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Abstract. This paper proposes a new robust bi-modal audio visual
speech and speaker recognition system by lip-motion and speech biomet-
rics. To increase the robustness of speech and speaker recognition, we
have proposed a method using speaker lip motion information extracted
from video sequences with low resolution (128 ×128 pixels). In this pa-
per we investigate a biometric system for speech recognition and speaker
identification based using line-motion estimation with speech informa-
tion and Support Vector Machines. The acoustic and visual features are
fused at the feature level showing favourable results with digit recogni-
tion being 83% to 100% and speaker recognition 100% on the XM2VTS
database.

1 Introduction

In recent years, some techniques have been suggested that combine visual fea-
tures to improve the recognition rate in acoustically noisy environments that
have background noise or cross talk among speakers [1][2][3][4][5]. The present
work is a continuation of [6]. The dynamic visual features are suggested based
on the shape and intensity of the lip region [7][8][9][10][11] because changes
in the mouth shape including the lips and tongue carry significant phoneme-
discrimination information. So far the visual representation has been based on
shape models to represent changed mouth shapes that rely exclusively on the
accurate detection of the lip contours, often a challenging task under varying il-
lumination conditions and rotations of the face. Another disadvantage is the fluc-
tuating computation time due to the iterative convergence process of the contour
extraction. The motion in dynamic lip images can be modelled by moving-line
patterns also known as normal image velocity [6][12].

Here we use direct feature fusion to obtain the audio-visual observation vec-
tors by concatenating the audio and visual features. The observation sequences
are then modelled with a Support Vector Machine (SVM) classifier for speech and
speaker recognition respectively. The studies [13][14] [15] reported good perfor-
mance with Support Vector Machine (SVMs) classifiers in recognition, whereas
traditional methods for speaker recognition are GMMs [16] and artificial neural
networks [17]. By investigating SVM instead of the more common GMM [6],
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we wanted to study the performance influence of the classification method on
speaker recognition and speech recognition.

Here, we extended previous work [6] by studying novel quantization technique
for lip features in two additional applications - audio-visual speech recognition
and biometric speaker identification. The reminder of the paper is organized
as follows. In Section 2 we describe briefly the lip-motion technique for the
mouth region along with our quantization (feature-reduction) method, followed
by acoustic feature extraction in Section 3. In Section 4, the database used and
the experimental setup are described. Section 5 describes SVM classifiers used
for speech and speaker recognition, and the experimental results are shown in
Section 6. Finally, we conclude with a discussion of the experiments and the
remaining issues.

2 Visual features by normal image velocity

Bigun et al. proposed a different motion estimation technique based on an eigen-
value analysis of the multidimensional structure tensor [18], allowing the min-
imization process of fitting a line or a plane to be carried without the Fourier
Transform. Applied to optical-flow estimation, known as the 3D structure-tensor
method, the eigenvector belonging to the largest eigenvalue of the tensor is di-
rected in the direction of the contour motion, if motion is present. However, this
method can be excessive for applications that need only line-motion features.
We assume that the local neighbourhood in the lip image contains parallel lines
or edges, this assumption is realistic [19]. Lines in spatio-temporal image trans-
lated with a certain velocity in the normal direction will generate planes with
a normal that can be estimated in a total-least-square-error (TLS) sense as the
local directions of the lines in 2D manifolds using complex arithmetic and con-
volution [18]. The velocity component of translation parallel to the line cannot
be calculated; this is referred to as the aperture problem. We denote the normal
unit vector as k = (kx, ky, kt)T and the projection of k to the x–y coordinate
axes represents the direction vector of the line’s motion. The normal, k, of the
plane will then relate to the velocity vector va as follows

v = va = − kt
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where v is the normal image flow. The normal velocity estimation problem be-
comes a problem of solving the tilts (tan γ1 = kx

kt
) and (tan γ2 = ky

kt
) of the

motion plane in the xt and yt manifolds, which is obtained from the eigenvalue
analysis of the 2D structure tensor, [18]. Using complex numbers and smoothing,
the angles of the eigenvectors are given effectively as complex values such that
its magnitude is the difference of the eigenvalues of the local structure tensor
in the xt manifold, whereas its argument is twice the angle of the most signif-
icant eigenvector approximating 2γ1. The function f represents the continuous
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Fig. 1. Illustration of velocity estimation quantification and reduction.

