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Abstract

This paper describes a new identity authentication technique by a synergetic use of lip-motion and speech. The lip-motion is defined as
the distribution of apparent velocities in the movement of brightness patterns in an image and is estimated by computing the velocity
components of the structure tensor by 1D processing, in 2D manifolds. Since the velocities are computed without extracting the speaker’s
lip-contours, more robust visual features can be obtained in comparison to motion features extracted from lip-contours. The motion
estimations are performed in a rectangular lip-region, which affords increased computational efficiency. A person authentication imple-
mentation based on lip-movements and speech is presented along with experiments exhibiting a recognition rate of 98%. Besides its value
in authentication, the technique can be used naturally to evaluate the ‘‘liveness’’ of someone speaking as it can be used in text-prompted
dialogue. The XM2VTS database was used for performance quantification as it is currently the largest publicly available database (�300
persons) containing both lip-motion and speech. Comparisons with other techniques are presented.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The interactive recognition of a person represents an
important challenge for automatic identity verification sys-
tems. Solution approaches include image sequence-based
speaker verification systems, e.g. using linear discriminant
analysis, LDA (Tang and Li, 2004), integration of audio
and visual features into an automatic speech recognizer
(Potamianos et al., 2003). An advantage of the interactive
person recognition is thus its ability to prevent impostor
attacks that use prerecorded facial images or speech data.
It is more difficult to play a video sequence of a person if
the system prompts the text to be spoken. The performance
of multimodal systems using audio and visual information
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in biometrics are known to be superior to those of the
acoustic and visual subsystems (Brunelli and Falavigna,
1995; Chibelushi et al., 2002; Tang and Li, 2001; Bigun
et al., 1997).

Lip-movement analysis allows detecting changes in
facial expression to recognize the spoken word. It can be
used in speech recognition systems to provide complemen-
tary information (Yamamoto et al., 1998; Wark et al.,
1999; Chen, 2001; Lucey et al., 2005), leading to improved
speaker recognition performance as demonstrated by Jour-
lin et al. (1997), Luettin et al. (1996), Tang and Li (2001)
and Hazen (2006). As lip-movements contain dynamic
image information, they are very different from features
extracted from audio and still images. Previous results
(Jourlin et al., 1997; Dupont and Luettin, 2000), which
employed lip-motion features extracted by tracking the
lip-contours from still images in an image sequence of talk-
ing faces, reported noise resilience and improved recogni-
tion performance over acoustic and image based systems.
Requiring manual interventions, however, lip-contours
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Fig. 1. A image sequence illustrated with a talking scene from the
XM2VTS database. A yt-slice marked by the vertical white line and an xt-
slice marked by the horizontal line show the surfaces in which local
directions encode the local velocities. The horizontal directions represent
the silent mode.

Fig. 2. (a) A line-motion observed in the 2D space–time manifold. (b) A
line-motion in the image plane generates the dark plane, in the 3D space
time image sequence – xyt, with a normal (marked with black arrow).
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extraction is, in itself, not robust to image-noise and hence
requires high quality images. Another disadvantage is the
fluctuating computation time due to the iterative conver-
gence process of the contour-extraction.

This paper describes an algorithm that takes advantage
of the low-level spatio-temporal information in an image
sequence containing lip-motion. The motion in dynamic
lip-images is modeled by moving-line patterns in space–
time planes, where the normal of the space–time planes
encode the normal velocity of the moving lines. We will
present a normal velocity estimation method based on
the 3D spatio-temporal space (Bigun et al., 1991) but using
only 1D signal processing embedded in 2D manifolds
(Faraj and Bigun, 2006; Kollreider et al., 2005). The lip-
area is divided into several regions where motion statistics
from predefined orientations are extracted for further use
in person authentication. This results in increased compu-
tational efficiency compared to using the full 3D structure
tensor for normal velocity estimations. Velocities are deter-
mined by combining two structure tensors where each ten-
sor is computed in 2D by cascades of 1D filters. In the next
section we discuss the normal velocity estimation model. In
Section 3 we present an implementation of the algorithm
along with normal velocity estimation results on synthetic
test data, a rotating fan and expanding circles with different
speed and spatial frequencies. In Section 4, we show useful-
ness of these results by suggesting novel lip-movement sig-
natures for person authentication. Finally, we report on an
experimental study using both lip-motion and speech fea-
tures using the largest audio–visual database that is pub-
licly available, along with comparisons in Section 5.

2. Velocity estimation by orientation detection

We describe our normal image velocity or normal optical

flow estimation technique, which we later use to extract
visual features for audio–visual, interactive person verifica-
tion. A dense optical flow, can be determined by eigenvalue
analysis of the structure tensor (Bigun et al., 1991). This
method requires however multiple image frames since it
simultaneously derives the velocity of moving points and
lines. Accordingly, the computations can be excessive for
applications that only need line motion features. Assuming
that only line motion can be observed in local images, the
computations can instead be carried out in 2D subspaces of
the 3D spatio-temporal space. For lip-motion in image
sequences, this assumption is realistic, as our experiments
that we present later indicate.

