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ABSTRACT 
A layered motion estimation scheme using fuzzy clustering 
is introduced in this paper. Once motion estimation is per- 
formed, a label smoothing is applied by using a modified 
objective function that  takes into account spatial continu- 
ity. This allows to  suppress noisy classes scattered over the 
whole image. 

1. INTRODUCTION 

Motion Estimation is a very important issue in image pro- 
cessing, not only as motion compensation for coding purpo- 
ses, but also for analysis purposes, where motion detection 
and motion-based segmentation constitute important clues 
for surveillance and active vision applications. 

Recently, model-based motion estimation techniques ha- 
ve gained interest against local motion estimation tech- 
niques [l, 21, because they provide a direct interpretation of 
the motion in terms of the chosen model, and they are more 
robust with respect t o  noise. Of course, they suffer other 
weaknesses: the determination of an optimal model comple- 
xity is not an easy task and is conditioned by convergence 
properties of algorithms and by the type of motion that  is 
expected to  occur. Usually an affine motion is chosen as a 
compromise when perspective effects are negligible. 

Generally speaking, a motion model is intended to  des- 
cribe exactly one motion in a region which is not known a 
priori and which is large compared to  a typical neighbor- 
hood used for optical flow computation. In order to  deal 
with realistic scenes with several moving objects, it is ne- 
cessary to  determine motion parameters for each object as 
well as the regions of the image sequence where this model 
apply. These regions or objects are sometimes called luyers 

In order to  determine such regions of support and the 
motions, robust estimation has been used. Robust estima- 
tors are known to detect outliers of the regression at  the 
same time as they estimate the regression parameters. One 
takes advantage of this property by interpreting one of the 
motions as the regression to  be found, while layers from 
other motions become outliers [4]. I t  would be possible to 
find all motions by successive robust estimations on the ou- 
tliers of the previous estimations. 

Unfortunately, robust estimators are theoretically limi- 
ted to a contamination of 50% of outliers. As a consequ- 
ence, their use for motion estimation is valid only if at each 
estimation step, one motion dominates all remaining ones. 
This hypothesis is often not fulfilled. 

que that is able to  find several motions simultaneously, as 

131. 

Therefore, one would like to  develop an estimation techni- 

well as their region of support, even if none of them is do- 
minant. This technique must be robust with respect to  the 
actual number of motions, which is not known a priori. The 
aim of this contribution is t o  show that  fuzzy clustering can 
fulfill these requirements. 

2. MOTION ESTIMATION FRAMEWORK 

The  model-based motion estimation framework used here 
is based on a spatio-temporal description of motion [ 5 ,  61. 
By taking into account more than two successive images to  
do the estimation, one aims at increasing the robustness of 
the estimation. 

In this approach, an image sequence is interpreted as 
being generated by a two-dimensional pattern undergoing 
a transformation through time. The instantaneous appa- 
rent motion is actually the instantaneous transformation of 
the pattern. In order t o  find the motion, one fixes a mo- 
tion model complexity, for example translational or affine 
motion. By doing so, one restricts the search space to  a 
family of transformations that is a Lie group of transfor- 
mations. The  instantaneous transformations are expressed 
by differential operators. Each transformation in the group 
is obtained by a linear combination of p basic differential 
operators L,, 2 = 1 . . . p ,  called infinitesimal generators. 

The  motion estimation is reformulated as searching for a 
transformation that  leaves the image sequence invariant. In 
Lie theory a transformation expressed by the infinitesimal 
generator L leaves a function f invariant if and only if 

L f ( x )  = 0,  (1) 
for each x where f is defined. Here L = Er=, a z C z ,  so that 
the unknowns are actually the ut’s. As the transforma- 
tion that is looked for is determined up to  a scaling factor, 
the constraint U: = 1 is added in order to  make the 
problem completely well-posed. 

Solving equation (1) in least square sense for n points of 
interest leads to  the minimization of the following objective 
function: 

where ut’s are the elements of the p-dimensional vector a 
and ( L z f ( x ) ,  z = 1. .  . p )  are the elements of the n x p  matrix 
X representing all “features” for all points x. Equation (2)  
together with the constraint llall = 1 leads to  an eigenva- 
lue problem. The solution is given by the eigenvector of 
M = X t X  corresponding to  the smallest eigenvalue. The  
estimation can also be viewed as a hyperplane fitting thro- 
ugh the origin, in a p-dimensional “feature” space. 
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3. FUZZY C-VARIETY CLUSTERING 

The  problem now consists in determining layers whose po- 
ints should be incorporated to  the matrix X for a particular 
motion estimation or, equivalently, which weights to  assign 
to  points in case all available points are taken into account. 
We propose to  achieve it by fuzzy clustering. The fuzzy 
c-variety algorithm for a feature space with dimension p ,  
aims at  clustering points that  belong to  c h e a r  varzetaes 
V,,, namely lines ( r  = I ) ,  planes ( r  = a), or hyperplanes 
(up to  r = p - l), see Bezdek [7]. A linear variety KT of 
dimension T through point vz E RP, spanned by the linearly 
independent vectors { s , ~  , . .  . ,sir} c RP, is the set: 