local image, whose sampled version can be obtained from the observed image
sequence. Thus, the arguments of ũ1 and ũ2 deliver the TLS estimations of γ1

and γ2 in the local 2D manifolds xt and yt respectively, but in the double angle
representation [20], leading to the estimated velocity components as follows.
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tan γ2
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(3)

The tilde over vx and vy donate that these quantities are estimations of vx and
vy. With the calculated 2D-velocity feature vectors, (vx, vy)T , in each mouth-
region frame (128×128 pixels) we have dense 2D-velocity vectors. To extract
statistical features from the 2D normal velocity and to reduce the amount of data
without degrading identity-specific information excessively, we reduce the 2D
velocity feature vectors (vx, vy)T at each pixel to 1D scalars where the expected
directions of motion are 0◦, 45◦, −45◦ – marked with 3 different greyscale shades
in 6 regions in Fig. 1 . The motion vectors within each region become real scalars
that take the signs + or − depending on which direction they move relative to
their expected spatial directions (differently shaded boxes).

f(p, q) = ‖(vx(p, q), vy(p, q))‖ ∗ sgn(6 (vx(p, q), vy(p, q))), p, q = 0 . . . 127. (4)

The next step is to quantize the estimated velocities from arbitrary real
scalars to a more limited set of values. Empirically we found that direction and
speed quantization are significant reduces the impact of noise on the motion
information around the lip area. The quantized speeds are obtained from the
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data by applying a mean approximation as follows.

g(l, k) =
N∑

p,q=0

f(Ml + q, Nk + p), p, q = 0 . . . (N − 1), l, k = 0 . . . (M − 1) (5)

where N and M represent the window size of the boxes (Fig. 1) and the num-
ber of boxes, respectively. The statistics of lip-motion are represented by 144-
dimensional (M ×M) feature vectors. The original dimension before reduction
is 128× 128× 2 = 32768.

3 Acoustic features

The Mel-Frequency Cepstral Coefficient (MFCC) is a commonly used instance
of the filter-bank–based features [21] that can represent the speech spectrum.
Here, the input signal is pre-emphasized and divided into 25-ms frame every 10
ms. A Hamming window is applied to each frame that is computed by (MFCC)
vectors from the FFT-based, mel-warped, log-amplitude filter bank followed by
a cosine transform and cepstral filtering. The speech features in this study were
the MFCC vectors generated by the Hidden Markov Model Toolkit (HTK) [22]
processing the data stream from the XM2VTS database. This MFCC vector
contains 12 cepstral coefficients extracted from the Mel-frequency spectrum of
the frame with normalized log energy, 13 delta coefficients (velocity), and 13
delta-delta coefficients (acceleration).