Let f(x,y, t) represent the intensity (gray-value) of a local
image point (Fig. 1) in a spatio-temporal image where the
parameters x and y represent the spatial coordinates, and
t represents the time coordinate of the local image point.
Here we assume that f is generated by a line translated in
the normal direction with a certain velocity. The velocity
component of translation parallel to the line is not possible
to obtain; this is referred to as the aperture problem. Fig. 1
illustrates a space–time image of a moving lip represented
by a sequence of 2D images. At any local image point we
will study the orthogonal cross-sections as regards motion.
This is illustrated by the white lines in the figure for a local
image point (x,y, t). By cutting a cross-section through the
cube, horizontally we can obtain an xt-slice marked by the
horizontal white line (Fig. 1). Similarly, we can obtain a
vertical cross-section, as marked by the vertical white line
(Fig. 1). In the yt cross-section which can be regarded as
a 2D space–time manifold, we can see the motion of the
lip-sequence and mouth orientation in different modes. In
the silent mode, we see that the local line directions in
the yt-image will be horizontal, which corresponds to no
motion in the 2D space–time. By contrast, in the speech
mode, the local line-directions will be oblique. Next, we
illustrate a local image containing a moving line in the
xy-manifold which generates a plane in the xyt-space
(Fig. 2). The observable velocity, which is the velocity in
the normal direction of the line, is encoded by the orienta-
tion of the spatio-temporal plane in the xyt-space.

In Fig. 2, we show the ideal situation where an image
sequence samples the motion of a line having an arbitrary
orientation in the xy-manifold. The line motion will appear



Fig. 3. Illustration of a motion plane in 3D space with k($f) representing
the normal of the plane.
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as inclined lines in both yt- and xt-planes, Fig. 2a. The line
motion generates a (dark) plane in the 3D space–time with
a normal vector, Fig. 2b. We describe now the algorithm
which estimates the normal velocity of the line-motion
from two orientations, in the xt- and yt-manifolds.

Because the motion of a moving line in a spatio-tempo-
ral image generates a plane in 3D, it generates a line in the
2D space–time manifolds. The normal velocity of a moving
line as it appears to the observer (in the xy-image plane) is
in turn determined by the normal of the plane in 3D.
Assume that the spatio-temporal plane has a normal
$f = (df/dx, df/dy, df/dt), also denoted1 as $f = (fx, fy, ft)

T.
The 3D vector $f is orthogonal to the iso-gray surface of f
at (x,y, t).

By the shaded area (Fig. 3), we show the motion plane
together with its normal $f, represented in the figure by
its estimation, k. The angle a represents the direction of
the moving line in the image plane. Assuming that the nor-
mal of the tilting plane is k, the problem is how the 2D nor-
mal flow vector in the xy-manifold can be obtained from
the 3D vector. In this case we have a linearly symmetric
(local) image in 2D, i.e. in xt- and yt-manifold. Linearly
symmetric 2D images are defined as images consisting of
iso-gray curves that are (parallel) lines:

gðcosðaÞx0 þ sinðaÞy0Þ ¼ gðaTs0Þ ð1Þ

Here g(s) is a one-dimensional function and the vectors

s0 ¼ ðx0; y0Þ
T
; a ¼ ðcosðaÞ; sinðaÞÞT ð2Þ

represent the coordinates of an arbitrary point in the image
plane and the normal of the line(s) defining the linearly
symmetric image, respectively. Eq. (1) manufactures a 2D
image by replacing the argument of the 1D function g with
the ‘‘equation’’ of a line:

cosðaÞx0 þ sinðaÞy0 ¼ s ð3Þ
1 Note that the normal velocity in the xy-manifold is invariant to a sign
change of the gradient, i.e. the vectors $f and �$f represent the same
plane encoding a single velocity vector in the xy-plane.
Clearly, the gray-value does not change as long as we are
on a line, i.e. the (x0,y0) pair satisfies Eq. (3), and therefore
the motion of linearly symmetric image is justified when
speaking about moving lines in image sequences. We pro-
duced a 2D function from a 1D function, by performing
a coordinate transformation (CT), because we substituted
the single scalar argument of g(s) with an expression of
two variables. We take the CT one step further and trans-
late one of the lines in the pattern cos(a)x0 + sin(a)y0 using
a time parameter t.

We can assume that the position vector s0 = (x0,y0)T

represents a (spatial) point in the image plane at the time
instant t = 0. We wish to move this line with the velocity
va, where a is the direction of the velocity (kak = 1) and
v is the absolute speed. A velocity in the direction orthog-
onal to a, i.e., when the line moves ‘‘along itself’’, will not
be observable which is also known as the aperture problem.
Accordingly, only in the direction of a can a motion be
observed in a linearly symmetric image. It may not be the
true motion, but it is the only motion that we can observe.
Accordingly, after time t, a point on the line can be
assumed to have moved to the position

sðtÞ ¼ ðxðtÞ; yðtÞÞT ¼ s0 þ vt � a ð4Þ

so that s0 = s � vt Æ a. The vector va is the normal image

velocity or normal optical flow. Substituting the gray-values
expression in Eq. (1) yields a spatio-temporal image (se-
quence) in which the lines of g move with the same velocity:

gðaTs0Þ ¼ gðaTsðtÞ � vtaTaÞ ¼ gðaTs� vtÞ ¼ gð~kTrÞ ð5Þ

Here we have defined the new variables ~k and r as the spa-
tial variables augmented with the temporal variables �v

and t, respectively ~k ¼ ½aTj � v�T 2 E3, r = [sTjt]T 2 E3.
However, even Eq. (5) represents a linearly symmetric im-
age but in 3D, i.e. its iso-surfaces consist of parallel planes.
The vector ~k is thus equal to the normal of the plane
~kTr ¼ constant that will be fit by the most significant eigen-
vector of the 3 · 3 structure tensor of f(x,y, t) (Bigun and
Granlund, 1987). Notice that the first two elements of ~k
are normalized to have length 1. Accordingly, given that
at least one of its first two elements is nonnil, the normal
vector k is related to ~k as

