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Abstract. This paper deals with the elements of a multi-modal personauthentication systems. Test procedures for evaluating machine expertsas well as machine supervisors based on leave-one-out principle are de-scribed. Two independent machine experts on person authentication arepresented along with their individual performances. These experts con-sisted of a face (Gabor features) and a speaker (LPC features) authen-tication algorithm trained on the M2VTS multi-media database. Theexpert opinions are combined yielding far better performances by usinga trained supervisor based on Bayesian statistics than individual modal-ities aggregated by averaging.1 IntroductionPerson authentication has been gathering considerable interest due to the easyaccess to computers and communication technologies. Recently, the audio andvideo based authentication techniques have been jointly used [5] in an attemptto �nd dependable solutions for the challenging problem of person authentica-tion. The need for multi-modality is motivated by the fact that the speech andimage based mono-modal authentication technologies are starting to reach aperformance saturation.With the increase of computation performance, authentication using multi-modalities, in particular vision and sound, is becoming more realistic. A funda-mental reason for multi-modality is the inherent limitations of the informationin a single modality. Biological systems tend to solve the problem by usingmultiple cues. It is more di�cult to �nd people who resemble each other picto-rially and vocally than for example to �nd people who resemble each other onlypictorially. Consequently, the multi-modal authentication is helped by this lowprior-probability. We investigate two modalities to be used in person authenti-cation.However, using multi-modal techniques require an automatic mechanism, amachine supervisor, for conciliating (sometimes contradictory) machine \opin-ions" to a single and more reliable opinion. It also requires test procedures forevaluation of algorithms constituting the machine experts and the machine su-pervisor which delivers a joint opinion by calibrating and aggregating the expertopinions, [1]. The supervisor algorithm used here is based on [2] which was orig-inally developed for human experts assessing the risks for rare events such as



catastrophes. This is motivated in that erroneously rejecting a client of a systemor accepting an impostor can be assumed to be a rare event for a machine expert,as they are designed to reduce the risk of these events.Here we describe the elements of multi-modal person authentication by usingspeech and face sensors which are not perceived as intrusive by their users. Theworks of [8,12,19] share conceptually similar interests with this paper.2 System Model and De�nitions2.1 Identi�cation versus AuthenticationPerson authentication and person identi�cation are of primary interest for anumber of security applications. Both will be briey summarised as there is animportant distinction, which has practical consequences, between the two.In authentication applications, the clients are known to the system whereasthe impostors can potentially be the world population. In such applications thescenario is cooperative, that is the users provide their pretended identities whichare known to the system. In case the candidate provides an unknown identity,he will be rejected without further check. Authentication is the focus of theconcepts developed in this work, although many of these are also useful forperson identi�cation.In identi�cation applications, the scenario is non-cooperative and thereforethere is no identity claim. The situation is very much like that of a databasequery. The candidate is compared to the entire database, and the correct iden-tity should be among the best matches. This is the simplest form of identi�cationwhich is also called closed-universe identi�cation. In the more elaborate versionsof the identi�cation, the candidate may or may not belong to the database. Inthe case of the latter, the system should detect this and reject the query inorder to reduce the identi�cation error. This is called open-universe identi�ca-tion. The rejection process in open-universe identi�cation systems is an implicitauthentication step.2.2 Supervisor and ExpertsWe have a system consisting of one supervisor and m experts. The supervisordoes not interfere with the computational processes of the experts. It only asksthe experts their opinions about the claims of a candidate. Below is a list of themajor notations we use throughout the paper, see also Figure 1. Other notationsonly important for a module are described in place.2
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Fig. 1. The system model of multi-modal person authentication.A take: A data package (e.g. speech+image) of a candidate, withoutidentity claimA shot: A data package of a candidate with an identity claimi; j: Indices of the experts, i 2 1 � � �m, and of the shots, j 21 � � �n; n+ 1.K;L: The number of persons and takes in a databaseXij : Authenticity score delivered by expert i on shot j's being atake of the claimed clientsij The variance ofXij as estimated by expert i. The experts areallowed to provide a quality of the score which is modelledto be inversely proportional to sij .Yj The true authenticity score of shot j's being that of a client.Zij The error score of an expert Zij = Yj �XijT : Hard decision threshold (accept or reject)3



