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Abstract

This paper describes a new motion based feature extrac-
tion technique for speaker recognition using orientation es-
timation in 2D manifolds. The motion is estimated by com-
puting the components of the structure tensor from which
normal flows are extracted. By projecting the 3D spatiotem-
poral data to 2-D planes we obtain projection coefficients
which we use to evaluate the 3-D orientations of brightness
patterns in TV like 2D image sequences. This corresponds
to the solutions of simple matrix eigenvalue problems in
2D, affording increased computational efficiency. An im-
plementation based on joint lip movements and speech is
presented along with experiments which confirm the theory,
exhibiting a recognition rate of 98% on the publicly avail-
able XM2VTS database.

1. Introduction

Image sequence based speaker recognition systems have
recently attracted research attention [23][17]. The perfor-
mance of multimodal systems using audio and visual infor-
mation are known to be superior to those of the acoustic
and visual subsystems [3]. Specifically, recognition sys-
tems using visual information from lip movements pro-
vide supplementary information [4], which can lead to im-
proved speaker recognition performance as demonstrated
by [11][5][8][21][22]. The system of [14], used lip con-
tours/shape in each frame in a spatiotemporal image se-
quence of talking faces and reported performance improve-
ment over acoustic and image based systems. The system
requires, however, robust lip contours extraction which is
affected by noise, requiring frequent manual intervention.
Another disadvantage is the non constant computation time
because due to the iterative convergence process of the con-
tours.

This paper describes an algorithm that takes advantage
of the low-level spatiotemporal information in an image se-
quence containing lip-motion. Structure in spatiotemporal
images is modeled by moving line patterns in space-time
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planes, where the normal of the plane encodes the normal
velocity of lines. We will present a method for normal ve-
locity estimation based on 3D spatiotemporal space [2] but
only by use of 2D signal processing [12]. The lip area is
divided into four regions where motion statistics from pre-
defined orientations are extracted for further use in person
authentication. This results in increased computational ef-
ficiency compared to using the full 3D tensor for normal
velocity estimations. Velocities are determined by combin-
ing two linear symmetry tensors where each tensor is com-
puted in 2D by cascades of 1D filters. In the next section we
discuss normal velocity estimation further. In section 3 we
present an implementation of the algorithm and the experi-
mental results on data with known ground truth, an expand-
ing circle and a rotating fan with different speed and spa-
tial frequencies. Additionally, in sections 4 and 5, we show
usefulness of these results by suggesting novel lip move-
ment features for person authentication by reporting results
from, to the best of our knowledge, the largest experimen-
tal study using both lip-motion and speech features. The
full XM2VTS database [16] containing audio and video has
been used for performance evaluation, yielding a recogni-
tion rate of 98%.

2. Velocity estimation by orientation detection

This section describes the theory for line velocity estima-
tion using orientation detection which we later use to extract
visual features for speaker verification. Motion estimation,
also known as optical flow, can be determined by eigenvalue
analysis of the structure tensor [2]. This method requires
multiple time frames since it simultaneously derives the ve-
locities of points and lines. However, for applications that
only need line motion features the computations can be ex-
cessive. Assuming that only line motion can be observed
in local images, the computations can be carried out in 2D
subspaces of 3D spatiotemporal space. In lip motion image
sequences this assumption is realistic, as our experiments
indicate. The original orientation detection in 3D becomes
equivalent to a combination of orientation detections in 2D
planes. An overview of the spatiotemporal image is pre-
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Figure 1. A image sequence from talking faces scene from the
XM2VTS database. On the right side of the image-cube, a yt-
slice marked by the vertical white line in the xy-image, and on
the top of the cube a tz-slice marked by the horizontal line in the
ry-image are shown.

sented first and next, the algorithm for velocity estimation is
described. Fig. 1 illustrates a space-time image of a moving
lip represented as a stack of consecutive 2D images in 3D.
At any point we will study the orthogonal cross-sections
as regards motion. This is illustrated by the white lines in
the figure for a local image point (z,y,¢)”. By cutting a
cross-section through the cube, we can obtain an xt-slice
marked by the horizontal white line. By cutting a cross-
section through the cube, we can obtain a xt-slice marked
by the horizontal white line. Similarly, we can obtain a ver-
tical cross-section, as marked by the vertical white line in
the figure. In the yt cross-section which can be regarded as
a 2D space-time manifold, we can see the motion of the lip-
movement and mouth orientation in different modes. In the
silent mode, we see that the local line directions in the yt-
image will be horizontal. By contrast, in the speech mode,
the local line-directions will be oblique.