KZ,(vz, S ~ I ,  ~ 2 2 , .  . . , s i r )  = 
r 

(3)  
3 = 1  

The  algorithm consists in minimizing the following obje- 
ctive function: 

(4) 

with the constraint u,k  = 1, V k ;  U &  is the membership 
weight of point xk for variety KT;  m is the fuzzy exponent, 
which controls the fuzziness of the final result (the larger m, 
the fuzzier the clustering); d , k  is the distance of point Xk to  
the linear variety V,,, that  is the distance to  its orthogonal 
projection onto the variety: 

dtk = [IlXk - vz112 - ((Xk - vc, s,3))2]”2 (5) 
3 = 1  

The  minimization of the objective function is achieved by 
an iterative algorithm that  successively updates the weights 
u z k  and the linear varieties, i.e. the vectors vz ,  sZ1, .  . . , Szr.  

As the estimation of multiple motions is equivalent to  
fitting hyperplanes through the origin, one applies fuzzy c- 
variety clustering to multiple motion estimation by taking 
r = p - 1, and by constraining the variable vI to be 0 .  
The  update of the hyperplanes corresponds actually to  mo- 
tion estimations, and the update of the utk7s corresponds 
to  the determination of the layers of support, thus showing 
a similar structure as the EM algorithm used in [8]. I t  is 
important t o  note that  fuzzy algorithms can be robustified 
by adding a noise class that  is characterized by a constant 
distance to  the centroid of the class [9]. 

A hard labeling is currently achieved by attributing each 
point to  the class with maximum belongingness. As values 
of m are chosen rather close to  1 in experiments (namely 
m = 1.4 for the examples below), this decision is justified 
because in that  case, membership weights are expected to  
be close to  the hard case. 

3.1. D e t e r m i n a t i o n  of the number of m o t i o n s  

The  number of classes in clustering algorithms is itself an 
unknown parameter. Usually in fuzzy clustering, the num- 
ber of classes is evaluated by comparing cluster characte- 
ristics obtained with various values of c according to a cri- 
terion such as fuzzy classification entropy or partition co- 
efficient. As these criteria are based on the feature space 

only, they are not useful in our approach, where the spatial 
relationship of points is significant. Namely, one would like 
to  obtain compact label regions, as in real image sequences 
moving objects are expected to  be compact. 

The  approach adopted here consists in imposing a num- 
ber of classes a priori larger than the actual number of mo- 
tions. Then a smoothing operation in performed by adding 
a spatial constraint on membership weights t o  the objective 
function, while frozing the motion parameters. 

4. CONSTRAINED FUZZY C-MEANS 

In this section, we present a new algorithm that  combines 
the fuzzy c-means [7] and the Gibbs distribution [lo] for 
the classification of data  taking into account the spatial 
connectivity of images. This allows us to reduce the noise 
and eventually to  eliminate noisy classes in the classification 
result. The algorithm is based on a Maximum a posteriori 
Estimation (MAP) technique but adapted to  the fuzzy sets. 

Let us define u k  as the vector of the degree of belon- 
gingness of the k-th element of the data  set X = {XI,. . . , zn}, 
q k  represents a neighborhood system and Q,, denotes the 
provisional estimates of the true membership vectors of the 
neighbors of u k  at the current stage of the iteration. The 
problem can be formulated as follows (details can be found 
in [Ill): 

maxP(uk  I xk, 0) = maxP(uk  I x k , Q V k )  V k  (6) 

The equality holds because we assume that the image 
of membership vectors U = (u1, . . . , un} is the realization 
of a Gibbs distribution. Thus U (and 0) has the properties 
of Markov Random Fields [lo]. Using Bayes’s theorem, the 
problem can be reformulated as follows: 

m;xP(xk I uk)P(urc I fi,,) V k  (7) 

If we assume a mixture of Normal distribution for the 
posterior P(xk  I u k )  and a Gibbs distribution for the prior 
P(uk I ‘Vk) 

maximizing the logarithm of equation (7) is similar than 
minimizing the following expression 

1 
-(Xk 2 - V U k ) t n ; l ( X k  - V U k )  + PliJllQJ - Uk1I2 (10) 

3 E V k  

Vk, where V = [VI, . . . , vc] is the matrix of mean vectors, 
U N  is the covariance matrix of the noise process, p is the  
parameter of the Gibbs distribution and tc3 are weighting 
factors. The first part of equation (IO) is simply a distance 
between the object x k  and the centroids vZ weighted by 
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the vector of membership values U k .  This distance can be 
compared to  the distance x f = , ( u t k ) m l ( x k  - v,1I2 defined 
in the fuzzy c-means. The  second part of equation (10) 
is a connectivity constraint on the membership values in- 
duced by the Gibbs distribution. Note that here we chose 

Ptc3 l l Q , - ~ k ) ) ~  as the sum of the potentials for descri- 
bing piecewise constant regions, but other energy functions 
can be used [lo]. 

