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Abstract 

A layered motion estimation scheme using fuzzy  clustering 
is introduced in this papel: Once motion estimation is 
performed, a modified objective criterion is applied to 
discard non sign$cant classes. 

1. Introduction 

Motion estimation is a very important issue in image 
processing. Recently, model-based motion estimation tech- 
niques have gained interest against local motion estimation 
techniques [l, 21. Indeed, they provide a direct interpreta- 
tion of the motion in terms of the chosen model, and they 
are more robust with respect to noise. Of course, they suf- 
fer from other weaknesses: the determination of an optimal 
model complexity is not an easy task and is conditioned by 
convergence properties of algorithms and by the type of mo- 
tion that is expected to occur. Usually an affine motion is 
chosen as a compromise when perspective effects are negli- 
gible. 

Generally speaking, a motion model is intended to de- 
scribe exactly one motion in a region which is not known 
a priori. Such a region is large compared to a typical neigh- 
borhood used for optical flow computation. In order to deal 
with realistic scenes with several moving objects, it is neces- 
sary to determine motion parameters for each object as well 
as their spatial support. These regions or objects are some- 
times called layers [3]. 

One of the possible approaches consists in estimating 
several motions simultaneously, e.g. [4, 51. In this con- 
text, fuzzy clustering techniques have also been used [6]. In 
this contribution, a motion estimation framework that uses 
spatio-temporal information is introduced. This formulation 
spans a multi-dimensional feature space where data belong- 
ing to the same motion are concentrated on a hyperplane. 
Finding the hyperplanes is achieved with the fuzzy c-variety 
clustering technique [7]. In such an approach the number of 
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motions is an unknown parameter. Therefore, a criterion for 
the automatic determination of this number is introduced by 
modifying the fuzzy objective function. This modification 
takes into account spatial dependencies, which also allows 
to obtain smooth motion classifications. 

2. Motion Estimation Framework 

The model-based motion estimation framework used 
here is based on a spatio-temporal description of motion 
[8,9]. By taking into account more than two successive im- 
ages to do the estimation, one aims at increasing the robust- 
ness of the estimation. 

In this approach, an image sequence is interpreted as 
being generated by a two-dimensional pattern undergoing a 
transformation through time. The apparent motion is actu- 
ally the instantaneous transformation of the pattern. In order 
to find the motion, one fixes a motion model, for example 
translational or affine. By doing so, one restricts the search 
space to a family of transformations that is a Lie group of 
transformations. The instantaneous transformations are ex- 
pressed by differential operators. Each transformation in the 
group is obtained by a linear combination o f p  basic differen- 
tial operators L,, i = 1 . . . p ,  called infinitesimal generators. 

The motion estimation is reformulated as searching for a 
transformation that leaves the image sequence invariant. In 
Lie theory a transformation expressed by the infinitesimal 
generator L leaves a function f invariant if and only if 

LCfk) = 0, (1) 

for each point r in the image sequence where f is defined. 
Here C = C:='=, a,C,, so that the unknowns are actually the 
at's. As the transformation that is looked for is determined 
up to a scaling factor, the constraint E:='=, U: = 1 is added 
to transform the problem into a well-posed one. 

Solving Equation (1) in least square sense for n points of 
interest leads to the minimization of the following objective 
function: 

atXtXa = 0, (2) 



where ai’s are the elements of the p-dimensional vector a 
and L i f ( r ) , i  = 1..  . p  are the elements of the n x p ma- 
trix X. Actually, the kth row of X represents the feature 
vector xk for point rk. Equation (2) together with the con- 
straint llall = 1 leads to an eigenvalue problem. The so- 
lution is given by the eigenvector of M = XtX corre- 
sponding to the smallest eigenvalue. The estimation can 
also be viewed as fitting a hyperplane through the origin, in 
a p-dimensional feature space. No warping is required for 
solving Equation (2). 

3. Fuzzy c-variety clustering 

The problem now consists in grouping the data into 
clusters that correspond to the same motion. By solving 
Equation (2) for each cluster, one obtains the motion param- 
eters. Here, we propose to use the fuzzy c-variety cluster- 
ing (FCV), because it is simple and has good convergence 
properties. This algorithm aims at clustering p-dimensional 
points that belong to c linearvarieties Vi?, namely lines (T = 
l), planes (T = 2), or hyperplanes (up to T = p - l), see 
Bezdek [7]. In the motion estimation framework presented 
below, varieties are hyperplanes of dimension (p- l), going 
through the origin. This leads to the minimization of the fol- 
lowing objective function: 

with the constraint cy=1 U i k  = 1, V k .  u i k  is the member- 
ship weight of point X k  for variety K,,, m is the fuzzy ex- 
ponent, which controls the fuzziness of the final result (the 
larger m, the fuzzier the clustering), d i k  is the distance of 
point X k  to the linear variety vi,, that is in our case: 

d i k  = ( ( X k ,  nd2) 1’2 , (4) 

where ni is the normal vector to variety i. The minimiza- 
tion of the objective function is achieved by an iterative al- 
gorithm that successively updates the weights U i k  and the 
linear varieties, i.e. the vectors ni. 