In Fig. 2, we show the ideal situation where an image
sequence samples the motion of a line having an arbitrary
orientation in the zy-plane. The line motion will appear as
inclined lines in both yt- and zt-planes (Fig. 2a). The line
motion generates a grey plane in the 3D space-time mani-
fold, zyt, (Fig. 2b). The normal vector of the motion plane
is drawn in the figure. We describe now the algorithm which
determines the normal velocity of the line-motion from two
orientation estimations, in the x¢- and yt- manifolds.

The motion of a moving line in a spatiotemporal im-
age generates a plane in 3D but is still a line in the
2D space-time image. The normal velocity in the im-
age plane is determined by the normal of the plane.
Assume that the spatiotemporal plane has a normal
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Figure 2. a) A line-motion observed in the 2D space-time mani-
fold. b) A line-motion in the image plane generates the dark plane
in the 3D space time image sequence, xyt.

VvVt = (df/dz,df/dy,df /dt), also denoted' as Vf =
(fz, [y ft)T. The 3D vector VT is orthogonal to the iso-
gray surface of f at (z,y, t).
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Figure 3. Illustrate a motion plane in 3D space with the original
coordinate axes and the corresponding normal axes of the plane in
the 3D domain whereas the vector k is the normal of the plane.

By the shaded plane (Fig. 3), we represent the motion
plane together with its normal Vf, now replaced by its esti-
mation, k. The angle « represents the direction of the mov-
ing line in the image plane. Assuming that the normal of the
tilting plane is k, how is the 2D normal flow vector obtained
from this 3D vector? In this case we have a linearly sym-
metric (local) image in 2D, which is an image consisting of
iso-gray curves being (parallel) lines.

Assume that the normal of the tilting plane is k =
(ks ky, k.) where the coordinates  and y represent any
arbitrary point in the image plane. By a line movement we

!Note that the normal velocity in the y-plane is 2D and it is invariant
to a sign change of the gradient, i.e. the vectors Vf and -V represent the
same plane, encoding the same velocity vector in the zy plane
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have a velocity va of a moving line in xyt-space, where a
is the direction of the velocity (||a]| = 1)

am (e My
\/kg+k§ \/kg+k5

and v is the absolute speed in the normal direction (in the
image plane):

ey

v ot )

to the effect that the velocity or the normal optical flow will
be given by va
v=-va= _kf,litkg (kzy ky)T =

1 ky k
T e ) @
()2 + (702 Fe ke
If we know the tilts of the motion plane in the x¢- and yt-
manifolds, i.e.

tany; = N and tanyy = k—y 4)

t t
we can determine the normal velocity, v. However, the nor-
mal of the motion plane, k, is all that is needed to determine
the normal velocity.

The tilts tan v; and tan -y, can be estimated optimally in
the Total Least Square, TLS, error sense as the local direc-
tions of the 2D lines in the xy- and y¢-manifolds by using
complex convolution, [2] and [1].

17/ ——}—z— dwdt 5)
Uy = / —Jr —)2dydt (6)

It is worth noting that these quantities %, and 4o are com-
plex valued and that the tilde” denotes that these are TLS
estimations of the true directions. Here f is the 3D image
sequence, but the integrations are carried out in 2D planes
of the sequence. The obtained complex numbers u; and 5
correspond to the most significant eigenvectors of the re-
spective 2D structure tensors. They estimate the directions
of the lines in the zt- and y¢- manifolds, but in the double
angle representation, [9]. To be precise, the complex num-
bers u; and 7y estimate 2-y; and 2y, as follows

iy = my(cos(2y1) +isin(271)) =

Ug = ma(cos(2y2) + isin(2v2)) =

myexp(i2y1)  (7)
ma exp(i272) 8)

where m; and mg are certainty measures. In consequence,
the arguments of %; and @7, must be halved to yield the two
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tilt angles, v, and 7y, providing for an approximation of the
velocity (3).

ka 1 -
0, = — = tan~y; = tan(= arg(dy)) )
ky 2

k, 1
Uy = — =tanvy; = tdn(2 arg(tz))

e (10)

Here, the tilde” is used again to denote that these quantities
are estimations of v, and v,,.