~k ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q ð6Þ

Obtained via such a normalization from the most signifi-
cant eigenvector of the structure tensor, the first two ele-
ments of ~k will then be equal to a:

a ¼ kxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q ;
kyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
x þ k2

y

q
0
B@

1
CA

T

ð7Þ

and the third element will be equal to the speed in the nor-
mal direction (in the image plane):
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v ¼ ktffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q ð8Þ

to the effect that the velocity or the normal optical flow will
be given by �va

v ¼ �va ¼ � kt

k2
x þ k2

y

ðkx; kyÞT

¼ � 1

kx
kt

� �2

þ ky

kt

� �2

kx

kt
;
ky

kt

� �T

¼ ðvx; vyÞT ð9Þ

Assuming the equation of the motion plane is given by
kxx + kyy + kzz = C, where C is some constant, the
intersections of this plane with the x,y, t-axes are given
by C/kx, C/ky, and C/kz, respectively, Fig. 3. Accordingly,
if we know the tilts of the motion plane in the xt- and
yt-manifolds, i.e.

tan c1 ¼
kx

kt
and tan c2 ¼

ky

kt
ð10Þ

we can determine the normal velocity, v. The tilts tanc1 and
tanc2 can be estimated in the total least square (TLS) error
sense as the local directions of the 2D lines in the xy- and
yt-manifolds by using the following complex convolution
(Bigun et al., 1991; Bigun, 2006).

~u1 ¼
Z Z

of
ox
þ i

of
ot

� �2

dxdt ð11Þ

~u2 ¼
Z Z

of
oy
þ i

of
ot

� �2

dy dt ð12Þ

It is worth noting that the quantities ~u1 and ~u2 are complex
valued and that the ‘‘~’’ denotes that these are TLS estima-
tions of the true directions. Here f is the space–time image
that depends on three variables, but the integrations are
carried out in 2D manifolds, xt and yt. The obtained com-
plex numbers ~u1 and ~u2 correspond to the most significant
eigenvectors of the respective 2D structure tensors. They
estimate the directions of the lines in the xt- and yt-mani-
folds, but in the double angle representation (Granlund,
1978). To be precise, the complex numbers ~u1 and ~u2 will
relate to c1 and c2 as follows:

~u1 ¼ m1ðcosð2c1Þ þ i sinð2c1ÞÞ ¼ m1 expði2c1Þ ð13Þ
~u2 ¼ m2ðcosð2c2Þ þ i sinð2c2ÞÞ ¼ m2 expði2c2Þ ð14Þ

where m1 and m2 are certainty measures. In consequence,
the arguments of ~u1 and ~u2 must be halved to yield the
two tilt angles, c1 and c2 providing for an approximation
of the velocity, Eqs. (9) and (10).

kx

kt
¼ tan c1 ¼ tan

1

2
argð~u1Þ

� �
) ~vx ¼

tan c1

tan2 c1 þ tan2 c2

ð15Þ
ky

kt
¼ tan c2 ¼ tan

1

2
argð~u2Þ

� �
) ~vy ¼

tan c2

tan2 c1 þ tan2 c2

ð16Þ
Here, the ‘‘~’’ is used to denote that these quantities are
estimations of vx and vy.

In our implementation we first used Eqs. (11) and (12) to
compute the two direction angle components needed to
obtain the tilts, Eqs. (15) and (16), which in turn enabled
us to estimate the normal image velocities in lip-images,
Eq. (9). In that, only processing along two planes embed-
ded in 3D spatio-temporal images were needed. In the next
section we quantify the accuracy of this motion estimation
scheme.

3. Quantification of the motion estimation accuracy

In this section we quantify the velocity estimation algo-
rithm by using two synthetic images, a rotated fan and an
expanding circle with different velocities and spatial fre-
quencies. An advantage of synthetic image sequences is
that the ground truth regarding velocities is known and
an accuracy quantification of velocity vector computations
is possible. Here we applied the described algorithm to a
rotated fan and expanding circle to compute the motion
from images.

The following steps are used for extracting the normal

image velocities from an image sequence, f(x,y, t).

(I) Permute the space–time image f along the vertical and
horizontal axis to obtain the xt-image and yt-image
sets.

(II) Calculate ~u1 and ~u2 (using Eqs. (11) and (12)) at every
pixel of the spatio-temporal image.

(III) Calculate the velocity ~vx and ~vy from ~u1 and ~u2 ,
according to Eqs. (15) and (16).

(IV) Form an image sequence pair to represent the normal
velocity, v(x,y, t) = (vx(x,y, t), vy(x,y, t)).

In the following tests we applied this scheme to quantify
the directions and the magnitudes of the normal image

velocity estimations. All original images have an intensity
dynamic range consisting of the integers in the interval
[0,255].

Fig. 4a shows an image containing all possible directions
of sine waves with exponentially decreasing frequency in
the radial direction of the circles. In the experiments the
sine waves were shifted to generate an image sequence with
64 frames. In Fig. 4b we show the profile along a line indi-
cated in (a) where we can observe the varying spatial fre-
quency in the test image as a 1D graph. Fig. 4c illustrates
the obtained normal optical flow estimation for one frame.
The length of the arrows represents the magnitude of veloc-
ity and the gray-values in the background image represent
the directions of the estimated velocities. We can see that
the gray shift is continuous and monotonous. The velocity
direction accuracy is given further precision for the white
circle in Fig. 4d, where we observe that the estimated veloc-
ity direction follows the true velocity direction very closely
since the graph is linear. The absolute speeds increase radi-
ally in agreement with the ground truth.



