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We present an algorithm functioning as a supervisor module in a multi-
expert decision making machine. It uses the Bayes theory in order to
estimate the biases of individual expert opinions. The biases are used to
calibrate and conciliate expert opinions to a single decision. This super-
vision technique is applied to the real case of a person authentication
technique using two modalities, face and speech. The visual part involves
the matching of a coarse grid containing Gabor phase information from
face images. The acoustic part is performed by a text-dependent speaker
verification system based on Hidden Markov Models. Experimental results
show that the proposed fusion method improves the quality of individual

expert decisions by reaching success rates of 99.5%.
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1 Introduction

There is an increasing interest in biometric techniques for person authentica-
tion, in particular for those where the user is not involved in complicated and
intrusive procedures. The applications of such techniques prevent misuses of
services with automatic access of clients. Unfortunately, mono-modal recogni-
tion techniques are likely to reach in a close future a saturation in performance.
A potential way of overcoming such limitations, consists in combining results

from several modalities.

Machine experts, referred to as experts below, can deliver opinions, more pre-
cisely scores, about the authenticity level of a person’s claim being a certain
client. This paper addresses the issue of how these scores can be represented
and conciliated to a single opinion on the authenticity level of the user’s iden-

tity claim.

Subjective assessments are a natural part of the Bayesian statistics (Bernardo
and Smith, 1994). The conciliation procedure in the current paper is built on
the ideas of Bigiin (1995), who deals with aggregation and calibration of the
experts’ assessments when independency between the assessments is assumed.

We estimate the expected true authenticity score of a candidate person who



arrives to the system in a future time instant, given earlier authentication ex-
periments used as supervised training. To obtain these estimations, the poste-
rior density of the true authenticity scores will be used. The basic assumption
is that the logarithm of the misidentification score has a normal distribution.
A work with a similar interest in modality fusion for person identification
has been carried out by Brunelli and Falavigna (1995). From face images and
speech, they extract five measurements that are normalised into scores. They
propose two different ways to combine them: a weighted geometric averaging,
and the integration of ranks and scores by means of an artificial neural net-
work. Here, we do authentication instead of recognition. Another difference is
that we use a Bayesian approach for decision fusion. More recently, fusion of
lip motion and speech by synergetic computer has been proposed for identifica-
tion and authentication (Dieckmann et al., 1997). Jourlin et al. (1997) achieve
the fusion of labial and speech information by a weighted sum of scores. The
weighting factors are determined so as to minimise the total error rate on an

evaluation set.

The paper is organised as follows: the framework of multi-modal authentica-
tion is presented in Section 2, while the fusion method itself is described in
Section 3. In Section 4, the authentication experts based on speech, respec-
tively face, are presented. Section 5 is devoted to experiments. Finally, some

conclusions are drawn.



2 Multi-Modal Authentication System

For an authentication system, the world population is divided into two cat-
egories. A client is someone who is known to the system and is entitled to
privileges, while an impostor is a person who falsely claims to have the iden-
tity of a client. Usually, the set of clients is small compared to the set of
impostors. Since the potential set of impostors is almost the world popula-
tion, the experts are not assumed to train on impostors, except possibly if the
same impostors show up repetitively in which case they can be considered as
clients with “special” privileges. In the identity verification scenario considered
here, the person willing to access a service is cooperative, i.e. an identity is
claimed. The authentication device then takes the decision to accept or reject
the person according to the claimed identity. Two types of error are possible:

false acceptance of an impostor (FA), and false rejection of a client (FR).

The information provided by sensors in a multi-modal authentication system
can be highly heterogeneous, like sound (speech) and images (face, iris, finger-
prints). Therefore, one cannot expect to merge them at the sensor level. We
rather fuse partial decision results obtained by each expert, which is known
as decision fusion (Dasarathy, 1994). The supervisor does not interfere with
and does not have access to the computational processes of the experts. Thus,
the whole system is modular, so that modalities may be added or removed

depending on the requirements of the application at hand. This results in a



general system where m independent modules (experts) perform identity ver-
ification on their own type of data and provide their decision as a number,
called score. Furthermore, they may give an estimation of the variance of their

score. By convention, the scores of the experts are in the [0, 1] interval.

3 Expert Decision Fusion

3.1 Statistical Model

An extensive presentation of the mathematical background of the model can
be found in Bigiin (1995). The set of data together with an identity claim is
called shot. The authenticity score of expert ¢ on shot j will be denoted X;.
The true authenticity score of shot j’s claim, Y;, which is independent of the
expert, takes only two numerical values corresponding to “True” and “False”.
The miss-identification score Z;; is defined by Z;; = Y; — X;;. Finally, the

variance of Z;; as estimated by expert 7 is denoted by s;;.