In our implementation we first used (5)-(6) to compute
the two direction angle components needed to obtain the
tilts, (9)-(10), which in turn enabled us to estimate the nor-
mal image velocities in lip images, via (3). In that, only
processing along two planes embedded in 3D spatiotempo-
ral images were needed. In the next section we quantify the
accuracy of this motion estimation scheme. We do this by
studying the results when the method is applied to synthetic
image sequences where the velocities are known.

3. Quantification of motion estimation

In this section we quantify the velocity estimation al-
gorithm by using two synthetic images, a rotated fan and
an expanding circle with varying velocities and spatial fre-
quencies.

We implemented the algorithm described above as fol-
lows. Let f(z,y,t) be the image sequence.

1. Slice the space-time image f along the vertical and
horizontal axis to obtain the tz-image and y¢-image
sets.

2. Calculate u; and w9 (using (5) and (6)) at every pixel
of the spatiotemporal image.

3. Calculate the velocity v, and v, from @, and 5 , ac-
cording to (9) and (10).

4. Form the complex image sequence pair to represent the
velocity.

In the following tests we apply this scheme to quantify the
directions and the magnitudes of the normal image velocity
estimations. All original images have an intensity dynamic
range consisting of the integers in the interval [0,255]. Fig.
4a shows an image containing all possible directions of sine
waves with exponentially decreasing frequency in the ra-
dial direction of the circles. In the experiments the sine
waves were shifted to generate an image sequence (with 64
frames). In Fig. 4b we show the profile along a line (in-
dicated in (a)) where we can observe the spatial frequency
in the test image. Fig. 4c illustrates the obtained optical
flow estimation for one frame. The length of the arrows
represent the magnitude of velocity and the gray-values in
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Figure 4. a) Expanding waves test image. b) Profile of (a) along
the indicated line. c) The estimated normal optical flow vectors
with the orientation estimation in background. d) The graph shows
the estimated argument of (c) along the indicated circle.

3\
Figure 5. Illustrate in (a) skewed rotated fan pattern. b) Shows
the direction and magnitude of normal image velocity estimation
as arrows and orientation estimation as hue in background.

the background image represent the directions of the esti-
mated velocities. We can see that the gray shift is contin-
uous and monotonous. This velocity direction accuracy is
given further precision for the white circle in Fig. 4d, where
we observe that the estimated velocity direction follows the
true velocity direction very closely since the graph is lin-
ear. Additionally, the absolute speeds increase radially in
agreement with the ground truth.

The image in Fig. 5a shows a synthetically produced fan.
We rotate the image to create artificial motion and obtain
128 frames. The obtained velocity estimation can be seen
in Fig. 5b, where the velocity magnitudes and directions are
represented by the arrows whereas grey values show dense
directions. We can see that the arrow change their directions
as the directions in a spiral do. The above results signify a
reasonable accuracy of the velocity estimation when local
images clearly exhibit line motion. In the following sec-
tion, we use this velocity estimation in a Gaussian Mixture
Model (GMM) framework to perform speaker authentica-

tion.

4. Experiments and applications

This section describes the audio, and visual features and
studies the role of the visual information in speaker ver-
ification. The Hidden Markov Toolkit (HTK) was used
to process speech files and preform the GMM analysis
[24]. The speech processing for extracting the Mel-Cepstral
feature representation is summarized next, for complete-
ness. In section 4.1, the image processing for extracting the
velocity-statistics based lip image features are presented.
Finally, the feature fusion and the Gaussian Mixture Model,
used in data-modeling and decision making, are summa-
rized in section 4.2.

