

The larger the sphericity measure between two vectors is, the more likely it
is that they represent two different speakers [7].

Hidden Markov Models, HMM HMDMs have been used to model the time
series. A major use of HMMs is to build models of sub-parts of speech, such
as phonemes, or words, see [22] for a tutorial. Here we used text dependent
speaker authentication by using the digits {0..9}. One way of exploiting HMMs
in speaker verification consists in creating one set of models for the client and
one (small) set of models for all impostors (world model), [23]. The two sets of
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models contain the HMM models of the digits, as uttered by a client and as
uttered by the world. A decision is made by computing

argwe{glffcIM}{P(WIO)} (13)
where O is the observed speech (feature vector), and CL and IM represent client
and impostor respectively, by using Bayes rule P(w|O) x P(O|w). The latter
distribution, P(O|w) is modelled by replacing w with M, a Markov model of
the uttered word (by a client or an impostor) ass P(Olw) o P(O|M). This is
in turn modelled as a Markov chain with unknown states (the number of states
are known), unknown transition probabilities between the states, and a model
of the symbol probability distribution for each state. Computable estimations of
P(O|M) are obtained through training which uses the well established Viterbi
algorithm and the Baum-Welch re-estimation for doing so. The parameters of
the world model is speaker independent. In our case the client set consisted of
the speech takes of the M2VTS data-base, [14], whereas the world model was
computed by a separate database consisting of 300 occurrences of each digit
(uttered by 500 persons), [18]. Furthermore, the number of states of the digits
were determined by allocating each phoneme one state, and the model of the
symbol probabilities was assumed to consist of one Gaussian per state. All digits
had a left-right structure as state transition model.

6  Opinion Fusion by Supervisor

A more extensive presentation of the mathematical background of the model we
used can be found in Bigiin [3,2].

Basics of the Supervisor Algorithm We perform the following steps

1. (Supervisor Training) Estimate the bias parameters of each expert, i.e. {M;, Vi, a;},
according to (14)

IS

~
<

2?11 O';J PR 1
s and Vi= T
Z?:l o2 Z;L o2

ij ij

- 19|

M; = (14)

by using a training set i.e. x;;, y;, and p;; with 7 up to n. The bias parameters
will be computed for each expert by using all available persons in the training

set. o are computed according to (15), (16).
_ a; (Gi—D;) 1
Pij e Pij
2 -1
gl i d D S (2 16
T — Z ; an 7 — Z P : ; ( )
Jj=1 J Jj=1 J Jj=1 J
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2. (Authentication Phase) At this step, the supervisor is operational, meaning
that the time instant is always n + 1 and that the supervisor has access to
expert opinions z; n41, and p; ,4+1, but not access to the true authentica-
tion scores, y,+1. The expert opinions are normalised yieldingM’, and V'
according to (17).

M =2in1+M; and V/ =V, + Uzz,nﬂ' (17)

M'" and/or V' are computed according to (18) (and are ready to be thresh-
olded to yield a definite decision).

Mz
SR

s
Il
=

1
M" = and V":ZW (18)
=1

™
e

s
I
-

07 ,11's are computed according to (15).

Score Transformation

Depending on the algorithms they use, the scores of the experts, X;;, may or
may not be dimensionless (scaled) or in the correct range i.e. [—00,00]. The
44’77

prime on X and Y variables represent these variables before transformation.
For our purposes, the transformation

Xij,

Xij = lOg
=

(19)

which is also known as the “odds of X/,”,

to [—o0, 00].

will be used to map the scores in [0, 1]

Fusion Experiments In Table 2 we present the minimum total error rates of
the speech and the face modalities individually, the Bayesian supervisor, and
the plain mean of the scores of the face and speech experts, as an alternative
supervisor. The test followed the Supervisor Test Protocol described earlier. The
FA and FR curves of the Bayesian Supervisor are much smaller than those cor-
responding to the Mean Supervisor, Figure 11. Furthermore, the minimum total
error rate for the Bayesian supervisor is 0.006 , which should be compared to
that of the Mean Supervisor, 0.015 . However, in both cases there is a significant
improvement as compared to individual modalities, Table 2. While the standard
threshold yields the lowest TE for the Bayesian supervisor, this figure is increases
to 0.0165 for the Mean Supervisor.

These and other experiments indicate that the Bayesian supervisor is more
successful in decision making due its capability of symmetrising the score error
densities.
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| TEI | TE2 |TEbs |TEms|
10.056]0.035]0.006] 0.015 |

Table 2. Minimum total error rates of machine supervisor opinions based on face and

speech signals. TE; and T E»> are expert minimum total error rates of face and speech
respectively.
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Fig. 11. False Acceptance and False Rejection curves for Mean and Bayesian supervisor
tested on 1 speech and 1 image expert.

7 Conclusions

We have presented a framework for multi-modal person authentication, this in-
cluded test procedures using a bootstraping technique, modelling the experts
and the supervisor as opinion providers rather than hard decision makers. We
implemented a face expert based on Gabor decomposition, a speech expert using
LPCs, and a supervisor based Bayesian statistics and evaluated the individual
experts as well as the supervisor on real data.

We demonstrated that a multi-modal system is capable of improving decisions
in the context of person authentication significantly, by decreasing the total error
rate as much as 600 % (reaching the rate of 0.006 on a rotational test procedure)
as compared to the best modality.

In addition to the the general framework, our contribution has been in i)
improving the Elastic Graph Matching approach by Local Discriminants, ii)
quantifying the contribution of the elastic part of the matching as compared to
the rigid graph matching, iii) proposing log-polar based eye detection by saccadic
movements for image normalisations for a dynamic camera, and iv) proposing
the Bayesian Supervisor in order to improve the multi-modal decision making.
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