Single variable indices, e.g. sj , Pj , Zj represent aggregated (supervisor) vari-ables instead of expert variables. In the context of supervisor design, we assumethat the shots 1 � � �n are new shots of the clients, i.e. the experts have trainedon other shots of the corresponding clients. Shot n+1 is the shot of a candidatewhich neither the experts nor the supervisor have trained on. Therefore shotn + 1 can be considered to belong to a future instant, or an instant when thesystem is in full use. During supervisor training, we also assume that the trainingphase of the experts is already achieved.3 Evaluation3.1 MethodologyThe machine opinions are pairs of (Xij ; sij). They are originally in form of dis-tances to the reference model. But for comparison purposes these are mappedto the ]0; 1] interval by the experts themselves. The a priori threshold for sepa-rating acceptance and rejection is assumed to be 0:5. By varying it in the ]0; 1]interval, one can inuence two types of error rates: for example, if the thresholdincreases, the false acceptance (FA) rate decreases, but the false rejection (FR)rate increases. Several ways of displaying the behaviour of the error rates arepossible. Receiver Operating Characteristics (ROC) curves show the false accep-tance versus the false rejection. The threshold value is an implicit parameter ofthe curve. The terminology is taken from radar technology where the problem isto detect a target. When comparing two such curves, the one closest to the axescorresponds to the best method. However, the sensitivity of a point on the ROCcurve with respect to the threshold is not possible to view as the threshold isimplicit. This is sometimes desirable since threshold explicit curves reveal howeasy it is to �nd the best operational threshold. By varying the threshold, onecan reach a point where the FA and FR rates take the same value. This value,called Equal Error Rate (EER), provides a way to characterise a method with asingle number, allowing a quick comparison.Normally, by using a threshold T , the inequality Xi;j > T can be turnedto a decision of accept when ful�lled, or to a decision of reject otherwise. Werewrite this inequality by subtracting it from yj yielding Zi;j < yj � T . Theinequality yields an acceptance decision when it is ful�lled, rejection otherwise.Therefore an acceptance is a false acceptance when the inequality is ful�lled foryj = Tf = 0. Likewise a rejection decision represents a false rejection when theinequality is not ful�lled for yj = Tt = 1:False Acceptance , Zi;j < Tf � T = �T (1)False Rejection , Zi;j � Tt � T = 1� T (2)Consequently, the integral of the frequency function of Z taken over thesemi-axes de�ned by (1) and (2) represent the FA and FR functions. To be more4



precise FA(T ) = Zz<Tf�T f(z)=Cdz = F (Tf � T ) (3)FR(T ) = Zz�Tt�T f(z)=Cdz = 1� F (Tt � T ) (4)where f(z) is the frequency of Z, and C is a normalisation constant so that F ,the integral of f , is a distribution function i.e. F (1) = 1.This conclusion is interesting since f can be estimated via the histogramof Z in practice. As both histogram and summation (integral) routines arewidely available in computer environments, the implementations of FA(T ) andFR(T ) computations are particularly simple, as compared to a straightforwardapproach, in which T 's must be varied. This approach is also the one adoptedhere. FA, FR and the Total Error TE, which is FA + FR, are functions of thesame threshold. The FA and FR discussion is valid for both experts and super-visors.3.2 Test Protocols for Experts and SupervisorsAuthentication algorithms need to be compared. For this reason databases whichrepresent realistic situations should play a central role in evaluating veri�ca-tion technologies. The M2VTS database, [21], is a digital multi-media persondatabase which, to the extent limited by storage requirements, takes into ac-count the demands of current speech and image based authentication technolo-gies. This database contains speech and video data of speaking persons andimages representing head rotations of each person. Due to storage requirements,the speech is restricted to utterances of the digits 0..9. The database is madeup from K = 37 di�erent people and provides L = 4 takes for each person. Thetakes were recorded at one week intervals or when drastic face changes occurredin the meantime. During each take, people have been asked to count from '0' to'9' in their native languages (most of the people are French speaking).For evaluation experiments, a database should ideally be split into three sub-sets: a training set, which is used for designing the system, an evaluation set,which is used for determining thresholds and which should consist of data in-dependent from the training set, and a test set for estimating the performanceof the system, i.e. the system is completely determined and works in the au-thentication mode. The error rates are estimated on the test set. Here, as fewpersons are available due to the nature of the multi-modal authentication, weprefer not to consider an evaluation set, and use a priori chosen thresholds for afunctioning system.Several methods have been described in the literature in order to maximisethe use of the information in a database during a test [16]. However, it appearsthat only variants of bootstrap sampling are relevant for applications such asauthentication. The details of our Expert Protocol, which has similarities withthe Jack knife sampling and uses the leave-one-out principle, is given below.5