4.1. Speech analysis and feature extraction

Speech signals in our experiment were recorded at a 16
kHz sampling rate. We extracted a speech frame with the
length of 25 ms at every 10 ms. We converted each frame
to a 39-dimensional acoustic parameter vector. The vector
consisted in 12 cepstral coefficients extracted from the Mel-
frequency spectrum [18] of the frame with normalized log
energy, 13 delta coefficients, and 13 delta-delta coefficients.
The delta and delta-delta coefficients are the first and the
second order time derivatives of the extracted cepstral coef-
ficients and are also known as the (speech) velocity and the
acceleration respectively.

4.2. Lip-motion features

We are interested in facial changes due to speech produc-
tion and therefore analyze the mouth region only. Common
approaches in face recognition are often based on geometric
features or intensity features, either the whole face or part of
the face, [6][19]. Much information about the identity of a
speaker is contained in the lip-movement and the gray-level
changes distribution around the mouth area [7]. Lip reading
by optical flow analysis has been shown to be useful [15],
because during the speech production the lip deforms and
the intensities in the mouth area change in a personal man-
ner. Extracting optical flow features around the mouth area
reveals the dynamic information specific to the way the per-
son speaks. The algorithm described in section 2 was used
to estimate the normal velocities of the lips over each 10
consecutive images of an image sequence for a speaking
person. The velocity features were computed in each pixel
at the central image frame. Our experiments showed that
the most significant motion vectors are around the lip-area
which also contains most of the edges.
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Figure 6. The velocity vectors are divided into six regions, marked
by dashed lines where each region is projected into a spatial direc-
tion marked by solid line. b) Shows the results of a clustering of
the estimated velocity vectors that were divided into four parts by
the dashed lines. The gray-values encode the absolute speeds in
predefined directions.

4.2.1 Feature clustering

In each mouth-region frame we have numerous points, here
128X128 pixels, with dense 2D velocity vectors. Our
goal is to extract statistical features from the normal veloc-
ity to reduce the amount of data without degrading iden-
tity specific information excessively. First, we reduce the
2D vectors to 1D scalars by only allowing 3 directions
(0°,45°,—45°) as marked with solid lines in 6 regions,
(Fig. 6a).The motion vectors within each such region be-
come real scalars that take the signs 4+ or — depending
on which direction they move relative their expected di-
rections, the marked solid lines. Then the next step is to
quantize these scalar velocities from being allowed arbitrary
real scalars to a more limited set of values, here 20. These
quantized velocities are obtained from the data by apply-
ing an automatic clustering technique, the fuzzy c-means
[18], at four regions of the mouth-region (Fig. 6b). The
obtained cluster-centers, and their corresponding cluster-
populations, were used as a feature vector for each of the
4 regions. In consequence, each of these sub-regions had
a 40 dimensional feature vector, consisting of 20 cluster-
centers and 20 cluster-populations, summarizing the statis-
tics of lip-motion.

4.2.2 Feature fusion and audio-visual sampling concil-
iation

The above decribed features are extracted from the raw data
(audio and visual speech) and are subsequently combined
[20]. In a later step, the acoustic and visual features are
merged into a single audio-visual feature vector, as illus-
trated by Fig. 7. This allows us to develop a joint audio-
visual model for person specific information in the data.
Furthermore, the recognition methods developed for auto-
matic speech and speaker recognition over three decades
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can be utilized conveniently. The acoustic and visual sam-
pling rates are, however, different. The speech data as well
as visual data are significantly reduced by the feature ex-
traction processing giving an opportunity to synchronize the
two data strands at the feature level. As described in the pre-
vious paragraph, each visual feature vector corresponds to
one fourth of a visual frame (Fig. 7a-b). The factor four is
also the rate factor between the audio and the visual data to
the effect that we merge each of the four feature vectors of
a visual frame with its own audio feature vectors (Fig. 7c).
Accordingly, the merged feature vectors come at the rate of
the audio feature vectors and have 79 elements, 39 audio
and 40 lip-motion. The lip-motion information originating
from the same instant are thus distributed in four consecu-
tive samples of the merged data.