We denote the expected value of Z;; by b;. Assume that Z;; given b; is normally
distributed, i.e. (Zy|b;) € N(bs, 07;). We assume first that the variances o;; are
known and that Z;; are independent for all 7 and j. We suppose that b; has

a non-informative prior distribution, i.e. b; € N(0,00). Then the posterior



distribution of b; is normal with mean and variance:

no - Zj 1
Jj=1 o,
_ j -
Mi= St and V= o (1)
j=1 Uizj J oizj

respectively. Since (Z; ,+1/b;) is normally distributed, the predictive distribu-
tion of Z; 41 given z;1, 22, * -, Zin 1s also normal with mean M; and variance
(Vi + oZn +1)- If we know X,y the predictive distribution of Y, is also

normal:

(Yot1lzi1, 2zi2s - Zz'n,xz',nﬂ) € N(Mi', V;I), (2)
where

M, =2;p11+M; and V=V, + Ji2,n+1' (3)

The ith expert’s authenticity score on a future shot will be calibrated by means
of the expected value in (1). Assume that the m independent experts are asked
to give their authenticity scores on all shots (j = 1,2,...,n,n + 1) being the
shots of a client. Then, the posterior distribution of b;, given all these scores

and the earlier identification errors, is normal:

(Yn+1|211, ceey Rlny $1’n+1, veey Zmly sy Amms mm,n—i—l) € N(M, V), (4)
where
Z; Vil m 1 -1
M = ™ and V = Z I . (5)
v 4 i=1 Vi
=1 Vi

This is the posterior distribution of Y, ; after having observed the assessment



errors of the m experts. Since the variances o;; are not known we have to esti-
mate them. We suppose that the experts give the precisions correctly except
for an individual proportionality constant:

Sij = CLZ'O'?J-. (6)

The constant a; may be interpreted as a factor representing over- or under-
confidence. Assume, a priori, the following non-informative joint distribution

of a; and b; :

flasb) = —. (7)

Under the assumption that (Z;;|a;, bi, sij) € N(b;, Ufj) are independent for all

i and j, it can be shown that the estimate &;; of o7, is given by:

(Gi — Dy)

n—3 * Sigs (8)

-2 _ o —
0, = Q;Sij =

where

Consequently we use o7; in (1) and (3) instead of o7;.



3.2 Fusion Algorithm

From this mathematical description of the Bayesian conciliation of experts,

one can obtain a fusion algorithm, which is summarised as follows:

(i) Training phase: by using a training set {(z;j,y;, sij), J = 1l..n}, es-
timate the bias parameters of each expert, i.e. {M;,V;, «;}, according to
(1); o;; is computed according to (8), and (9).

(ii) Authentication phase: at this step, the supervisor is operational, mean-
ing that the time instant is always n 4+ 1 and that the supervisor has
access to expert opinions (;n+1, Sint1), but not access to the true au-
thentication scores, ¥, 1; azn 41 i1s computed according to (8). The expert
opinions are normalised yielding M/, and V}', (3). M and V are computed

according to (5), and may be thresholded to yield a definite decision.

3.8 Score transformation

By convention, the scores of the experts are in the [0, 1] interval. For our
purposes, the transformation
X

which is also known as the “odds of X" (Lindley, 1965), will be used to

map the scores to [—o0, 00]. Here, the superscript * denotes the scores before



transformation.

It can be shown that the formulas (1,3,5) still hold when X;; is substituted

by Xz*]a

and Y; by Y;". The only difference is in the conditional distribution
of Y, 11, (4), which is log normal with the expected value exp(M + V/2) and

variance (exp(2M +2V) —exp(2M +V)).

Finding the expectation value of Y*, given the knowledge of the expert es-
timations of it, is what would be ideal for applications. However, obtaining
an analytical expression of it from the expected values and variances above
is, to the best knowledge of the authors, not possible. Instead we have used
Spae = M where Sy represents an authenticity score of a candidate per-

son’s being client in the future, given the past experience from the experts.

We do not make use of V' in our supervisor currently.

