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Abstract. We present an algorithm functioning as a supervisor mod-
ule in a multi expert decision making machine. It uses the Bayes theory
in order to estimate the biases of individual expert opinions. These are
then used to calibrate and conciliate expert opinions to one opinion. We
present a framework for simulating decision strategies using expert opin-
ions whose properties are easily modifiable. By using real data coming
from a person authentication system using image and speech data we
were able to confirm that the proposed supervisor improves the quality
of individual expert decisions by reaching success rates of 99.5 %.

1 Introduction

Automatic access of eligible persons (clients) to services (privileges) is becoming
common. A factor hampering the growth of these services is the weakness of
security for the clients being authentic. In order to have low false acceptance
(FA) and false rejection rates (FR) using different and preferably independent
sensors, e.g. picture, video, voice ...etc, is under consideration. Machine experts,
referred to as experts below, can deliver “opinions” about the authenticity level
of a person’s claim being a certain client. This paper addresses the issue of how
these opinions should be represented and conciled to a single opinion on the
authenticity level of the client pretentions.

Subjective assessments are a natural part of the Bayesian statistics, Bernardo
& Smith [1]. There are several papers on how to concile different expert assess-
ments, Lindley et. al. [7-9], French, [5], West [12], Winkler [13]. However, the
conciliation procedure in the current paper is built on the ideas of Bigiin [2,3].
Bigiin [2] deals with aggregation and calibration of the experts’ assessments when
independency between the assessments are assumed, while, Bigiin [3] treats the
cases when there are dependencies between the expert assessments.

In this paper we will estimate the posterior expected true authenticity score
of multi-sensor data (speech, image...etc). Or to be more precise, expected true
authenticity score of a candidate person who arrives to the system in a future
time instant, given the earlier miss-identifications (either FA or FR types) and
the experts’ authenticity scores of the candidate person. We will also estimate
the precisions of the true authenticity scores. To obtain these estimations, the



posterior density of the true authenticity scores will be used i.e., we have a model.
The basic assumption is that the logarithm of the misidentification score have a
normal distribution, given the true authenticity score. The reasons are the follow-
ing; the logarithms of the observed misidentification scores, exhibit symmetric
properties and the normal distribution is mathematically very convenient.

2 System Model

We would like to construct a system consisting of one supervisor and m experts.
An expert ¢ consists of a hardware or software module which processes signals
originating from one or more sensors in such a way that it can give graded
opinions about the authenticity of a candidate person’s being a client. A client
is someone who is known to the system and has her own privileges, e.g. accessing
to a particular office, or billing a certain account. An impostor is a person who
falsely claims to have the identity of a client. An expert delivers its opinion on
a “package” of data collected by sensors e.g. video camera, microphone, ..etc, at
a relatively short instant of time (a few seconds). Such a data package contains
the claim of an identity, and will be referred to as a shot. The supervisor does
not interfer with or has access to the computational processes of the experts.
Since the world population is the potential set of impostors, the experts are
not assumed to train on impostors, except possibly if the same impostors show
up repetitively in which case they can be considered as clients with “special”
priviliges.

Below is a list of notations we use throughout the paper.

i:  Index of the experts.i € 1---m,

j:  Index of shots (one or more per candidate), j € 1---n,n + 1. It is
equivalent to time since an expert has one shot per evaluation time
(period).

X;j: The authenticity score, i.e. the score delivered by expert ¢ on shot
j’s claim of being a certain client

s;; The variance of Z;; as estimated by expert ¢

Y; The true authenticity score of shot j’s claim being a certain client.
This variable can take only two numerical values corresponding to
“True” and “False”

Z;; The mis-identification score, that is Z;; = Y; — Xj;

The identity claim contained in a shot is assumed to be the identity of a
certain client, since they can be immediately rejected without further processing
otherwise. Although we report on when expert i is an expert of recognizing all
clients with a particular modality, it is also possible to interpret the expert ¢
as an expert of recognizing a particular client with a particular modality when



enough training shots are available. We assume that the shots 1---n are fresh
shots of the clients, i.e. the experts have trained on other shots (with other sensor
data). Shot n + 1 is the shot of a candidate which neither the experts nor the
supervisor have trained on. Therefore shot n 4+ 1 can be considered to belong to
a future instant, or an instant when the system is in full use. Consequently we
assume that the training phase of the experts (not the supervisor’s) is already
achieved.