Following equation ( l o ) ,  the constrained fuzzy c-means 
(CFCM) can be derived by minimizing a new objective fun- 
ction J = J (U,v)  

3 E q k .  

where ( d t k ) '  = ( x k  - v , ) t A ( X k  - vz) with matrix A semi- 
positive definite. The  problem is to  minimize equation (11) 
under the constraint xf, 2111;  = 1. Although the columns 
of matrix U are not independent, we will carry on the mi- 
nimization process on each component independently, thus 
minimizing: 

This does not guaranty that  we will reach the same 
minimum as the one we would obtained by minimizing equ- 
ation (11). However, i t  allows us to  obtain a simple solu- 
tion for determining the degrees of belongingness. Follo- 
wing the same steps than the ones used for deriving the 
fuzzy c-means (see [7]), a closed form solution for updating 
the membership values can be obtained for m = 2 and is 
expressed by 

where a = ,l3 I C ~  is a constant and j E { ~ k ,  k}. The  steps 
of the CFCM are the same than the ones of the fuzzy c- 
means except that  the membership values are updated using 
equation (13). If ,!3 = 0 (no spatial constraint), equation 
(13) is simply the relation used in the fuzzy c-means for 
updating the membership values. As in the FCM, the values 
of the means are expressed by (for m = 2) 

n 

k = l  / k = l  

For m # 2,  no closed form for updating the U t k  can be 
obtained. Note also that  the index j E v k  but also j = 
I C .  This means that  we also take into account the distance 
l l f ik  - U k 1 l 2  in the minimization process. The  parameter p 
controls the degree of the spatial constrain. High values of p 
eliminates the noise but also fine details. A way to  estimate 

Found motions Actual motions 

-0.002 1.020 
0.0 
0.0 

0.010 -1.117 

Table 1: Translational motions parameters obtained on the 
image sequence in Figure 1. Except for the fifth motion, 
found motions are in good correspondence with actual mo- 
tions. 

,l3 is proposed in [11]). However, this parameter can also be 
set through experiments. The CFCM algorithm can be used 
as a clustering algorithm thus letting the mean vectors vz 
vary a t  each iterations, or it can be used as a classification 
algorithm. In this case, the mean vectors are first estimated 
(for instance using the fuzzy c-means) and stay fixed during 
the iterations of the CFCM (only the values of the U t k  are 
updated). 

Figure 1: Simultaneous motion estimation with five linear 
varieties on a synthetic sequence (translations of random 
patterns). Top left figure: image 8 of the 16-image sequ- 
ence. Top right figure: mask showing the actual regions of 
support for the motions. Bottom left figure: layers obta- 
ined by assigning each point t o  the class with the maximum 
membership (= a r g ( m a e ,  ( U z k ) ) ) .  Bottom right figure: lay- 
ers after label refinement . The black frames around bottom 
images just reflect the fact that  border points have not been 
taken into account. 
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5 .  RESULTS 6. CONCLUSION 

In this paper, a method for simultaneous estimations of 
multiple motion models and of their layers of support has 
been presented. Segmentation results based on motion lay- 
ers are encouraging. Other experiments [4] indicate that in- 
corporating intensity information improves the motion bo- 
undaries, and future work will be done in this direction. 
Another promising direction for determining the number 
of classes consists in minimizing a cost function that  takes 
into account not only the spatial compactness, but also the 
objective function [8]. 

The  validity of fuzzy c-variety clustering for motion estima- 
tion is first illustrated in Figure 1 where four translational 
motions are present. Table 1 shows that motion estima- 
tes are in good correspondence with actual motions. Ro- 
bustness with respect to  the number of classes c is obtained 
in the sense that  one asked for more motions (five) than 
there are actually and the algorithm provided four cohe- 
rent motion estimates with good regions of support and a 
fifth motion that  corresponds to  no actual motion but with 
a small region of support that  consists of scattered points. 
The  smoothing constraint added to  the objective function 
once motion parameters are frozen allows to  discard this re- 
gion: after the smoothing procedure, no point in the image 
actually belongs to  this class. 

Figure 2: Motion Segmentation on “mobile and calendar” 
sequence. Centre: Labels before smoothing. Right: Labels 
after smoothing . Six classes were used. After smoothing, 
only four classes remain. 

A real sequence example is shown in Figure 2.  Here 
again, the smoothing constraint allows to get rid of most of 
the noise. However, no class has completely disappeared, 
although some classes have very small support. 
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