The experiments have been conducted by leaving out both one person (allher takes) and one take (all persons). Alternatively, each person is labelled asan impostor, while the K � 1 (i.e. 36) others are considered as clients. Foreach combination, L � 1 (i.e 3) takes of the K � 1 clients build the trainingset and the L'th take (i.e. 4'th) series is used as evaluation set in the followingway: each client tries to access under the correct identity, and the impostortries to access under the identities of the K � 1 clients. This makes K � 1authentic tests and K � 1 impostor tests. The procedure is repeated L times,by considering each take as the test series alternatively. In total, the client andimpostor veri�cation amount each to K �L� (K � 1), which evaluates to 5328shots for the M2VTS database. Testing impostor access with persons belongingto the training set has not been used, as it is considered too easy to discriminatebetween persons present in the training set, even if the data themselves are notpresent in the training set. The Expert Protocol is summarised in Figure 2. Allexperts are supposed to give their opinions on a particular shot, according tothe Expert Protocol. Therefore for a given expert such an opinion descriptioncan be unambiguously represented by a tuple(ET LABEL;C ID; Yj ; Xi;j ; Pi;j) (5)where ET LABEL and C ID represent the unique identities of the expert train-ing set and the claimed identity (of a client). For simplicity we use the combina-tion of the left-out person identity and the left out take in order to obtain theET LABEL. For example the tuple (BP 04;CC; 0; 0:4; 0:8) represents an impos-tor (since Yj = 0, this is an impostor claim and ET LABEL=BP 04 reveals thatthe actual identity of the person is BP) trial which obtained the score of 0:4,and the quality of the score 0:8.Such opinions and ground truths are used to estimate the two main per-formance characteristics of the authentication, namely the FA rate and the FRrate of an expert. However, assuming that the experts deliver their opinions ac-cording to the Expert Protocol, we need another test procedure for evaluatingthe performance of the multi-modal system. We call this protocol, the Supervi-sor Protocol as it is slightly di�erent than the Expert Protocol, even though itembraces the same principle.The Supervisor Protocol uses the opinions and the ground truth delivered bythe Expert Protocol for each expert, as given by (5), yielding 2�5328 such tuplesfor the M2VTS database. This leaves out all opinions related to the identity ofa single person. That is, tuples with ET LABEL or C ID (whichever containsthe identity of the person to be left out) are left out. The left-out opinions areused to test the supervisor, while the inliers are used to train the supervisor.Consequently the supervisor training set, ST LABEL, can be represented byusing the left out identity.To �x the ideas let the left out person be ST LABEL=BP. As a result of theprocedure, there are 4�L� (K � 1) = 576 opinions in the test set which leaves2�K�L�(K�1)�4�L�(K�1) = 10080 opinions for the training set by leavingout all BP related opinions from the Expert Protocols. By rotating the left out6



person one can obtain K = 37 training and test sets yielding 4�K�L�(K�1)expert opinion descriptions represented by tuples:(ST LABEL;C ID; Yj ; Xj ; Pj) (6)in which the supervisor and the expert training sets have no, or reasonable de-pendencies. These can be aggregated by taking their means in order to computeFA and FR curves for a supervisor. A complementary way of testing two su-pervisor performances independent of the experts relies on simulating expertopinions, see [3].
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We consider distance measures where the contribution from nodes and edges areindependent, more precisely:d(�;R) = NnXi=1 dn(�ni ; Rni) + � NeXj=1 de(�ej ; Rej ); (7)where �ni and Rni represent the Gabor feature vectors at the ith node of thetest and reference grids respectively. The edge vector of the test and referencegrid are represented by �ej and Rej . Nn, Ne are the number of nodes and edges,respectively. � is a weighting factor which characterises the sti�ness of the graph.A plastic graph which opposes no reaction to deformation corresponds to � = 0,while a totally rigid graph corresponds to the limit case � =1.The matching procedure consists of two consecutive steps [20]. The �rst stepis used for obtaining an approximate match, with a rigid grid, which is equivalentto setting a high value of �. Starting from this initial guess, the grid is deformedin order to minimise (7).4.2 Coarse-to-Fine MatchingThe computation of a feature vector for a node at a given location requires a�ltering operation for each feature. If Gabor �lters are used with 6 orientationsand 3 resolutions, 18 �ltering operations are required. As this can be computa-tionally demanding, we suggest the use of coarse to �ne matching when doingthe rigid Gabor response matching.For a graph matching, the �lter responses may be needed only on a reducedsubset of points in the image. Depending on the number of points visited, it maybecome computationally less expensive to compute the Gabor responses only atrequired points by convolution in the spatial domain.We consider a multi-resolution description of the image. First, the lowestresolution image is considered for matching. As a consequence, the objectivefunction is smoothed, and the matching may be undertaken on a sub-sampledlattice. This property is intimately related to the fundamental sampling theo-rem: as the objective function has been low-pass �ltered, it may be sampled at acoarser step without loss of information. Figure 3 shows that the low-resolutionimage provides a smooth objective function, while the high frequency informa-tion generates a forest of local minima. However, the minima are more preciselylocalised when the high frequencies are incorporated. Consecutive re�nementsare obtained by incorporating higher resolution information and by searching ona �ner grid around the current estimate.Coarse-to-�ne strategies may get trapped in local minima [15]. A remedy tothis weakness consists in the elaboration of mixed �ne-to-coarse and coarse-to-�ne strategies. However, if only one head is present and occupies a signi�cantpart of the image, we noticed that this problem does not occur.In practice, a Gaussian pyramid is built [9]. In a pyramidal implementation,the size of images depends on the resolution. The pyramid is built recursively, by8
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(f) (g)Fig. 3. Objective function for the rigid translation of the graph on the search window.Gabor responses on three resolutions are used. Here, the contribution of each resolutionis shown separately. (a) original image from which the reference graph is taken. (b)reference graph superimposed on the reference image. (c) matched graph superimposedon the test image. (d) objective function with only the lowest resolution. (e) objectivefunction with only the medium resolution. (f) objective function with only the highestresolution. (g) total objective function. While low resolution provide smooth, convexobjective functions, high resolution responses provide sharper minima, and are usedfor re�nement. 9