3 Statistical Model

An extensive presentation of the mathematical background of the model can be
found in Bigiin [2].
We denote the expected value of Z;; by b;. Assume that Z;; given b; is
normally distributed;
(Zijlb) € N(bi,0%) (1)

We assume first that the variances 01-2]- are known and that Z;; are independent

for all 4 and j. We suppose that b; has a non-informative prior distribution i.e.
b; € N(0,00). Then the posterior distribution of b; is normal with mean and

variance E" v
i=1 o2, 1
Mi= = and Vi= =7t (2)
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respectively. Since (Z; n+1|b;) is normally distributed, (1), the predictive distri-
bution of Z; 41 given 21, 2i2, - - - Zin is also normal with mean M; and variance
Vi +U;-"7n 41- f we know X; 5,1 the predictive distribution of Y; ;41 is also normal;

(Y1 l2i1s 2i2s oo Zins Tiny1) € N(M;, V) (3)
where
MZI =Zijnt+1 + M; and ‘/Z-l =Vi+ 0'1-2,”_'_1. (4)

The i:th expert’s authenticity score on a future shot will be calibrated by
means of the expected value in (2). Assume that the m independent experts are
asked to give their authenticity scores on all shots (j = 1,2,...,n,n + 1) being
the shots of a client. Then, the posterior distribution of b;, given all these scores
and the earlier identification errors, is normal;
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This is the posterior distribution of Y, 1 after having observed the assess-

ment errors of the m experts. The prior distributions of b; and Y41 are non-
informative. Since the variances are not known we have to estimate them. We
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suppose that the experts give the precisions correctly except for an individual
proportionality constant.

sij = a0} (7)
The constant a; may be thought of a factor representing over- or under-

confidence. Assume, a priori, the following non-informative joint distribution of
a; and b; :

1
flai,bi) = — (8)
Assume also that (Z;;|a;, b;, sij) € N(b;, afj) are independent for all ¢ and j. The
posterior distribution of a; may now be computed as the marginal distribution
of f(as,bil(2i1,8i1); -5 (Zin, Sin))
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Since (07;si;) = 2 we have:
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quality of score assumed to be provided by the expert on its own score z;;.

Consequently we use 53; = E(03;]s:;)
2 & _ (Gz - D,) 1

i
Py n—3 Dy

where o; = and n > 3 The s;; is given by s;; = p%, where p;; is the
i

(12)
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in (2) and (4) instead of o3;.

Basics of the supervisor algorithm

1. (Supervisor Training) Estimate the bias parameters of each expert, i.e. {M;, Vi, a;},
by using a training set i.e. ;;, y;, and p;; with j up ton, (2). afj is computed
according to (12), and (10).

2. (Authentication Phase) At this step, the supervisor is operational, meaning
that the time instant is aelways n + 1 and that the supervisor has access to
expert opinions x; n41, and p; n41, but not access to the true authentication
scores, Yn+1- The expert opinions are normalized yielding M’, and V', (4).

07 11 is computed according to (12). M" and/or V" are computed according
to (6) (and are ready to be thresholded to yield a definite decision).



Score transformation

Depending on the algorithms used, the scores of the experts, X;;, may or may

not be dimensionless (scaled) or in the correct range i.e. [—oc0, 0c]. Below, the

prime on X and Y variables represent these variables before transformation.
For our purposes, the transformation

!

Xi; = log —4 13
ij = ogm (13)
ij

which is also known as the “odds of Xzfj”, will be used to map to scores to
[-00,00]. It can be shown that the formulas (2,4,6,11) still hold when X;; is
substituted by X'ij, and Y; by Y7;. The only difference is in the conditional
distribution of Y, 1, (5), which is log normal with the expected value exp(M" +
V" /2) and variance exp(2M" 4 2V") —exp(2M" + V).

Finding the expectation value of the Y’ given the knowledge of the expert
estimations of it, is what would be ideal for applications. However, obtaining an
analytical expression of it from the expected values and variances above is, to the
best knowledge of the authors, not possible. Instead we have used bs,+1 = M"
where bs,41 represents an authenticity score of a candidate person’s being client
in the future, given the past experience from the experts. We do not make use
of V" in our supervisor currently.

4 Experiments

Even when the experts are machine components, it is quite expensive to obtain a
multitude of expert opinions. We have therefore conducted one set of experiments
based on simulated expert opinions, and one set of experiments using true expert
scores. The purpose of the first set of experiments was to conclude on the general
performance of the supervisors, to different settings of parameters such as to the
the number of experts, the skills of experts, the size of the training set, ...etc.
The second set of experiments, which obviously had to be more limited, had the
purpose of checking the validity of the conclusions as predicted by simulations.
Although the presented theory is capable of making use of the quality of the
scores, it was not possible to obtain these, such that they consistently fit to
our interpretation, from our two real experts. We have therefore, used the same
quality of score for all shots, simulated or real. This has the effect that the
supervisor calibrates the experts by using their historical success alone.