Fig. 4. (a) Expanding waves test image. (b) Profile of (a) along the indicated line. (c) The estimated normal optical flow vectors with the velocity direction in
background. (d) The graph shows the estimated argument of (c) along the indicated white circle.

Fig. 5. (a) A skewed fan pattern. (b) The direction and magnitude of normal image velocity estimation where the dense background is the estimated
velocity direction.
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The image in Fig. 5a shows a synthetically produced fan.
We rotate the image to create artificial motion and obtain
128 frames. The estimated velocity can be seen in Fig. 5b,
where the velocity magnitudes and directions are repre-
sented by the gray values and the arrows, respectively.
We can see that the arrows change their directions as the
directions in a spiral do.

The above results signify a reasonable accuracy of the
velocity estimation when local images clearly exhibit line
motion and allow us to use such measurements in applica-



Fig. 6. The suggested joint audio–visual speaker verification system. Speech signal is converted to Mel-Frequency features, which in turn were merged
with the image normal flow of the lip-motion features. The merged feature sets are then presented to the GMM system for person verification.
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tions. In the following section we describe the extracted
motion estimation features in a Gaussian mixture model
(GMM) framework to perform speaker authentication.
4. Identity verification on XM2VTS

This section describes a speaker verification system
using joint modeling of speech and lip-movements in a
Gaussian mixture model.

Fig. 6 shows an illustration of our merged system of
audio and visual signal for speaker verification. The speech
signals were recorded at a 16 kHz sampling rate. The fea-
ture extraction is discussed in detail in Section 4.1. The
video stream was 720 · 576 in spatial resolution. Before
computing the lip-motion the video is manually cropped
to yield the lip-area having the size 128 · 128, and the color
images are transformed to the gray scale.2 Section 4.2,
describes the visual feature extraction with the steps from
Section 2 with further details of the spatial direction. Then
next, in Sections 4.3 and 4.4, we present an alternative
motion-estimation estimation technique used in our com-
parisons, and the fusion method, respectively. Finally, in
Section 4.5, the speaker verification system setup is
presented.
4.1. Speech analysis extracting Mel-frequency features

A person can be distinguished from others by the vocal
tract structure, which is implicitly reflected in the speech
spectrum. There are several spectral representations of a
person’s speech. In this paper we use the most common
audio features, the cepstral coefficients derived from a
Mel-frequency filter-bank. The filter-responses effectively
2 Extracting a lip-rectangle, approximately centered on the lip, is
possible to do automatically by mouth/eye detection techniques, e.g. see
Smeraldi and Bigun (2002). To remove a possible bias of this procedure on
the verification significance of lip-movements, we cropped the lip-rectangle
manually in the first frame of an image sequence.
constitute the speech spectrum. From the speech spectrum,
cepstral coefficients are extracted, forming our Mel-fre-
quency cepstral coefficients (MFCC) feature vector (Rey-
nolds and Rose, 1995). The sampled speech in the
XM2VTS database were stored in files as a common data
stream (wave format), which were then processed by using
the HTK (Hidden Markov model toolkit) (Young et al.,
2000; Veeravalli et al., 2005). The speech features in this
study were the MFCC vectors that were generated by the
HTK.

The overall process for speech features is illustrated in
Fig. 7, which shows the sampled waveform being converted
into a sequence of acoustic parameter blocks (A-frame).
The duration of the waveform used to compute each
parameter vector is usually referred to as a window size,
which is set to 25 ms in our experiments. The elapsed time
between window size and the output sampling period or
frame period is 10 ms. Normally, the window size will be
larger than the output sampling period so that successive
windows overlap. Each parameter block consists of a 39-
dimensional vector. This vector contains 12 cepstral coeffi-
cients extracted from the Mel-frequency spectrum of the
frame with normalized log energy, 13 delta coefficients,
and 13 delta–delta coefficients. The delta and delta–delta
coefficients are the first and the second order time deriva-
tives of the extracted cepstral coefficients and are also
known as the velocity and the acceleration, respectively.

4.2. Lip-motion features from video

We are interested in person-unique facial changes due to
speech production and therefore we analyze the mouth
region only. Common approaches to extract such informa-
tion are often based on geometric features or intensity
features, either when the whole face or part of the face
are considered (Duc et al., 1997; Sanchez et al., 1997).
While it is always present in speech production, it is worth
noting that lip-motion can also be present even without
speech production, e.g. when producing facial expressions.



Fig. 7. The feature extraction process with a fixed window size and fixed
frame period. Features are extracted for each block forming the speech
feature vectors.
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Also, lip-reading by motion analysis has been shown to be
useful (Fasel and Luettin, 2003; Mase and Pentland, 1991),
because during the speech production the lip-deformations
and intensity changes in the mouth area change in a highly
word-specific manner. In this study we only consider lip-
motion due to speech production that is person-specific.
We suggest and quantify lip-motion based features around
the mouth area in an attempt to obtain person specific lip-
dynamics information.