4.3. GMM Model

A Gaussian Mixture model (GMM) is Markov Models
and therefore we could use the HTK toolkit which was
available to us. This kind of model can be understood as
a weighted sum of multivariate Gaussian distributions[18].

p(x|A) = pibi(x) (11)
Here x is a D-dimensional feature vector. A weight p; rep-
resents the mixture weights and the component densities
b;(x) are multivariate gaussian densities. The weights p;
represents the probability that a person identity A is repre-
sented by the feature x coming from a specific region of the
feature space as supported by the guassian b;. In our system
we use subword level (phonemes) using Gaussian Mixture
Model (GMM) having 5 states and 3 mixtures in each state.

5. Experiment

This section presents the experimental evaluation of the
Gaussian Mixture Model for text-dependent speaker veri-
fication. The verification system was evaluated in a task
where the speech features and the visual features were com-
bined as in section 4. All speaker verification systems
built, were based on a subword level (phonomes) using
Gaussian Mixture Models. We first present a summary of
the XM2VTS database, which is on of the largest publicly
available database having both audio and video, and then
our experimental results on this database.

5.1. The database

The XM2VTS audio-visual database [16], contains au-
dio and video sequences for 295 speakers (male and fe-
male). For each person, several video sequences are taken
over four different sessions. The Lausanne protocol [13]
or the XM2VTS protocol is a common experimental proce-
dure for speaker verification and identification using differ-

YF]',F.

COMPUTER

SOCIETY



V-part 2

Vopart 3

Audio-Visual Feature Vector
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A-frame 3

A-frame 4

Frame 1: -6.22.126.43453-3523397673203543-4523233452-0.1344875-123-123
[-part 2

Frame 2: -61.221264353-523397-732-03-433-5223333482-0.1 -44815-11.3-133

Frame 3: 602221264 3353-35233927-173203443 -23233452-0.134485-153-183

F
Framed4: -13.2012-643443-3523397-673213-4522323452-11-344-815-153-183

V-part 1
v
Vepart 3

V-part 4

Figure 7. The fusion of speech- and visual-features. The speech features (a) are sampled at every 10 ms with a window width of 25
ms. The clustered visual features (b) are sampled at 25 frames/sec. The fusion, (c), merges every speech feature-vector with one visual
feature-vector that only represents the lip-motion of one quarter of an image frame.

ent modalities. The database is divided, using the configura-
tion I in the Lausanne protocol, into different sets, training,
evaluation and test sets. Moreover it defines 200 speakers
of the 295 as clients, where the first recoding of each sen-
tence of session 1 to 3 is used as training set and the sec-
ond recording of session 1 to 3 is the evaluation set, and
25 speakers as impostors for evaluation and 70 speakers as
impostors for test.

5.2. Experimental results

To investigate the speaker verification performance of
the features, the following experiments were conducted on
all speakers. The false acceptance rate F'A and the false
rejection rate F'R were calculated as follows

FA = %*100 (12)
E
FR = 70*100 (13)

Here the number of impostor and impostor acceptance are
denoted with I and E'I, the number of clients and client
rejections with C' and EC'. Equation (12) and (13) are com-
puted on the evaluation set and the value for which the num-
ber of false acceptance and false rejection errors are mini-
mum, i.e. the threshold at which FA rate is approximately
equal to FR rate. This threshold of the equal error rate, EER,
is used on the test set and is marked as MTER in the fig-
ures. The FA is marked by dotted line and the FR is marked
by dashed line in the figures. In the first experiment we
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| Set/System [ Evaluation | Test |

Acoustic 96% 94%
Visual 80% 8%
Audio-Visual 99% 98%

Table 1. Verification results on evaluation and test set

used a GMM based speech recognition system based only
on acoustic features. The threshold function, obtained from
the evaluation set (Fig. 8a), is used in the test set to map
the score into the confidence interval [0, 1]. From the veri-
fication results on the test set (Fig. 8b), we obtain the equal
error rate of 6%. The verification rate of 295 speakers was
thus 94%. In the second test, the system used merged visual
and acoustic features on the same basis as the earlier sys-
tem. The verification rate of the whole database was 98%
(Fig. 8d), where the threshold from the evaluation set was
utilized (Fig. 8c).