It is crucial to observe that in our application, Y* = 0 in case of an impostor,
and Y* = 1 in case of a client. In order to avoid singularities with transfor-
mation (10), one chooses to work on the [¢,1 — €] interval instead of [0, 1]. In
our experiments, we chose € & exp(—6), so that Y = +6. However, possible
values of Y* are still at the interval extremities. As a consequence, if y; = —6,
zij = Yj — ;5 is always negative. Likewise z;; is always positive if y; = 6. This
means that we do not have a mono-modal density but a bimodal density for
zij, if we interpret the scores of experts straightforwardly. To obtain a mono-

modal density, we build and train two supervisors, one which is specialised on
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impostors and one specialised on clients. Step (i) of the algorithm is applied
to the impostors and the clients of the training set separately, yielding two
bias parameter sets, { M, VI of} and {MF,VF af}. The second step is then
applied twice for each of these parameters. The result of the two supervisors

can be combined further by using another supervisor (see Section 5.1).

4 Authentication Experts

In the authentication experiments, two experts were used, processing two dif-
ferent signals: speech audio data and face images. They provide scores in the

[0, 1] interval.

4.1  Speech-based Authentication

Speech-based authentication is performed by a text-dependent speaker veri-
fication system which accepts as text only a known sequence of digits. The
system output is a score as specified by the chosen multi-modal architecture
(Section 2). This authentication modality is an adaptation of the work of

Genoud et al. (1996).

The audio input signal is first segmented into the given sequence of digits by
using a recognition module based on Hidden Markov Models (HMMs). Each

segment is then transformed into the Linear Predictive Cepstral Coefficients
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(LPCC) representation. In the learning phase digit HMMs are trained with
these segments. In the verification phase, the likelihood of the segments to be

produced by the corresponding digit models is estimated.

All digit models have the same left-right structure. The number of states de-
pends on the digit and has been chosen so that there is one state per phoneme
and one state per transition between phonemes. In all cases, a Gaussian distri-
bution with diagonal variance vector is used to model the feature distribution
within one state. Training is performed with the help of the Baum-Welch al-
gorithm and the likelihood during the verification phase is computed with the

Viterbi algorithm.

The verification of one person uses two models for each digit: the client model,
which models the person whose identity is claimed, and a world model, which
represents an average of speakers. The client model is built from the recorded
voice data of that client, while the world model is built from the voice record-
ings of a large set of persons, including or, preferably, not including that client.
In the implementation of the system used for the experiments, the digit world
models have been trained on the Polycode database (Genoud and Chollet,

1995) with 300 examples, each sample being from a different speaker.

The verification score Zgpeech is computed as follows:

tpeen = 3 129L) &log (L) (11)

digits
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where L, is the likelihood of the person model, L,, the likelihood of the world
model, and N the number of LPCC frames. The score is mapped into the

interval [0, 1] with the use of a sigmoid function.

4.2 Face-based authentication

Each face is represented by a set of feature vectors positioned on nodes of a
coarse grid placed on the image. Comparing two face images is accomplished
by elastic graph matching, i.e. by adapting a grid taken from one image to the
features of the other image (Lades et al., 1993). We use the modulus of complex
Gabor responses as feature vectors from a set of filters with 6 orientations and
3 resolutions. These are sets of features that describe local properties of points

in the image, similar to those in Bigiin and du Buf (1994).

The grid matching aims at normalising the input face, in order to make the
subsequent comparison invariant with respect to translation and a reason-
able amount of deformation. The residual error accounts for the difference
between the normalised input and the reference pattern. The grid matching
consists here of two consecutive steps. The first minimises an objective func-
tion that measures the difference of the reference and the test feature vectors,
by translating an undeformed grid on the test image and computing test fea-
ture vectors at current node locations. The second step translates every node

incrementally to find local minima, resulting in a deformed grid with a lower
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objective value.

The residual grid matching error could be used as a simple discriminant mea-
sure. Our experiments showed that it is not powerful enough. Better results
can be obtained by weighting the node contributions according to their signif-
icance for authentication. This is achieved by designing at each node a local
discriminant measure that minimises a criterion for all views of a given person
while maximising it for the average of the other people in the training set (Duc
et al., 1997). All local discriminant responses, which are actually projections
on relevant subspaces, are added to provide a unique, global response R for a
test face. The score Zgyee € [0, 1] is obtained from this response by applying a

sigmoid mapping.

5 Experiments

We have conducted a set of experiments based on simulated expert opinions
and a set of experiments using true expert scores. The purpose of the first
set of experiments was to study the general performance of the supervisors,
according to different settings of parameters such as the number of experts
and the skills of experts. The second set of experiments had the purpose of

checking the validity of the conclusions as predicted by simulations.