The algorithm described in Section 2 was used to esti-
mate the normal velocities of the lips over each 10 consec-
utive images of an image sequence for a speaking person
where the velocity features were computed in each pixel
of the image. Fig. 8 illustrates the normal optical flow of
the mouth area where we can see that the most significant
motion vectors are around the lip-area which also contains
most of the edges.
Fig. 8. The estimated normal image velocity vectors of lip-movement over some
XM2VTS database.
4.3. Motion estimation by differentials in two frames

First, we compare our method, described in Section 2,
with Lucas and Kanade’s approach (Lucas and Kanade,
1981). In this technique, the optical flow can be estimated
by the solution of a linear regression problem. This hap-
pens typically for a local image pattern g(x,y) wherein all
points translate with the same velocity. The linear regres-
sion problem is also known as mean square error (MSE)
estimation which results in solving a 2 · 2 system of equa-
tions. The solution involves the inverse of the 2D structure
tensor, which uniquely exists if the structure tensor is non-
singular, which in turn occurs if and only if the image lacks
linear symmetry. A linear symmetry exists in a 2D image if
its iso-curves consist of parallel lines. This means that,
according to this technique, no velocity will be estimated
from the image if an eigenvalue of the structure tensor is
zero. Therefore, no velocity will be estimated reliably, if
the local image motion is similar to the one illustrated in
Fig. 2. This is because the method is designed to estimate
the motion of ‘‘points’’, not ‘‘lines’’.

In Fig. 9, we show the estimated optical flow (Lucas and
Kanade, 1981), on two different speakers from the
XM2VTS. Fig. 9a shows a frame of a speaking male (upper
figure part) and female (lower figure part) person from the
XM2VTS database. By using the two consecutive frames of
(Fig. 9b and c), the optical flow has been computed and is
shown in Fig. 9d.

The quality differences in the motion estimation in the
two results are significant because there are far fewer reli-
ably estimated motion vectors for the female person. The
optical flow quality in the male person images is superior
because of the beard-texture, resulting a severe limitation
for its use in this application, since the persons without
facial hair around their lips are in clear majority (females,
and males without facial hair). Also, the technique will not
be very useful as significant person-specific information is
encoded in the motion of lip-outlines.
images from an image sequence of a speaker pronouncing ‘‘0–9’’ from the



Fig. 9. (a) A male (upper) and female (lower) speaker pronouncing ‘‘0–9’’ from the XM2VTS database. The used mouth area is shown in (b) and (c). (d)
The estimated optical flow using Lucas and Kanade (1981).
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4.3.1. Feature clustering

Using the technique suggested in Section 2, in each
mouth-region frame (128 · 128 pixels) we have dense 2D
velocity vectors. We need to extract statistical features from
the normal velocity to reduce the amount of data without
degrading identity-specific information excessively. First,
we reduce the 2D vectors to 1D scalars by only allowing
three directions (0�, 45�, �45�) as marked with the six solid
lines in six regions (Fig. 10a). The motion vectors within
each region become real scalars that take the signs + or �
depending on which direction they move relative to their
expected spatial directions (solid lines). The next step is to
quantize the estimated velocities from being allowed arbi-
Fig. 10. Illustration of the model used for motion simplification around the m
into six regions, marked by dashed lines where each region is projected into a sp
estimated velocity vectors that were divided onto four parts by the dashed lin
trary real scalars to a more limited set of values, here 20.
Empirically we found that direction and speed quantization
are significant to identity verification as this reduces the
impact of noise on the motion information around the
lip-area. The quantized speeds are obtained from the data
by applying an automatic clustering technique, the fuzzy
c-means (Pal and Bezdek, 1995), at four regions of the
mouth-region (Fig. 10b). The obtained cluster-centers,
and their corresponding cluster-populations, were used as
a feature vector for each of the four regions. Consequently,
each of these sub-regions has a 40 dimensional feature vec-
tor, consisting of 20 cluster-centers and 20 cluster-popula-
tions, representing the statistics of lip-motion.
outh area in a lip-movement sequence. (a) The velocity vectors are divided
atial direction marked by the solid line. (b) The results of a clustering of the
es. The gray-values encode the absolute speeds in predefined directions.
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4.4. Audio–visual fusion

Fusion is a known problem and has been studied
increasingly in multi-modal person authentication. It has
been investigated in two ways (Varshney, 1997), feature

fusion and decision fusion also called score fusion. Feature
fusion may result in high dimensional feature vectors but
it is a more informative way of representing the individual
traits than the decision fusion because a score or a decision
is a real valued scalar whereas a feature is typically repre-
sented by a large vector.

To preserve the discriminatory information as long as
possible in the processing chain, we have taken the feature

fusion approach when combining the audio and video
information (Stover et al., 1996). We merge the features
that we described above into a single audio–visual feature
vector, as illustrated by Fig. 11. This allows us to develop
a joint audio–visual dynamic-model for person-specific
information in the data. Furthermore, the recognition
methods developed for automatic speech and speaker rec-
ognition over three decades can be utilized in a straightfor-
ward manner. The acoustic and visual sampling rates are,
however, different. The speech data as well as visual data
are significantly reduced by the feature extraction process-
ing giving an opportunity to synchronize the two data
strands at the feature level. The speech feature vectors,
described in Section 4.1, covering a window of 25 ms, is
Fig. 11. Direct fusion of speech and visual features. The speech features (a) are
features (b) are sampled at 25 frames/s. The fusion, (c), pairs every speech featu
of one quarter of an image frame.
shown in Fig 11a. As mentioned, each visual feature vector
corresponds to one fourth of a lip-frame (Fig 11b). The fac-
tor four is also the ratio between the audio and the visual
data output rates to the effect that we can merge each of
the four feature vectors of a visual frame with its own
audio feature vector (Fig 11c). That is, the merged feature
vectors (79 elements) come at the rate of the audio feature
vectors but have both audio (39 elements) and lip-motion
(40 elements) information. The lip-motion information
originating from the same instant are thus distributed in
four consecutive samples of the merged data.