To quantify the biometric verification power of the visual
features, we carried out the same experiments with these
features alone. The F'A and F'R graphs of the verification
results are given in Fig. 9. The verification performance us-
ing the threshold of the evaluation set was 78%. In Table. 1
we display the verification performance (where F'A is equal
to F'R in the evaluation set) of the acoustic, visual, and the
combined audio-visual systems using the same test data and
test protocol. Speaker verification based on audio and visual
images from lip-movement give 98% correct classification
which is 3-4% better than audio based speaker verification.
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Figure 8. Speaker verification results using only audio signal and
audio-visual signal. Acoustic evaluation results are in (a) and veri-
fications (test) results are in (b). The graphs in (c) and (d) show the
corresponding evaluation and test results for the combined audio-
visual verification system.

This result shows that the audio-visual system achieves bet-
ter performance than the audio-only system. It is worth not-
ing that the result of the recognition rate in speaker verifica-
tion is already high (94%) which means that any improve-
ment is difficult. The verification results further show the
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Figure 9. Illustrate verification results of the visual verification
system. The threshold is mapped on the evaluation set, where F'A
rate is equal to F'R rate.

importance of the visual signal as a complementary infor-
mation source.

5.3. Comparison

We quantified the significance of lip-movements in bio-
metric person authentication as a stand-alone modality as
well as in conjunction with the audio modality using a large
database. The closest comparable study is the system re-
ported by Jourlin, et al. [11]. The experiments in this re-
port, however, were carried out on the M2VTS database,
containing 37 speakers. They reported 72% verification rate
assuming that the tracking of lip-contours was successful in
all frames of all image sequences. We report 78% verifi-
cation rate on lip-motion only, using a significantly larger
dataset, 295 persons. Despite this favorable outcome, the
major contribution here consists in that the presented tech-
nique does not presuppose a successful tracking since the
visual features we suggest require neither segmentation nor
lip-tracking.

We can only compare our algorithmic elements with
other reports that studied the optical flow for lip-motion,
[5][8][21], because these studies have not reported verifi-
cation results on publicly available audio-visual databases.
First, the motion estimation technique used in [5][8][21]
measures the motion of points as it avoids regions hav-
ing the aperture problem. Accordingly, this type of optical
flow presupposes the availability of texture in local images,
(lack of lines), which is sometimes naturally available, e.g.
a beard close to mouth, or unshaved male face. By con-
trast, our motion estimation technique assumes the oppo-
site, namely, it requires the presence of spatial direction,
such as lines and edges (not points or isotropic texture), in
still image frames. We think that our experiments carried
over both female and male data support that these image
structures are available in the moving lips themselves in
significant amounts in practice. This is all the more sig-
nificant when considering that the XM2VTS database im-
ages consists of entire faces without a particular focus on
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the mouth region, causing the lip-areas to have relatively
low resolution (128X128). Second, our lip-motion features
do not contain any iterative algorithm, as all computations
are based on closed form arithmetic function evaluations.
The Horn-Schunk algorithm [10], which has been used in
the above studies, is iterative in its nature so that the actual
computation times per image frame is not constant, making
the implementation more difficult on simple computational
architectures.

6. Conclusion and discussion

It is experimentally verified that normal velocity estima-
tion in an image is possible by computing a set of direc-
tions in 2D projections of the 3D spatiotemporal image-
data. The presented results indicate that orientations of
projected 2D images yield the normal of an optimal plane
which estimates velocities with sufficient accuracy to com-
plement a speaker verification system with lip-motion bio-
metrics. This solution is a computationally efficient alterna-
tive to the prevailing velocity estimations, requiring neither
segmentation nor lip-tracking by parametric curves.

Visual features are extracted from face image sequences
to encode the motion statistics of the lips. Considering the
size of the test database, the performance of the system
supports the conclusion that lip-motion contains significant
dynamic cues for person authentication, yielding approxi-
mately 80% verification rates, alone. Due to the low corre-
lation of audio and the motion noise, our motion statistics
could improve the performance of even high quality speech
(office environment) in speaker verification with additional
3-4 percentage points atop of already high verification rates
(approximately 95 %). It is therefore reasonable to con-
clude that the relative importance of lip-motion to accurate
authentication will be higher in noisy or distorted speech.
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