building a new, lower-resolution level from the previous one by low-pass �lteringand sub-sampling with a factor two, so that the size of the image is divided by twoat each iteration. The low-pass �ltering was achieved with separable Gaussian�lters. With the pyramidal implementation, the lattice spacing in pixels is keptconstant through all levels: a displacement of 1 pixel at level n of the pyramidcorresponds to a displacement of 2n pixels in the level 0 of the pyramid, whichis the original image.The de�nition of �lters is simpli�ed by de�ning a set of �lters for a single res-olution and a complete set of orientations. These �lters are applied to each levelof the pyramid, to obtain a complete set of resolutions. A signi�cant reduction ofthe amount of computations is obtained for low frequency responses, comparedto �ltering the original image, as bandpass �lters selecting low frequencies havea large support.4.3 Dimensionality Reduction and Local DiscriminantsThe �rst step of the authentication consists in matching the image with theprototype grid of the claimed class (in the following, each person in the databaseis considered as a class of the classi�cation problem). This prototype is taken asthe mean of the feature vectors provided by all images of the considered personin the training set. It is expected that if the claimed identity is correct, thefeature vector will be close to the prototype of the class; in case of an impostor,the matching will perform poorly. Unfortunately, early experiments showed thatthe Residual Matching Error (RME), i.e. d(G;R) after matching with � = 0, isnot su�cient to discriminate between an impostor and the authentic person, seeSection 4.4. This is partly due to the presence of noise in the measurement, butalso due to the fact that not all nodes are discriminative. Indeed, the featurespace considered here is very large: for an 8 by 8 grid comprising 18 Gaborresponses at each node, a total of NG = 1152 features is obtained.Reducing the dimensionality is an e�cient way to reduce the inuence of noise[11,4]. From a training set consisting of several frontal views of each person,one establishes subspaces which maximise the dispersion of all classes whileminimising the dispersion within the classes.However, the number of training samples is small compared to the num-ber of features. Also, the features on two graph nodes may be considered asindependent. Therefore, it is reasonable to address dimensionality reduction in-dependently at each node of the graph. If features are considered locally, thenumber of training samples is larger than the dimension of the feature space,which allows to apply feature reduction methods.Local Discriminants Suppose that the dimensionality of the considered fea-ture space is small compared to the number of training elements in each of thec considered classes. One would like to establish a decision criterion for the ac-ceptance or rejection of the candidate. This criterion should be \small" if thecandidate is the right person, and \large" in case of an impostor. Obviously, this10



decision has to be made on the di�erence between the prototype of the claimedclass and the measured feature vector. The components of this di�erence do notbear the same signi�cance, as some may be more relevant than others for thegiven class. Therefore, we propose the following discriminant criterion:dk(r) = 0@ NgXi=1 vki(ri � �ki)1A2 = �vtk(r � �k)�2 (8)for class k; k = 1:::c, where ri are the components of the measurement vector r,Ng is the dimension of the local feature space. Here, the local spaces are chosenas the sets of all orientations for a given resolution at a given node, so thatNg = 6. �k is a mean of vectors r averaged over a set that will be precised in(9). The unknown coe�cient vector vk's are determined on the training set byminimising the ratio:Dk = Pr2Sk dk(r)Pr2(S�Sk) dk(r)= Pr2Sk vtk(r � �k)(r � �k)tvkPr2(S�Sk) vtk(r � �k)(r � �k)tvk= vtkWvkvtkBvk ; (9)where Sk is the set of training vectors belonging to class k, S is the whole trainingset, so that (S�Sk) is the set of all impostors for class k. Here, �k is the mean onSk. By this, we are back to a two-class classi�cation problem, where the classesare Sk and (S�Sk). This formulation leads to a generalised eigenvalue problem:Wvk = �Bvk, and vk is given by the eigenvector corresponding to the smallestgeneralised eigenvalue. This is very similar to Fisher's discriminant ratio [11].All local responses have to be combined in order to provide a unique, globaldissimilarity measure for the considered face. Here, we build the global responseby simply adding the contributions from the local discriminants. This discrimi-nant measure will be abbreviated as LD.Separation Parameters It is necessary to choose a threshold for de�ningacceptance/rejection intervals in the domain of possible responses from trainingdata. Here we assume that the system will provide a soft decision between [0;1[,therefore a mapping between the original response interval and the interval ]0; 1]is needed.A natural invertible mapping from [0;1[ to ]0; 1] is provided by the hyper-bolic tangent function. For our purpose, the soft score S 2]0; 1] should be 1 foran identity claim acceptation, and 0 for an identity claim rejection, whereas theglobal discriminant value tends to 0 for a perfect matching and to in�nity for a11



