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Abstract

Considering the Gabor spectral decomposition as a model of the image representation
in the striate cortex, we can try to exploit this representation for texture segmentation
purposes. However, the dimensionality of this representation requires a compaction which
makes a segmentation feasable in practice.

Here we use a Gabor filter set with 5 frequency and 6 orientation bands, resulting in
30 complex output images from which the phase information is discarded - as a result,
we have a 4D local power spectrum with dimensions x, y, f, and o. This power spectrum
is compacted by a) applying a Gaussian model with 5 free parameters, or b) computing
only very few central moments. These reduced representations allow for the application
of unsupervised segmentation algorithms.

The experimental results obtained are quite good. However, there seems to exist a
basic problem which is related to the sensitivity of model parameters to the mixture of
two local power spectra across a texture boundary. This leads to separate regions at the
boundaries quite often.

Introduction

This contribution is not concerned with the exact spectral decomposition applied. A
Gabor spectral decomposition is only one of many possibilities, including wavelets, prolate
spheroidal functions, or Hermite polynomials. All these schemes allow to model the image
representation in the cortical hypercolumns, that is a frequency and orientation selective
decomposition. The Gabor representation applied here is based on a filter set with polar
separable Gaussian transfer functions, see Fig. 1. We apply 5 frequency bands and 6
orientation bands. If the image size is 256x256 pixels, this leads to a representation with
size 256x256x5x6x2. The factor of two is due to the fact that the filters are complex.
Since the role of the local phase spectrum is rather obscure until now, we compute the
local power spectrum only (size 256x256x5x6).

The real problem addressed here is how to exploit all this information. This is not an
easy problem. One might apply prior knowledge of course, which leads to what is called
a supervised segmentation. Knowing the frequency content of the textures in an image
may lead to a straightforward filter selection, thereby reducing the image representation
by discarding the irrelevant filters. An alternative and still supervised segmentation can
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Figure 1: Filter configuration in the spatial spectral domain. In practice we use 5 ire-
quency bands and 6 orientations.

be achieved if we know what textures we have to deal with, but applying the complete
filter set. This requires the training of a classifier, like a minimum distance one. Figure
2 shows a test image (left) with texture patches taken from aerial images, together with
the result of a minimum distance classification. As can be seen, the centers of all patches
have been classified correctly, but the varying filter results at the texture boundaries lead
to many subregions. This effect is caused by utilizing the Euclidian distance from the
computed class centroids in Gabor space.

Figure 2: Test image with 7 different textures in 16 patches (left), and a minimum distance
classification (right).

In order to circumvent this problem we have to apply a segmentation algorithm to
the Gabor representation. Such an algorithm should be able to extract the homogeneous
regions on the basis of local texture feature homogeneity, detecting important seed regions
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and growing these without leaving too many small subregions (although this heavily
depends on the homogeneity of the textures - the test images considered here are extremely
difficult to segment). In this study we apply a quadtree based segmentation algorithm.
In this algorithm a centroid clustering is performed at a fixed level in the tree. The
clusters found are applied to classify the textures at that tree level, and the boundaries
are projected down, utilizing a boundary refinement procedure at each step going down.
This method is rather unsupervised and therefore applicable in cases that we don’t have
prior information about an image. However, this method cannot directly be applied to
the Gabor local power spectrum, because a clustering in a 30 dimensional feature space
is impossible (it can be done of course but it will give nonsense). The solutions to this
dimensionality problem explored here are based on a dimensionality reduction, that is
reducing the number of texture features from 30 to 3 or 5, say, which allows for applying
the unsupervised segmentation algorithm to the reduced feature set. This process can be
seen as a coding of the local power spectrum by means of very few parameters, see Fig.
3. Two codes have been tested and will be compared below: modelling the local power
spectrum using a Gaussian with 5 parameters, and computing central moments of the
local power spectrum, in which case often 3 uncorrelated moments can be selected.
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Figure 3: Schematic representation of the first functional layers Ly 5 .. in the visual system,
mainly characterized by linear weighted summation (}). A hypercolumn (HC) can be seen
as a 2D array of filter outputs, organised in frequency and orientation. The information in
this array is modelled, the model parameters being forwarded to a semantic representation

layer (SR).




The Gaussian model

The local power spectrum P(z,y, f,0) can be seen as a 4D array. At each position we
have a subarray P'(f,o0), giving the local spectrum in the frequency { and orientation
o. This subarray mimicks a cortical hypercolumn (Fig. 3). We now see this array as a
2D rectangular array. Hence, instead of using the f; and f, filter coordinates (Fig. 1)
we use a log(f,) — ¢ coordinate system. The filter results are thus represented in an
equidistant 2D lattice. The local power spectrum can be seen as values on a square grid,
spanning a surface. This surface can be modelled by applying a 2D Gaussian with only
5 free parameters: an amplitude, two positions (one in the frequency, the other in the
orientation), and two standard deviations. The parameters can be computed by means
of a least-squares fit. An analysis has shown that the local power spectrum is indeed
unimodal for most (real) textures. However, the local power spectrum is periodic in the
orientation (filters with orientations ¢, and @on in Fig. 1 are neighbours). Hence, the
power spectrum array is in fact cylindrical, and the Gaussian should be centered around
the maximum in the array. The 5 computed model parameters can be used as texture
features and the unsupervised segmentation algorithm can be directly applied to these.
The results for two test images are shown in Fig. 4. As can be seen, some textures have
not been discriminated and there are still many subregions. However, many boundaries
and (sub)regions are perceptually significant. Recall that these test images are extremely
difficult to segment, we applied many different texture feature extraction methods to
these images, giving very disappointing results even if feature subsets are selected by
visual inspection (supervised!), whereas the results shown in Fig. 4 were obtained in a
completely unsupervised way.

Central moments

Central moments are wellknown in mechanics and statistics, so we can skip the definition
here. These moments can be directly computed from the local power spectrum, but
different configurations can be selected. Moments can be computed in the log(fi) — ¢
lattice as used with the Gaussian model, but gave inferior results. Alternatively, moments
can be computed taking the actual filter positions (fz, fy), assuming a Hermitian spectrum
(making the power spectrum symmetric with respect to the origin), or we can apply a
double angle representation, which solves the 180 degree orientation ambiguity. However,
the best results were obtained by applying exactly the same representation as shown in
Fig. 1, that is asymmetric and in (fs, fy) coordinates. From the moments computed
we take only three which are least correlated (this is still supervised, a profound study
is performed now). Anyhow, the results are shown in Fig. 5. For the left image all 7
texture classes have been detected, but there are many elongated misclassifications at
the boundaries. This effect is very prominent in the right image, where only 6 out of 7
textures have been identified.

Discussion

The results shown in Figs. 4 and 5 are encouraging, but refinements of the methods are
required. Although most textures have been detected and the quality of the boundaries




the local power spectrum.

is very good in quite some cases, there are often elongated regions between two textures.
This can be seen in all results, but best in the right part of Fig. 5. This effect is similar
to the misclassifications which result from applying a minimum distance classifier (Fig.
2). However, this effect is here caused by the sensitivity of certain parameters to the
mixture of two local power spectra at a boundary between two textures. This problem is
probably a fundamental one, and inherently connected to the modelling of the local power
spectrum. More work will be necessary to obtain more insight into this phenomenon and
to improve the results. Since we are only working on the algorithmic level until now,
practical schemes of neural net like structures have to be elaborated.




Figure 5: Two test images segmented by computing central moments of the local power
spectrum.