The GMM system operates independently of the fusion
model. The experiments as to how alternative combina-
tions of the divided frames in the visual signal merged with
the audio signal influence the performance will be pre-
sented in Section 5.3.
4.5. Speaking person verification using Gaussian mixture

model

A Gaussian mixture model can be represented as a
weighted sum of multivariate Gaussian distributions (Rey-
nolds and Rose, 1995).

pðxjkÞ ¼
XM

j¼1

pjbjðxÞ ð17Þ
sampled at every 10 ms with a window width of 25 ms. The clustered visual
re-vector with one visual feature-vector that only represents the lip-motion
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Here x is a D-dimensional feature vector, pj and bj(x) for
j = 1 . . .M represent the mixture weights and the compo-
nent densities that are multivariate Gaussian densities.
The Gaussian mixture model is parameterized by the mean
vector lj, covariance matrix Rj and mixture weights pj for
all components bj(x) for j = 1 . . .M. These are the model
parameters, and are collectively represented by k

k ¼ lj;Rj; pj

� �
; j ¼ 1 . . . M ð18Þ

For each identity a unique GMM is built, i.e. a k is com-
puted which can also be used to label people’s identities.
The mixture weight pj can also be interpreted as the prob-
ability that a personal feature x is generated by the compo-
nent density j. Finally, the function p(xjk) represents the
probability that the feature x is observed given that the
identity is k.

The problem of person verification can then be formu-
lated as finding the identity model which has the highest
a posteriori probability for an observed sequence of fea-
tures O = {x1,x2, . . . ,xI}. Using the Bayes rule, this optimi-
zation problem can be reformulated as

arg max
i

PrðkijOÞ ¼ arg max
i

pðOjkiÞPrðkiÞ
pðOÞ ð19Þ

where each speaker is represented by a GMM model ki. By
assuming, that p(O) is the same for all speaker models and
that Pr(k) is equally likely for all person identities we can
simplify Eq. (19) to

arg max
i

pðOjkiÞ ð20Þ

However, the probability p(Ojk) can be calculated as the
sum of the conditional probabilities p(OjI,k) over all possi-
ble states I, and can be written as

pðOjkÞ ¼
X

I

pðO; I jkÞ ¼
X

I

pðOjI ; kÞpðI jkÞ ð21Þ

The recognition problem is then equivalent to maximizing
equation (21) and involves the following three problems
and their well studied solutions (Furui, 1997):

(I) Evaluation: How to compute p(Ojk) given k? This is
achieved by the forward–backward algorithm.

(II) Decoding: How to choose I so that p(OjI,k) is
maximized? This is achieved by the Viterbi
algorithm.

(III) Estimation: How to estimate the model k? This is
archived by the Baum–Welch algorithm.

The training process, described in Section 4.6, was car-
ried out by the HTK using the Baum–Welch re-estimation
technique and this improves the recognition results on
training set incrementally. The use of this method can be
described as an iterative refinement (in the maximum like-
lihood sense) meaning that the parameters of the model are
changed stepwise (Young et al., 2000).
4.5.1. Normalization

When recording dynamic signals, in particular speech,
for analysis, the problem of variation of the signal arises
for different samples over the time. This variability over
time or even within the same session can be due to the
source itself (speaker), the way of recording, or transmis-
sion noise. Therefore a normalization of the results is
needed. In (Furui, 1997), a commonly used technique is
described to achieve invariance or resilience against the
above variations, which we also used.

• First: Average the MFCC over one utterance and sub-
tract these values from the coefficients of each block.

• Second: Normalize the distance or likelihood estima-
tion, e.g. normalization for the likelihood ratio which
is calculated between the conditional probability given
that the identity claim is authentic (client) and the con-
ditional probability given that the speaker is an impos-
tor (false claim).
4.6. System setup (HTK)

The various steps involved in all our recognition systems
are carried out by the following steps:

• Feature preparation
– Partition the database for training, evaluation, and

testing
– Speech parameter extraction
– Visual parameter extraction
• Define GMM’s structure
• Train the GMM models

– Single left to right state constellation using a Gauss-
ian mixture model with five states and three mixtures
in each state

– Flat start, which means an unsupervised learning
– Training process using Baum–Welch re-estimation
– Forward–backward algorithm (re-estimation of the

training process)

• Recognition/performance evaluation

– Test the current data against reference data set by the
Viterbi algorithm
• Adapt the dataset
– Adaptation is used to reduce the mismatch between

the current data and the model set due to source, sen-
sor, and environment variations. A maximum likeli-
hood linear regression (MLLR) is applied to adapt
a model set to the current data.
These steps are implemented in HTK software environ-
ment (Young et al., 2000; Veeravalli et al., 2005).
5. Experimental test and evaluation of speaker verification

Here, a text-dependent GMM speaker verification
system is suggested, for its additional usefulness in



Fig. 12. Partitioning of the XM2VTSDB database according to the
Lausanne protocol – Configuration I.
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verifying ‘‘liveness’’3 as a measure against play-back or
other spoofing attacks. The system was evaluated in a task
where the speech features and the visual features were com-
bined as in Section 4.3. The XM2VTS database along with
experimental results on this database are presented first.
5.1. Database description and experimental protocol

The XM2VTS audio–visual database (Messer et al.,
1999), contains audio and video sequences for 295 speakers
(male and female). For each person, several video
sequences are taken over four different sessions. In each
session, a person is asked to pronounce ‘‘0 1 2 3 4 5 6 7
8 9’’, ‘‘5 0 6 9 2 8 1 3 7 4’’ when recording the video
sequence. The Lausanne protocol (Luettin and Maitre,
1998) or the XM2VTS protocol is a common experimental
procedure for speaker verification and identification using
different modalities. The database is divided, according to
Configuration I (Fig. 12) of the Lausanne protocol, into
training, evaluation and test sets.