maximum mismatch. We suggest the mapping:S(x) = tanh� log(3)2x t� (10)where t is an empirically chosen constant. Since by de�nition S(t) = 0:5, t willbe called the Separation Parameter (SP), as it acts like a decision point on xbetween acceptance and rejection intervals. In the case of a soft decision theSP acts as a parameter selecting the mapping function. In the case of a harddecision SP is simply the threshold. We have chosen it as the minimal distancemeasure among the training impostors.4.4 Experiments with Face AuthenticationLocal Feature Reduction for Authentication In order to motivate theprocess of dimensionality reduction, we �rst want to show that the Euclideandistance between features, i.e. the residual matching error d(G;R) with � = 0,is not su�cient for a reliable decision. Figure 4 shows as an example distancesof training and test samples with person 15 used as reference. It turns out thatthe distance to the reference view is clearly not su�cient to detect impostors.
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Fig. 4. Plot of distances for person (or class) 15. The distance of the grids of di�erentkind of images, namely impostors in the training and the test set, members of the classin the training and test set, are shown. If one uses the minimal distance on the trainingimpostors as a threshold for the decision, some members of the class in the trainingand test set are misclassi�ed if the residual matching error is used (Left), whereas allmembers of the class are correctly classi�ed with the local discriminants (Right).A representation of discriminant values for the same person is also shown inthe same �gure. Now the discrimination of impostors is much more powerful.One can notice that there seems to be some over-training, as the discriminationmeasure is almost zero for all members of the considered class in the trainingset, and signi�cantly larger for images of the same class in the test set, while12



remaining smaller than the threshold. This is due to the small number of trainingsamples for each person in the database.At that point, the discriminant values in the [0;1[ interval are normalisedto the [0; 1] interval, so that they can be combined with or compared to otherveri�cation modalities like speech [13]. As an illustration of the usefulness of thediscriminant measure over all classes, we show the ROC for the residual matchingerror (RME) and the local discriminants (LD) in Figure 5. Such curves reectthe performance of a given solution averaged on all classes. The points on theROC were obtained by scaling the minimum threshold displayed in Figure 4with a varying factor. Clearly, the LD outperforms the RME everywhere. At thethreshold value 0.5, the false alarm rate is 6.8% and the false acceptance rate is3.6%.
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Fig. 5. Experimental ROC curve for the residual matching error and the local discrim-inants in a log-log scale. Results were obtained with � = 2.Figure 6 shows the LD measures for a particular person, revealing whichnodes have little relevance for discrimination. The LD approach provides an au-tomatic way of suppressing the nodes which do not contribute to authentication.Evaluation of Elasticity Signi�cance In order to assess the e�ectiveness ofgrid elasticity, we compare an elastic and a non-elastic graph matching proce-dure. The non-elastic graph matching is obtained by skipping the second step ofthe matching procedure described in Section 4.1, which is equivalent to choosinga very large � in (7). A completely \plastic" grid is obtained with � = 0: as thesecond term vanishes, each grid node is free to move in the image. By runningthe simulations according to the expert protocol of Section 3.2 with several val-ues of �, it is possible to assess the usefulness of the elastic step, and also tostudy the tolerance of the discriminant approach with respect to the rigidity of13
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Fig. 6. LD measures at each node, for three resolutions. The lowest resolution is shownleft, the highest resolution is shown right.the grid. To the best of our knowledge no such quantitative analysis of � hasbeen documented before. For preventing any convergence problems at low valuesof �, the number of iterations on the elastic matching was limited to 100.Figure 7 shows the total error rate de�ned by TE=FA+FR, for the rigidmatching and the elastic graph matching, for both types of discriminant mea-sures. Clearly, the presence of the local discrimination has a larger inuence onthe results than the elastic deformation.
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Fig. 7. Total error rates according to the threshold for the rigid matching and theelastic graph matching, with � = 2.Results at the 0:5 threshold are shown for several values of � in Table 1. TheEqual Error Rate (EER), de�ned as the point where FA = FR, is also shown.There is a transition from elastic to rigid matching. The local discrimination isable to provide almost constant results for � between 0.5 and 3.0. For largervalues of �, the performance degrades. The elastic graph matching improved therigid graph matching, which can be observed by inspecting Figure 7. Table 114



shows that the EER is improved from 14% down to 11%. However, combiningthe rigid graph matching with local discriminants is better than elastic graphmatching. Not surprisingly, combining the elastic deformation with local dis-crimination yielded the best results.� FR FA EER1 29.7 2.1 14.410.0 26.3 2.2 12.05.0 25 2.3 11.94.0 22.9 2.5 12.13.0 22.9 2.4 12.32.0 22.3 2.2 11.81.0 21.6 2.3 11.20.5 21.6 2.0 10.80.0 24.3 1.6 11.6
� FR FA EER1 13.3 3.7 8.510.0 11.1 3.6 7.35.0 10.7 3.5 8.44.0 11.3 3.6 9.23.0 6.9 3.6 6.52.0 6.8 3.6 6.11.0 7.1 3.9 5.40.5 6.8 4.3 6.20.0 9.4 4.0 6.0Table 1. Error rates at the 0.5 threshold and Equal Error Rates. (a) with residualmatching error as dissimilarity measure, (b) with local discriminants. The rigid casecorresponds to a very large �, denoted here by � = 1. The equal error rates areobtained by interpolation.As a conclusion, it has been shown that a small degree of elasticity providesan improvement of the performance. The behaviour remains constant over acertain range of �, but from a certain rigidity on, the performance degrades.4.5 Eye Detection by Saccadic Search for NormalisationIt is known that, if face images are normalised, the authentication performanceof the matching system is improved. Normalising the ocular positions is such aprocedure which can be implemented in an active vision based face authentica-tion. Here we suggest to detect the eye positions of a person by using the Gaborresponses dynamically. We use a rigid graph composed of nodes on concentric cir-cles obtained by log polar mapping as in Figure 8. As the procedure is not personspeci�c it can also be used in identi�cation applications. The performance maybe of course improved if person speci�c eye models are used. However, the faceexpert we described above functioned without eye normalisation on the M2VTSdatabase. The eye normalisation technique suggested below is not intended fora database in which the person is already in the central part of the image andhas approximately the correct size, but rather a dynamic environment where thecamera is active in order to get the best takes of a face.Saccadic Search At the beginning of the search, the retinal sampling grid isplaced at a random position on the image and the corresponding set of Gabor15