In the case of simulations the scores of an expert i, X;;, were drawn from
two uniform distributions defined on the open intervals (0, I;), (C;,1). The first
interval was used when the identity claim of the candidate was truly false, i.e.
Y/ = 0 and the second interval was used when the claim was authentic, ¥} = 1.
The Yj”s were picked at random to be either 0 or 1, here with probabilities 0.8
and 0.2 respectively. This is because in real conditions, the experts have access
to a limited number of shots of the same person which results in that the number



of clients is smaller than the number of impostors, both for training and test
sets. In order to simulate the different skills of experts, I; and C; were varied.
We imposed the conditions 0.5 < I; < 1 and 0 < C; < 0.5, the non-fulfillment of
which would yield perfect experts. We picked I; and C; at random (uniformly)
from the intervals (0.5,0.75) and (0.25,0.5) for systems with many experts. Since
our expert scores are in the interval [0,1] we utilized the odds-transformation.
In practice, in order to avoid singularities, we had to force our X ;’s not to come
very close to the interval ends that is we forced them to be in [¢, 1 — €] where we
have chosen € ~ exp(—6) yielding the odds -6, and 6 for 0 and 1. Consequently,
when applying the odds-transformation to Yj’ ’s, we used € and 1 — ¢ instead of
0 and 1. (In simulations, the results did not show a change with various small
choices of €.)

It is crucial to observe that if Y; = —6, 2;; = Y; — X;; is always negative.
Likewise z;; is always positive if Y; = 6. This means that we do not have a mono-
modal density but a bimodal density for z;; if we interpret the scores of experts
straight forwardly. To obtain a mono modal density, we build two supervisors,
one which is specialized on impostors and one specialized on clients. That is
step 1 of the algorithm is applied to the impostors and the clients of the training
set separetaly, yielding two bias parameter sets, { Mf, V¢, a¢} and { M}, VI al}.
The step 2 is then applied twice for each of these parameters. The result of the
two supervisors can be combined further by using another supervisor, which
does not need to be a complex one. In our case we chose the response of the
supervisor which came closest to its goal, -6 or 6 as the final M"¢. That is, if

6 — M| —|—6—M[|>e (14)

M" = M" otherwise M" = M"¢. We used €2 = 0 but all e; € [-0.1,0] gave
no significant change of the results. The false acceptance rates of our simulated
experts, given by F'A; = I; — 0.5, and those of false rejection, given by FR; =
0.5 — C}, are varied. Had our experts’ opinions been derived from real experts,
we would not be able to have this flexibility.

We will work with the histograms of z such as

b
zns—i-l = Ynt1 — bsnp1

where the bs,,11 is the output of our Bayesian supervisor, which is the final M"
for a new claim, n + 1.

For all experiments, the number of shots in the training set, i.e. the pairs,
Y;, X, ;, was n = 2664 and the number of shots in the test set, i.e. the pairs
Yot+1, Xint1, was n' = 7992. As a comparison we also simulated a simple super-
visor with its scores consisting of estimates of the mean values of expert scores,
msyy1 = = Yiey X{ ,y1- The msy iy used subsequently is the odds of msy 1
computed according to (13), for the sake of comparisons.

bsnt1 yielded consistently better success rates, SR=1-(FA+FR), than msy41.
That is few experts (e.g. 2), or many experts, (4 and more), were always con-
ciled better by bs,4+1 than msy,y1. In case of equally skilled experts ms;,41



[SRi [ SR> |SR3| SR4[SRus[SRms| | SR1 | SR> | SR3 | SR4 [SRts|SRms|
0.814|0.816|0.819|0.825| 1.00 | 0.974 0.664|0.821| - - 10.985/0.815
0.649(0.952(0.640(0.608(0.991| 0.801 0.763(0.732(0.701]0.681{0.999| 0.872
Table 1. Success rate simulations. SR; - - - SR4 are expert success rates. Left: Row 1,
equal skills; Row 2, random skills. Right: Row 1, 2 experts case; Row 2, 4 experts.

was outperforming significantly the individual experts. The improvement of-
fered by ms,4+1 was in the average marginal when the experts had unequal
skills, meaning that often it performed worse than the best expert. A typical
decision result, at the threshold T = 0 for bs and ms, illustrating these are given
by Table 1 in which 4 simulated expert opinions were used. We note that by
using a threshold 7" one can decide that if for example bs,,+1 < T then the per-
son is an impostor, client otherwise. Since it represents a realistic scenario, we
will report in a more detailed fashion about the case: Randomly skilled experts,
FA;+ FR; 2#FAy + FRy i # i, with unsymmetric skills FA; # FR;.