Although the presented theory is capable of making use of the experts’ self-

estimation of variance s;;, it was not possible to obtain these numbers from
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our two real experts. We have therefore used s;; = 1 for all shots, simulated
or real. As a consequence, the supervisor calibrates the experts by using their

historical success alone.

5.1 Simulated Experts

In the case of simulations, the scores X; of an expert ¢ were drawn from two
uniform distributions defined on the open intervals (0, I;), (C;, 1). The first
interval was used when the identity claim of the candidate was truly false, i.e.
Y;" = 0, and the second interval was used when the claim was authentic ((Y;* =
1). The Y;"’s were picked at random to be either 0 or 1, with probabilities 0.8

and 0.2 respectively, so as to reflect real applications, where the number of

impostors is larger than the number of clients.

In order to simulate the different skills of experts, I; and C; were varied. In
order to obtain error-prone experts, which is a necessary condition for the
usefulness of a supervisor, the conditions 0.5 < I; < 1 and 0 < C; < 0.5
were imposed. We picked I; and C; uniformly at random from the intervals
(0.5,0.75) and (0.25,0.5). Thus, the false acceptance rates of our simulated
experts are given by FA; = I, — 0.5, and the false rejection rates by FR; =
0.5 — C;. Since our expert scores are in the interval [0, 1] we used the odds-

transformation.

In practice, in order to avoid singularities, we had to restrict X;’s to be

15



in [e,1 — ¢]. We have chosen ¢ ~ exp(—6), yielding the odds -6 and 6 for 0
and 1, respectively. Consequently, when applying the odds-transformation to
Y;’s, we used € and 1 — € instead of 0 and 1. In simulations, the results did

not show a change with various choices of small e.

According to Section 3.3, two supervisors were trained, based on the “client”
and “impostor” categories of the training set. The combination of the two
supervisors was achieved by choosing the response of the supervisor which
comes closest to its goal, i.e. -6 or 6, as the final SP&*. Formally, if |6 —

MC| —| —6— M!| >0, then SB%¥* = M! otherwise SB»® = MC.

For all experiments, the number of shots in the training set was n = 2664
and the number of shots in the test set was 7992. As a comparison we also
simulated a simple supervisor, with its scores consisting of the mean values
of expert scores, Smean” = L ywm, Xint1- The SPP" used subsequently is the

n+1 m

odds of ST computed according to (10), for the sake of comparisons with

the Bayesian supervisor.

We compared the performance in terms of the success rate SR, defined by
SR = 1 — (FA + FR). The Bayesian supervisor yielded consistently better
results than the average of scores. Few experts (e.g. 2), or many experts, (4
and more), were always conciliated better by Sk than Syean . Hard decisions
were obtained by thresholding SP%" and Sy at the zero threshold. In case

of equally skilled experts, S;*4" was outperforming significantly the individual
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SR1 SRQ SRS SR4 SRBayes SRmean

0.814 | 0.816 | 0.819 | 0.825 1.00 0.974
0.649 | 0.952 | 0.640 | 0.608 | 0.991 0.801
SRl SR2 SR3 SR4 SRB ayes SRmean

0.664 | 0.821 - - 0.985 0.815
0.763 | 0.732 | 0.701 | 0.681 | 0.999 0.872

Table 1

Success rate simulations. SRy - - - SRy are expert success rates, SRpayes is the success
rate of the Bayesian supervisor and SRean is the success rate of the arithmetic mean
of the scores of the experts. First table: Row 1, equal skills; Row 2, random skills.
Second table: Row 1, 2 experts case; Row 2, 4 experts.

experts. However, in case of unequally skilled experts, it often performed worse

than the best expert. Typical results with four experts are given in Table 1.

Figure 1, left, illustrates the density curve (estimated by a 512 bin histogram)
of znt1 = Yny1 — Spid" of a simulation with randomly skilled experts with
unsymmetric skills, which happens most likely in practice. The larger mass
around -6 corresponds to the over representation of impostors due to our
deliberate choice. The bimodal nature of the errors are clearly visible. The

corresponding plot for the Bayesian supervisor is given by Figure 1, right. In

both cases two experts were employed.