features at grid nodes, represented by the set G0, is extracted. Each vector in G0,after division by its Euclidean norm, is subsequently matched against a referencevector eav. In order to construct the latter, the average Gabor responses from thecentre of the right and left eye of six persons are computed. These two standardvector responses are then geometrically averaged component-wise so that eavcaptures the features which are common to the right and the left eye. The pointof the grid for which the Euclidean distance from eav is minimal is selected asthe target for the next saccade. The search is terminated when saccades becomeshort, here shorter than 1=6 of the sampling grid's outer radius. If no saccadetarget whose distance from eav is reasonably low can be found (which can be thecase if the search starting point happens to fall in a blank region of the image),the search is restarted from a random position.The Eye Model The a priori knowledge about the appearance of the left andright eyes of the generic person is respectively encoded into a left eye model anda right eye model. The models are constructed from the sets L = Sp �p andR = Sq �q of Gabor features obtained by placing the retinal sampling grid oneither of the eyes (Figure 8) and computing the Gabor responses �p at each ofits points.

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140Fig. 8. The retinal sampling grid placed on a person's right eye for model creation.The features in L and R are then rearranged in a collection of matricesM = fMr!gr! so that each one of the Mr! contains the responses for a �xed Ga-bor frequency radius ! and a given spatial circle with radius r of the samplinggrid. The rows and columns of each Mr! therefore correspond to the varia-tion of the angular coordinates in the spatial and frequency domains. Matri-ces Mr! are then normalised separately with respect to the norm de�ned byjMr!j = pTrace(Mtr!Mr!), which is equivalent to the Euclidean norm if Mr!16



is interpreted as a vector. All Gabor features from a single frequency channel !belong to the same matrix Mr!. Since each frequency channel is characterisedby a speci�c bandwidth which is common to all the orientations, normalisationtakes care of the variation of �lter bandwidths across the frequency channels.Also, by grouping together all the points of the sampling grid circle of radius rin a single Mr! and then normalising, one makes sure that illumination changesare compensated for.The eye model for the left eye, L, is computed by combining the collections ofmatrices Mi obtained by placing the grid manually on the left eye of six personsaccording to the relationL = fLr!gr! = � PiMir!jPiMir!j�r!The same procedure is applied to obtain the eye model for the right eye.Matching of the retinal grid samples I extracted from an image with themodel is performed (e.g. in the case of a left eye) by minimising the value of thefunction d(I; L) =Pr! jIr! � Lr!j.Re�ning the Search After the saccadic phase of the search has converged tothe target pattern, the Gabor responses in the points currently \viewed" by thegrid are compared with both the left and the right eye models described in thepreceding section. According to the model which obtains the best result, thecandidate eye is assumed to be a left or a right eye. The appropriate model isthen selected and the exact position of the local minimum is determined. If theresulting displacement is larger than a few pixels the saccadic search is restartedfrom a random position.Experiments have shown that the saccadic search may detect some erroneouslocal minima (e.g. the corners of the mouth, ear-rings or details in the hair). Inorder to discriminate such fake targets, the di�erence is computed between thecandidate's distance from the attributed eye model and its distance from thealternate model. The ratio of this di�erence to the minimum distance, which wecall the asymmetry, measures the amount to which the chirality of the detectedfeature contributes to the match. In our experiments, the asymmetry alwaysturned out to be grater than 0.1 for correct matches, while it generally droppedof one or two orders of magnitude in the case of spurious identi�cations. Theerrors thus detected are treated by restarting the search from a random position.Looking for the Other Eye After localisation of one eye, the system performsa saccade in the presumed direction of the other eye. Normal saccadic search isthen performed until an eye is found. Due to scale di�erences between images,the initial saccade may not turn out to be long enough to prevent the systemfrom �nding again the same eye. In this case, further attempts are performedwith an increasing starting distance from the known eye until the other eye isfound. In case the search re�nement detects a low asymmetry target, search is17