In Fig. 12, the training set contains 200 speakers and
70 speakers as impostors for test and 25 speakers as
impostors for evaluation. The first recoding of each sen-
tence of session 1–3 is used as training set and the second
recording of session 1–3 is the evaluation set. Session 4 is
used as a test set. As impostors, 25 speakers were used
for evaluation and 70 speakers for testing. The evaluation
set is used to produce client and impostor access scores
which were used to find the threshold for accepting or
rejecting a person.
5.2. Performance quantification

To investigate the person verification performance of the
measured features, the following experiments were con-
3 A biometric system can increase its barriers against spoofing attacks,
by seeking evidence for ‘‘liveness’’ i.e. attempting to detect if the biometric
signal is captured from a physically present person.
ducted on all speakers. The false acceptance rate FA and
the false rejection rate FR were calculated as follows:

FA ¼ ðEI=IÞ � 100 ð22Þ
FR ¼ ðEC=CÞ � 100 ð23Þ

Here the number of impostor and impostor acceptance are
denoted with I and EI, and the number of clients and client
rejections are denoted with C and EC. Eqs. (22) and (23)
are computed on the evaluation set to compute the thresh-
old for which the number of false acceptance and false
rejection errors are equal. This threshold of the equal error

rate (EER) is then used on the test set. The FA is marked
by the dotted line and the FR is marked by the dashed line
in the experimental graphs, detailed in Section 5.4.
5.3. Experimental evaluation of the synchronization/
association method

This experiment is carried out to evaluate the associa-
tion technique which also attempts to solve the synchroni-
zation problem by spatio-temporal association maps of the
image and the sound data. An equally important issue in
this effort was whether or not the various combinations
exhibit significantly different verification performance. This
is because identity specific visual motion is likely to be pres-
ent in all four subparts of a lip-image and that these fea-
tures are highly correlated. We evaluated the latter
hypothesis by performing feature fusion of audio frames
with all possible visual frames based on a GMM audio–
visual system. First we used 50 speakers and later the entire
database, as explained in Section 4, in this effort.

A verification test was thus carried out on all 24 possible
combinations of the visual features (Fig. 13(left)) to be
fused with the audio features. The second combination of
this audio–visual feature fusion, Fig. 13(right), gave the
highest EER and the third combination the lowest EER
when using 50 speakers, though with insignificant differ-
ence. In Table 1, we see the audio–visual verification results
of the various combinations where combination 3 gave the
lowest EER and combination 2 gave the highest EER using
the whole database (295 subjects). Again, the difference
between the best and worst case of combination is small
even when using the entire database. This confirms the
hypothesis that because the motion in a lip-image sequence
is roughly symmetrical, the particular feature fusion combi-
nation has an insignificant effect at the person verification
level. Possibly a true asymmetry in the lip-motions could
cause stronger verification features for certain individuals,
if combinations to be fused were adapted to be person-spe-
cific. However, to design and test such a system would
require much more data and processing than is currently
practicable. Because of the small difference to the average,
we conclude that the specific association of the visual fea-
tures with audio is a less important issue in performance
evaluation of our system, and therefore we report on and
discuss here only the first combination (Fig. 13).



Fig. 13. Audio–visual feature combination and fusion. In the left part of the image, all possible combinations of visual feature frames are presented. Right
of the image we see the merging method of audio frames with first alternative of the visual features.

Table 1
Verification results of first, second and third possible alternatives of the
audio–visual feature fusion using 295 subjects

Audio–visual system Evaluation (%) Test (%)

Combination 1 99.5 97.8
Combination 2 99.4 97.6
Combination 3 99.6 98.1
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5.4. Experimental results

First we present the results for a GMM based person
using only acoustic features. The threshold function,
obtained from the evaluation set (Fig. 14a), is used in the
test set to map the score into the confidence interval
[0,1]. From the verification results on the test set
(Fig. 14b), we obtain the minimum equal error rate of
6%. The verification rate of 295 speakers was thus 94%.
In the second test, the system used the merged visual and
acoustic features on the same basis as the earlier system.
The verification rate of the whole database was then 98%
(Fig. 14d), where the threshold from the evaluation set
was utilized (Fig. 14c).

To quantify the biometric verification power of the
visual features alone, we carried out the same experiments
with these features alone. The FA and FR graphs of the
verification results are given in Fig. 15a. The verification
performance using the threshold of the evaluation set was
78%. In Table 2, we display the verification performance
(where FA is equal to FR in the evaluation set) of the
acoustic, visual, and the combined audio–visual systems
using the same test data and test protocol. Speaker verifica-
tion based on audio and visual images from lip-movement
gives 98% correct verification which is 4–5% points better
than audio and 22% points better than visual speaker ver-
ification, Fig. 15b. It is worth noting that replacing our
motion estimation technique with that of Lucas and
Kanade (1981) yields a combined verification rate of
95%, Fig. 15b, which is 3–4% points worse than using
our motion estimator.