The update of the hyperplanes corresponds actually to 
motion estimations, and the update of the u i k ’ s  corresponds 
to the determination of the layers of support, thus showing 
a similar structure as the EM algorithm used in [41. 

The robustness of fuzzy algorithms can be increased by 
adding a noise class that is characterized by a constant dis- 
tance 6 from all data points to its centroid [lo]. 6 should 
be chosen in the order of magnitude of all distances. Thus, 
atypical points, which are characterized by large distances to 
all classes, will mainly be attributed to the noise class, and 
will not influence the estimation of the motions. Here, 6 is 
chosen as the median of the smallest distances to classes in 
order to make it robust to outliers, namely 

6 = median (rn? dik ) . 
4. Spatial Constraint for Clustering 

Clustering algorithms such as the FCV and the EM 
are commonly used in many different clustering problems. 
However, when dealing with images, it is important to pre- 
serve the spatial information contained in the inter-relations 
between neighboring pixels. Such an information is usually 
ignored by clustering algorithms and noisy segmentation re- 
sults may be obtained. 

In a statistical framework, this problem is addressed by 
using Markov Random Fields (MRF) which can model the 
a priori assumption that spatial regions are homogeneous 
and show a certain degree of compactness [ll]. In this 
case, MRF are used to impose additional constraints in order 
to obtain homogeneous piece-wise contiguous regions. By 
analogy, we use the concept of MRF in order to modify the 
objective function of the FCV so as to preserve the spatial 
continuity of images. The application of the MRF concept 
to the FCV allows to cluster the data in the feature space but 
also guarantees the spatial connectivity of images. 

The objective function of the FCV is modified by adding 
a term of neighbourhood energy and is written 

(6) 2 J = Jm,c(U,V)  i- P IIUj - U k l l  
j E 7 k  

where Qk denotes the neighbourhood of point k ,  and U k  is 
the vector of the degrees of belongingness of the k-th ele- 
ment of the data set. The second term is analogous to the 
contribution of the prior model in the log-likelihood func- 
tion of a Maximum A Posteriori estimation, which is usually 
given by a Gibbs distribution. 

The addition of this smoothness constraint allows to ad- 
dress two important aspects of motion-based segmentation: 
(i) the automatic estimation of the number of motions, and 
(ii) smooth motion labelling. 

4.1. Determination of the Number of Motions 

As for most of the input parameters of clustering algo- 
rithms, the numberofclasses c has to be specified. However, 
with the introduction of a smoothness constraint we can 
expect to determine this number automatically. Indeed, a 
closer look at the objective function (6) shows that it is com- 
posed of two contributions that evolve in an opposite way 
when the number of classes increases. The first contribution, 
i.e. the within group sum of squared errors, decreases with 
c since all distances d i k  can only become smaller. On the 
contrary, the contribution induced by the smoothness con- 
straint increases with c since neighboring pixels are more 
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likely to belong to different classes. Thus, we can expect 
that the combination of both contributions will reach a min- 
imum for a particular value of c. 

updating the membership values can be obtained form = 2 
and is expressed by 

7- 

c1 

The following steps are needed to estimate the optimal 
number of classes: 

0.0 0.0 -7.610-5 
0.0 0.0 3.210-4 

Motions are estimated using the FCV by imposing a 
number of classes c a priori larger than the actual num- 
ber of motions. As a result, some obtained motions are 
meaningless, and their layer of support are usually scat- 
tered on the whole image. From this point, motion pa- 
rameters ni, i = l . . . c are kept fixed. 

Estimation of p. The “correct” number of motions may 
only be obtained with an appropriate choice of /3. Here, 
we choose /3 = b2,  in order to be dimensionally con- 
sistent with the first term. 

The number of classes is determined and by adding in- 
crementally motion classes. This is done in the follow- 
ing way: 

Compute the modified objective function (6) for 
each class separately, and keep the class which 
provides the minimum value. 

Repeat the same operation with two classes, in- 
cluding the best class of the previous step, and 
keep the best pair only if the corresponding mod- 
ified objective value is smaller than the one ob- 
tained at the previous step. 