restarted with a random o�set. If this condition persists for several attempts,it is assumed that the position of the �rst eye has been incorrectly assignedand eye detection is restarted from scratch. Although the assumption that facesare presented in an upright orientation is used to speed up the detection of thesecond eye, no strict constraint is imposed on its position relative to the �rst.Therefore, detection remains robust also in the case of subjects having their headtilted to one side.Experimental Results The algorithm has been tested using a Gabor decom-position rosette consisting of six texture orientation sectors and �ve frequencymagnitude octaves, ranging from �16 to �. The retinal sampling grid employedhad 5 rings and 16 rays, with the ring radii being distributed between �min = 3and �max = 30 pixels.
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Fig. 9. The + and � signs denote the best match with the right and left eye modelsrespectively. Numbers identify successive starting points for saccades. Eye detectionfor the left picture required 51 �xations. Note how saccadic search 1 was considereduninteresting and therefore discarded. A random restart (2) then lead to detection ofthe left eye, after which saccadic search resumed (3) near the location of the right eye.In the case of the right picture, information from the outline of the orbit allows eyedetection even if the person's eyes are shut. During this trial the centre of the samplinggrid explored 99 pixels and 14 targets were rejected after comparison with the eyemodels.Our test set consists of forty takes of twenty persons from the M2VTSdatabase. The image resolution is 143 � 175 pixels. Di�erences between thetakes of the same persons consist in tan changes, haircut, makeup, eyelid posi-tion, head position (heads are often slightly rotated) and slight scale changes.Several persons in the database wear eyeglasses.Single takes from six persons were used to extract the left and the righteye models. Repeated testing was then performed on the whole set without anymismatch being found. Information obtained from the outline of the orbit al-18



lows correct detection of the features even when the subject's eyes are closed(Figure 9). In our trials we found the median of the number of �xation pointsto be 49 for the detection of both eyes, that is to say that the centre of theretinal sampling grid explores 0:2% of the image pixels. The number of �xationsis considerably increased (typically 100) for subjects wearing glasses with strongreections or having their eyes shut. This is mainly due to the fact that sincethe algorithm knows nothing about facial features other than the eyes, no al-ternative cues can be used to infer their spatial position when their visibility islow. Nevertheless, detection is always correctly accomplished at the end. How-ever, the results are indicative. The performance of the method should be testedusing an active camera setup in the future.5 Speech Expert5.1 Feature ExtractionOne of the earliest applications of speech features as biometrics is forensics. Thephysical and behavioural phenomena which help making the speech so personalinclude, the characteristics of the vocal tract, the shape of the oral cavity, thenerve signals, and muscle dynamics. The interplay and the exact role of thedi�erent elements inuencing the characteristics of the speech is too complex tobe identi�ed through the resulting one dimensional signal, the voice. However,many personal characteristics are possible to capture in the local power spectraof this signal.The Linear Prediction Coe�cients, (LPC) as derived from the Cepstruminformation, is the local spectral information which is most frequently utilisedin speech processing in general and speaker authentication in particular. TheLPCs, their �rst and second order time derivative approximations (�rst andsecond deltas) are commonly used together as a feature vector describing thecharacteristics of speech, in typically 10 ms of partly overlapping time inter-vals, [22,17].5.2 Text Dependent Speaker AuthenticationThe techniques described here de�ne the second processing step of a speechexpert. As our speech expert, an implementation of the work in [18], uses thefusion of decisions coming from three matching algorithms to deliver a �nalopinion, we present these below. The �nal combined graded opinion which isobtained by weighting the individual decisions with the distance to the decisionthreshold (used in decision making of each method) for each client. The LPCsare used as feature vectors in all three methods. The ROC curves of the speechexpert alone is given by Figure 10.Dynamic Time Warping This is a template matching technique which hasmany similarities with our face authenticator technique in that the reference19
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Fig. 10. The total error rates of speech modality as compared to face modality.feature vector sequence is warped (geometrically distorted) towards the testsequence and a scalar product is performed between the two. The time warpingattempts to align the test and the reference speech features in that the changingspeed with which the speech is uttered, is normalised and the feature vectors arepossible to compare with each other after the warping, [24].Sphericity The reference LPC sequence xk de�nes the covariance matrixX = 1M MXi=1 xixti (11)where M is the total number of the local analysis intervals. Similarly the testLPC sequence covariance matrix, Y is obtained. If the dimension of the X ism�m the sphericity measure is de�ned as�(X;Y ) = log m�1 trace(Y X�1)m(trace(XY �1))�1 (12)The larger the sphericity measure between two vectors is, the more likely itis that they represent two di�erent speakers [7].Hidden Markov Models, HMM HMMs have been used to model the timeseries. A major use of HMMs is to build models of sub-parts of speech, suchas phonemes, or words, see [22] for a tutorial. Here we used text dependentspeaker authentication by using the digits f0::9g. One way of exploiting HMMsin speaker veri�cation consists in creating one set of models for the client andone (small) set of models for all impostors (world model), [23]. The two sets of20