The results suggest that an increase in the number of experts, even if the
experts are not highly skillful, improves the supervisor decisions. While the
improvement is consistently significant in the case of Bayesian estimator, it is
not significant when the mean supervisor has experts with high variations in

their skills.
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Fig. 1. The miss-identification density of the mean value supervisor (up), and the
Bayesian supervisor (down) in the case of two unequally skilled experts

5.2 Speech and Face Based Authentication

5.2.1 FEzxperimental Database and Protocol

The database and the protocol of experiments are those of the European
M2VTS project (Pigeon and Vandendorpe, 1997). The database includes 4
shots of 37 persons, taken at one week intervals. Each shot is built of the
video recording of the person rotating his head and of the synchronised audio
and video recording of the person spelling the sequence of digits from ’0’ to

'9’. The speech-based authentication uses the audio recording of the digits
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sequence while the face-based authentication uses a set of frontal, grey-level
images selected from the head-rotating video sequence in a semi-automatic

manner at QCIF format (144 x 176).

The experiments were conducted following a combination of the left-one-out
and the rotation estimates (Devijver and Kittler, 1982). Each person in turn
is labelled as an tmpostor, while the 36 others are considered as clients. Three
shots of the 36 clients constitute the training set while the fourth shot is
used as evaluation set in the following way: each client tries to access un-
der its own identity, and the impostor tries to access under the identity of
the 36 clients. This results in 36 authentic tests and 36 impostor tests. This
procedure is repeated four times, by considering each shot as the evaluation
series successively. In total, the client and impostor tests amount each to

37 x 4 x (37 — 1) = 5328.

For both single modalities, experiments have been conducted on the M2VTS
database according to that protocol. Results at the a priori threshold are given
in the first two raws of Table 2, and total error curves in Figure 2. Clearly,

the experts are unequally skilled.

5.2.2  FExperimental results

Experiments on fusion were conducted with the Bayesian supervisor as well as

with the arithmetic mean of scores (see Section 5.1). For training the Bayesian
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Fig. 2. Total error (TE = FA + FR) curves for single modalities and fusion of
modality scores.

supervisor, 2664 samples from the test experiments were selected, with equal
proportion of impostor and authentic accesses. The 7992 remaining experi-
ments were used for test. For the arithmetic mean of scores, as no training is

required, all 2 - 5328 = 10656 experiments were used for testing.

Figure 2 shows the total error TE = FA + FR, as a function of the threshold
value. One can see that single modalities as well as the fusion by arithmetic
mean are sensitive to the threshold: their TE curves show a narrow minimum
near 0.5. For Bayesian conciliation, the total error remains stable at a very low
value of 5.4 - 107 over almost the whole threshold range. As a consequence,
the choice of the threshold is less critical for the Bayesian conciliation than
for other alternatives. This appears as a major advantage of the Bayesian

approach.
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fusion method FA rate (%) | FR rate (%) | TE rate (%) | SR (%)
face 3.6 7.4 11.0 89.0
speech 6.7 0.0 6.7 93.3
arithmetic mean 1.2 2.1 3.3 96.7
Bayesian conciliation 0.54 0.0 0.54 99.46

Table 2

Verification error rates with face, speech and two combinations of face and speech
scores. The sum of the error rates (total error, TE) and the success rate (SR =
1 — TE) are given in the last two columns.

Table 2 shows the error rates for the 0.5 threshold. The choice of this value
is motivated by the fact that it is the a priori optimal threshold for single
modalities. If, as this was the case here, no validation set is available for
choosing an experimentally optimal threshold, the a priori threshold is used.

Clearly, the Bayesian supervisor provides the best performance.

6 Conclusion

We have presented a Bayesian model in order to construct a supervisor concil-
iating machine experts. We verified that the score fusion we propose improves
the decision making by using simulated as well as real data. In particular,
the Bayesian supervisor shows robustness with respect to the choice of the

decision threshold.

We calibrated the experts’ authenticity scores of a future instant about a
client only by means of earlier, supervised experiments. We may also calibrate

scores about a particular client. In this paper we treated the case where the
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assumption of independency was made about the identification errors. It is
possible to omit this assumption with some a priori knowledge about the

covariance matrices, (Bigiin, 1997).

It has proven to be non-trivial to request from expert designers to provide
experts delivering a consistent quality of score. Since expert designers had dif-
ferent comprehensions of what the quality of scores should be like, it was not
possible to evaluate the performance had we chosen to simulate them. Inde-
pendently, however, the use of other rules than the one described in Section 5.1

for merging the impostor versus client predictions could be investigated.

As future work, more modalities will be added, like profile authentication
and speech-lip synchronisation. This will allow to study the behaviour of the

supervisor with respect to the number of modalities experimentally.
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