The improvement of the combined system compared to
the speech only system is a �50% reduction in EER. This
confirms the importance of the visual signal as a comple-
mentary information to speech, not the least because it is
more difficult to reduce the verification errors when the
speech system has already a low error rate as compared
to when it would have a high error rate. The good perfor-
mance of the speech system is explained by the high quality
of the speech data (office environment) in the XM2VTS
database. As a consequence, these experiments support
the view that the added value of lip-motion, measured as
EER reduction of a person recognition system in environ-
ments having heavy (acoustic) noise (e.g. airports, trains,
airplanes) is likely to be higher than �50%, not less. A
speaker recognition system deployed in a noisy environ-
ment e.g. an airport could therefore potentially benefit a
reduction of its errors by an order of magnitude if lip-
motion information is added.
5.5. Comparative discussion

We quantified the significance of lip-movements in bio-
metric person authentication as a stand-alone modality as



Fig. 14. Speaker verification results using only audio signal and audio–visual signal. Acoustic evaluation results are in (a) and verifications (test) results are
in (b). The graphs in (c) and (d) show the corresponding evaluation and test results for the combined audio–visual verification system.

Fig. 15. (a) Verification results of the visual verification system. (b) The ROC curves of different audio and/or visual verification systems.

1380 M.-I. Faraj, J. Bigun / Pattern Recognition Letters 28 (2007) 1368–1382
well as in conjunction with the audio modality using a large
(currently the largest) database. The closest comparable
study is the system reported by Jourlin et al. (1997). The
experiments in that report, however, were carried out on
the M2VTS database, containing 37 speakers. They
reported 72% verification rate assuming that the tracking
of lip-contours was successful in all frames of all image
sequences. We report 78% verification rate on lip-motion
only, using a significantly larger dataset of 295 persons.
Additionally, our technique does not presuppose a success-
ful tracking since the visual features we suggest require nei-
ther segmentation nor lip-tracking. Another difference



Table 2
Verification results of the acoustic, visual, and the combined audio–visual
systems

Set/system Evaluation (%) Test (%)

Acoustic 96 94
Visual 80 78
Audio–visual 99 98
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between the two systems is that in the present study we
have fused image and audio features, whereas in the above
study it was the scores of the image and audio that were
fused.

We can only compare our algorithmic elements with
other reports that studied the optical flow for lip-motion
(Dieckmann et al., 1997; Frischholz and Dieckmann,
2000; Tamura et al., 2004), because these studies have
not reported verification results on databases that allow a
comparison. First, the motion estimation technique used
in (Dieckmann et al., 1997; Frischholz and Dieckmann,
2000; Tamura et al., 2004) measures the motion of points
as it avoids regions having the aperture problem. Accord-
ingly, this type of optical flow presupposes the availability
of texture in local images (lack of lines) which is sometimes
naturally available, e.g. a beard close to mouth, or
unshaved male face, but mostly not. By contrast, the
motion estimation technique used here, assumes the oppo-
site, namely, it requires the presence of spatial direction,
such as lines and edges (not dots or isotropic texture), in
still image frames. Our experiments carried over both
female and male persons’ data support that these image
structures are available in the moving lips in significant
amounts in practice. This becomes more important when
considering that the XM2VTS database images show entire
faces without a particular focus on the mouth region,
causing the lip-areas to have relatively low resolution
(128 · 128). Second, our lip-motion features do not contain
any iterative algorithm, as all computations are based on
closed form arithmetic function evaluations. In commonly
used iterative algorithms, similar to Horn–Shunk (Horn
and Schunck, 1981), the actual computation time per image
frame is not constant. This makes the implementation of
iterative methods more difficult on simple computational
architectures.
6. Conclusion and discussion

We have presented a motion estimation technique with
application to biometric identification systems. The tech-
nique exploits information from a set of orientations of
projected 2D images from the 3D time-image that yield
the normal of an optimal plane which estimates velocities.
Our results indicate that the technique’s accuracy and reli-
ability to extract discriminative velocities features are suffi-
cient as stand alone and in combination with audio
information in biometric identity verification systems. This
solution requires neither segmentation nor lip-tracking,
which is a computationally efficient alternative to the gen-
eral lip-dynamics estimations. Furthermore, this technique
is the first to suggest lip-motion features for person authen-
tication to the best of our knowledge.

The performance of the suggested biometric system,
yielding approximately 80% verification rates for the lip-
motion alone, supports the conclusion that our features
of lip-dynamic contains significant information for person
authentication. Feature integration of extracted motion
statistics with audio information improved the speaker ver-
ification performance of even high quality acoustic infor-
mation (office environment) with additional 4–5% points
on top of the already high verification rates (�94%), i.e.
reducing the equal error rate with �50%. We can with rea-
sonable confidence conclude that the suggested lip-motion
features offer relevant measures for person verification pur-
poses. Considering the size of the test database, the results
also support the view that the lip-motion information offers
a way to improve identity authentication systems using
speech in the presence of (acoustic) noise.

We have provided experimental support for an idea of
feature integration at an early stage. It indicates better deci-
sion performance than score fusion in audio–visual person
authentication, while it offers a possibility to verify ‘‘live-
ness’’ of the users in applications.

In this work we focused on the feature extraction tech-
nique with an application for speaker verification system.
However, there are still many interesting problems left to
investigate. These include the effect of feature reduction
method, Gaussian Mixture Model, and the training
method. The experimental results of an integrated speech
(limited vocabulary) and speaker recognition using lip-
motion and speech in a discriminative classifier setting
(SVM) is envisaged.
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