models contain the HMM models of the digits, as uttered by a client and asuttered by the world. A decision is made by computingarg max!2fCL, IMgfP (!jO)g (13)where O is the observed speech (feature vector), and CL and IM represent clientand impostor respectively, by using Bayes rule P (!jO) / P (Oj!). The latterdistribution, P (Oj!) is modelled by replacing ! with M , a Markov model ofthe uttered word (by a client or an impostor) ass P (Oj!) / P (OjM). This isin turn modelled as a Markov chain with unknown states (the number of statesare known), unknown transition probabilities between the states, and a modelof the symbol probability distribution for each state. Computable estimations ofP (OjM) are obtained through training which uses the well established Viterbialgorithm and the Baum-Welch re-estimation for doing so. The parameters ofthe world model is speaker independent. In our case the client set consisted ofthe speech takes of the M2VTS data-base, [14], whereas the world model wascomputed by a separate database consisting of 300 occurrences of each digit(uttered by 500 persons), [18]. Furthermore, the number of states of the digitswere determined by allocating each phoneme one state, and the model of thesymbol probabilities was assumed to consist of one Gaussian per state. All digitshad a left-right structure as state transition model.6 Opinion Fusion by SupervisorA more extensive presentation of the mathematical background of the model weused can be found in Big�un [3,2].Basics of the Supervisor Algorithm We perform the following steps1. (Supervisor Training) Estimate the bias parameters of each expert, i.e. fMi; Vi; �ig,according to (14) Mi = Pnj=1 zij�2ijPnj=1 1�2ij and Vi = 1Pnj 1�2ij (14)by using a training set i.e. xij , yj , and pij with j up to n. The bias parameterswill be computed for each expert by using all available persons in the trainingset. �2ij are computed according to (15), (16).��2ij = �ip2ij = (Gi �Di)n� 3 � 1p2ij (15)Gi = nXj=1 z2ijsij! and Di = 0@ nXj=1�zijsij�1A20@ nXj=1� 1sij �1A�1 (16)21



2. (Authentication Phase) At this step, the supervisor is operational, meaningthat the time instant is always n + 1 and that the supervisor has access toexpert opinions xi;n+1, and pi;n+1, but not access to the true authentica-tion scores, yn+1. The expert opinions are normalised yieldingM 0, and V 0according to (17).M 0i = xi;n+1 +Mi and V 0i = Vi + �2i;n+1: (17)M 00 and/or V 00 are computed according to (18) (and are ready to be thresh-olded to yield a de�nite decision).M 00 = mPi=1 M 0iV 0imPi=1 1V 0i and V 00 = mXi=1 1V 0i (18)�2i;n+1's are computed according to (15).Score TransformationDepending on the algorithms they use, the scores of the experts, Xij , may ormay not be dimensionless (scaled) or in the correct range i.e. [�1;1]. Theprime \0" on X and Y variables represent these variables before transformation.For our purposes, the transformationXij = log Xij 01�X 0ij (19)which is also known as the \odds of X 0ij", will be used to map the scores in [0; 1]to [�1;1].Fusion Experiments In Table 2 we present the minimum total error rates ofthe speech and the face modalities individually, the Bayesian supervisor, andthe plain mean of the scores of the face and speech experts, as an alternativesupervisor. The test followed the Supervisor Test Protocol described earlier. TheFA and FR curves of the Bayesian Supervisor are much smaller than those cor-responding to the Mean Supervisor, Figure 11. Furthermore, the minimum totalerror rate for the Bayesian supervisor is 0.006 , which should be compared tothat of the Mean Supervisor, 0.015 . However, in both cases there is a signi�cantimprovement as compared to individual modalities, Table 2. While the standardthreshold yields the lowest TE for the Bayesian supervisor, this �gure is increasesto 0.0165 for the Mean Supervisor.These and other experiments indicate that the Bayesian supervisor is moresuccessful in decision making due its capability of symmetrising the score errordensities. 22



TE1 TE2 TEbs TEms0.056 0.035 0.006 0.015Table 2. Minimum total error rates of machine supervisor opinions based on face andspeech signals. TE1 and TE2 are expert minimum total error rates of face and speechrespectively.
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Fig. 11. False Acceptance and False Rejection curves for Mean and Bayesian supervisortested on 1 speech and 1 image expert.7 ConclusionsWe have presented a framework for multi-modal person authentication, this in-cluded test procedures using a bootstraping technique, modelling the expertsand the supervisor as opinion providers rather than hard decision makers. Weimplemented a face expert based on Gabor decomposition, a speech expert usingLPCs, and a supervisor based Bayesian statistics and evaluated the individualexperts as well as the supervisor on real data.We demonstrated that a multi-modal system is capable of improving decisionsin the context of person authentication signi�cantly, by decreasing the total errorrate as much as 600 % (reaching the rate of 0.006 on a rotational test procedure)as compared to the best modality.In addition to the the general framework, our contribution has been in i)improving the Elastic Graph Matching approach by Local Discriminants, ii)quantifying the contribution of the elastic part of the matching as compared tothe rigid graph matching, iii) proposing log-polar based eye detection by saccadicmovements for image normalisations for a dynamic camera, and iv) proposingthe Bayesian Supervisor in order to improve the multi-modal decision making.23
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