Repeat the same operations with an increasing 
number of classes, as long as the modified objec- 
tive value decreases. 

Of course, one could also think of a dual approach, start- 
ing with all available motions and discarding meaningless 
classes one after the other. This approach has also been in- 
vestigated, but is more costly and does not always work as 
well as the proposed one. This behaviour will be investi- 
gated further. 

4.2. Motion labeling 

At this point, we have estimates of the motion parame- 
ters. As no spatial constraint has been used so far, the motion 
labeling of the scene resulting from the FCV is still noisy. 
Smoother results can be obtained by minimizing the mod- 
ified objective function (6), in the case where the class pa- 
rameters, i.e. n,, i = l . . . c, corresponding to the optimal 
value of c, are kept fixed. In this case, only the partition 
coefficients are allowed to vary. By analogy with the clas- 
sical fuzzy c-variety algorithm, a closed form solution for 

where Q = p E, 1 is a constant and j E { ~ k ,  k}. More 
details on this constrained fuzzy algorithm can be found in 
[6 ] .  At this point, the labeling is still fuzzy. A hard labeling 
is achieved by attributing each point to the class with maxi- 
mum belongingness. 

5. Results 

Firstly, we want to illustrate the ability of the robust 
fuzzy c-variety algorithm to detect a dominant motion. For 
that purpose, we designed a synthetic image sequence (see 
Figure 1 )  in which the upper part undergoes a superposition 
of a scaling and a translation, and the lower part a translation 
to the right. By applying the robust FCV algorithm for one 
class (c = l ) ,  and with m = 1.4 (this value was used on all 
simulations), one obtains the motion parameters in Table 1 
and the labeling displayed in Figure 1. It can be noticed that, 
without the addition of a spatial constraint, the labeling re- 
sults are noisy. As expected, the found motion corresponds 
to the dominant motion, whereas the other part of the image 
is incorporated into the noise class. 

I I dominant I other I found I I motion I motion I motion 
dz I 0.0 I 1.0 I -3.410-3 
dy I -0.64 I 0.0 I -0.63 
s I -10-2 I 0.0 I -910-3 

I 

c2 I 0.0 I 0.0 I -3.410-5 

Table 1. True and obtained motion parameters 
from the robust fuzzy algorithm, by asking for 
one class, for the synthetic image sequence 
with two motions. Affine parameters are: dz, 
dy, translation along z- an y- axis, s, scaling, 
T ,  rotation and c1, c2, shearing factors respec- 
tively. 

Using the procedure described in Section 4.1, with an 
initial choice of 8 classes, one obtains as expected two mo- 
tions. Furthermore, they are in good correspondence with 
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Figure 1. Left: one image of the synthetic se- 
quence with two motions. Right: layer for the 
dominant motion: the image shows the par- 
tition coefficients uil. Border pixels are dis- 
carded from computation. Grey levels indi- 
cate the value of uil, with black meaning 0 
and white 1. Due to the small value of m (1.4), 
only few pixels are far from 0 or 1. Black pix- 
els indicate points considered as outliers. 

the actual ones (see Table 2) compared to motions in Table 1. 
The corresponding layers without smoothing constraint and 
the final motion labeling obtained with the CFCV algorithm 
of Section 4.2 are presented in Figure 2. The small misclas- 
sified regions can be easily removed, for example with a me- 
dian filtering. Such points are due to the fact that the seg- 
mentation is based only on motion information, so that pix- 
els of homogeneous regions may be classified randomly. 

first I second I 

Table 2. Motion parameters obtained from the 
fuzzy clustering approach with automatic de- 
termination of the number of motions. 

An example of a real sequence is shown in Figure 3. In 
this case, the algorithm started with 18 motions and ended to 
estimate 3 classes. The corresponding label image, obtained 
with the CFCV algorithm, corresponds well to the expected 
motion segmentation. Improved boundaries could be ob- 
tained by incorporating luminance information (e.g. [ 12]), 
but this is not the scope of this paper. 

Figure 2. Synthetic motions. Top: partition 
coefficients for both classes retained at the 
end. Bottom: labeling obtained from the fuzzy 
layers. Pixels at the boundary of the image 
were discarded from the computation. 

6. Conclusion 

In this paper, a method for simultaneous estimations of 
multiple motion models and of their layers of support has 
been presented. The FCV algorithm was modified by adding 
a spatial smoothness term to the objective function, which 
allows to determine the number of classes automatically, and 
to improve the motion labeling. The estimated parameters 
and the motion segmentation results are encouraging. 

A point that should be studied further is the comparison 
of this method with other studies based on Minimum De- 
scription Length (MDL, [13]) or the Akaike criterion [14]. 
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