Figure 1 illustrates the density curve (estimated by a 512 bin histogram) of
Z = Yn+1 — MSpt1 Of a simulation. The larger mass around -6 corresponds to
the over representation of impostors due to our deliberate choice. The bimodal
nature of the errors are clearly visible. The corresponding figure for the Bayesian
supervisor is given by Figure 1. In both cases 2 experts were employed. When
4 experts were utilized the density curves in Figure 2 correspond to Z7%¢, =
Ynt1 — MSpt1, and Z,blﬂ_l = Ynt1 — bspt1- In all 4 simulations expert skills were
random. The success rates corresponding to these 4 figures, at T' = 0, are given
by Table 1 These results suggest that an increase in the number of experts, even
if the experts are not highly skillful, improves the supervisor decisions. While
the improvement is consistently significant in the case of Bayesian estimator, it
is not significant when the mean supervisor has experts with high variations in
their skills.

Finally in Figure 3 we present the miss-identification densities of the Mean
Value and the Bayesian supervisor when scores of two real machine modules
are utilized. The number of shots in the training and test sets were the same
as before. The machine modules were experts in authentication of frontal faces
and speech. The Bayesian supervisor was trained on scores obtained by testing
the image and the speech experts on the M2VTS database, see Pigeon and
Vandendorpe [11]. The algorithms constituting their expertise are described in
Duc et. al., [4]. The success rates at T' = 0 are given by the table in Figure 4.
As the bimodal nature of z curves indicates, the experts must be equally and
highly skillful in order to guarantee a good Mean Value supervisor performance
which is not necessary for the Bayesian supervisor.

In real experts situations the individual experts’ skills are not easy to mea-
sure resulting in that the decision threshold is varied yielding FR, and FA curves.
Normally at the expert level, by using a threshold T', the inequality X; p41 > T
can be turned to a decision of accept when fulfilled, a decision of reject other-
wise. We apply the same principle to obtain a supervisor decision and rewrite the



inequality by subtracting it from yn 1 as Z; n+1 < yn41 — 7. The supervisor de-
cision represents an acceptance decision when this inequality is fulfilled, rejection
otherwise. Therefore an acceptance decision is a false acceptance when the in-
equality is fulfilled for y,,1; = —6. Likewise a rejection decision represents a false
rejection when the inequality is not fulfilled for y,41 = 6,i.e. Z; n41 > Yny1 — 7.
Consequently, the left masses excluded by a moving window of size 12 applied
to a z histogram represents the values of an F'A curve of a supervisor (or an ex-
pert). Likewise, the excluded right masses represent the values of the F'R curve.
The corresponding FA and FR curves for both ms and bs supervisor are given
by Figure 4. The curves of the two supervisors had originally different T scales
(z-axis). In order to allow for comparison the T scale of the mean supervisor is
mapped linearly so that its minimum and maximum coincide with those of the
Bayesian supervisor. It can be observed that the Bayesian supervisor has a larger
interval of threshold where both FA and FR are extremely small, ~ 0.005, as
compared to the Mean Value supervisor. This property is important for robust
thresholds.

These and other experiments indicate that the Bayesian supervisor is more
successful in decision making due its capability of symmetrizing the miss-identification
densities.
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Fig. 1. The miss-identification density of the Mean Value supervisor (Left), and the
Bayesian supervisor (Right) in the case of 2 unequally skilled experts

5 Conclusions

We calibrated the experts’ authenticity scores of a future instant about a client
only by means of the earlier made identification errors. But we may even calibrate
scores about a particular client. This work is straightforward. In this paper we
treated the case where the assumption of independency was made about the
identification errors. It is possible to omit this assumption with some a priori
knowledge about the covariance matrices, [3].
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It has proven to be non-trivial to request from expert designers to provide ex-
perts delivering a consistent quality of score. Since expert designers had different
comprehensions of what the quality of scores should be like, it was not possible
to evaluate the performance had we chosen to simulate them. Independently,
however, the use of other rules than the one in (14) for merging the impostor
versus client predictions could be investigated.

We have presented a Bayesian model in order to construct a supervisor con-
ciliating machine experts. We verified that the score fusion we propose improves
the decision making by using simulated as well as real data.

We presented a framework for simulating expert decisions and shown that it
approximates the real conditions reasonably well.
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