4 XM2VTS database

All experiments in this paper are conducted by the XM2VTS database, currently
the largest publicly available audio-visual database [23]. The XM2VTS database
contains images and speech of 295 subjects (male and female), captured over 4
sessions. In each session, the subject is asked to pronounce three sentences when
recording the video sequence; we use only “0 1 2 3 4 5 6 7 8 9”. It is worth
noting that the XM2VTS data is difficult to use as is for speech recognition
experiments because the speech or lip motions are not annotated. Before defin-
ing a protocol we thus needed to annotate both speech and visual data, which
we did nearly 100% automatically by speech segmentation. For each speaker of
the XM2VTS database, the utterance “ 0 1 2 3 4 5 6 7 8 9” was divided into
single-digit sub sequences 0 to 9. For our segmentation we used HMM models of
digits Furthermore we manually verified and corrected the segmentation results
so as to eliminate the impact of database segmentation errors when interpret-
ing our recognition results. We propose two protocol setups for the XM2VTS
database; protocol 1 is the well known Lausanne protocol [23], used for speaker
identification and protocol 2 which is used for speech recognition. Protocol 2 is
also suggested by other studies [14]. Further details of this protocol can be found
in [24].
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Protocol 1 – the training and the evaluation group contains 225 subjects
where 200 subjects as clients and 25 subjects as impostors. For the testing group
yet another 70 subjects as impostors. For clients sessions 1, 2 and 3 are used as
the training and evaluation sets and session 4 as the test set. Protocol 2 – the
speakers were involved both in training SVMs and testing SVMs, we used total
of 4 pronunciations for training and 4 for testing. The training and test samples
were completely disjoint.

5 Classification by Support Vector Machine

The SVM formulation is based on the Structural Risk Minimization principle,
which minimizes an upper bound on the generalization error, as opposed to the
Empirical Risk Minimization [25][26]. An SVM is a discrimination-based binary
method using a statistical algorithm. The background idea in training an SVM
system is finding a hyperplane w · x+b = 0, as a decision boundary between two
classes. For linearly separable training dataset labelled pairs xi, yi, i = 1, . . . , l,
where xi ∈ <n and y ∈ {1,-1}l, the following equation is verified for each
observation data (feature vector).

di(wT xi + b) ≥ 1− ξi for i = 1, 2, ..., l ξi > 0, (6)

where di is the label for sample data xi which can be +1 or -1; wi and b are
the weights and bias that describe the hyperplane; ξ represents the number of
data samples left inside the decision area, controlling the training errors. In our
experiment we use the inner-product kernel function as RBF kernel

K(x,y) = exp(−γ ‖x− x‖2), γ > 0, (7)

When conducting speech-classification experiments, we will need to choose
between multiple classes. The best method of extending the two-class classifiers
to multi-class problems appears to be application dependent. For our experi-
ments we use the one against one approach. It simply constructs for each pair
of classes an SVM classifier which separates those classes. All tests here were
performed for only the speech signal, only the visual signal, and the merged
audio-video signal by using the SVM toolkit [27].

6 Experimental results

We want to quantify the performance and audio-complementary of our visual fea-
tures in speaker recognition and speech recognition using the XM2VTS database.
First the text-prompted speaker-recognition test using protocol 1 are presented
and then the speech-recognition system test results using protocol 2 are pre-
sented. In our experiments we use direct fusion at feature level, which are de-
tailed in [19].
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Kernel Audio recognition rate Visual recognition rate Audio-Visual recognition rate

RBF 92% 80% 100%

Table 1. Speaker recognition rate by SVM using word “7”.

6.1 Speaker-identification system by SVM

A smaller dataset of 100 speakers were tested for all digits and the most signifi-
cant word for the speaker recognition rate was digit “7” which gave the highest
recognition rate. The experiment follows protocol 1 using all 295 speakers:

– Partition the database for training, evaluation, and testing according to pro-
tocol 1.

– Train the SVM for an utterance so that the classification score, L (the mean
of the classification equation 6 for an utterance), is positive for the user and
negative for impostors.

– L is compared to a threshold T.
• Find the threshold T such that False Acceptance is equal to False Re-

jection using the evaluation set.
• Using the threshold T, the decision L is made according to the rule: if L

> T accept the speaker else reject her/him.

However, protocol 1 is desired for verification (1:1 matching). To perform iden-
tification (1:many matching) we proceed as follows:

– Identify the speaker from a group of speakers
• We construct classifiers to separate each speaker from all other speakers

in the training set.
• The speaker identity is determined by the classifier that yields the largest

likelihood score.

Table 1 shows the results of using SVM classifiers with RBF kernel function
using only one word (digit) to recognize the speaker identity. The recognition per-
formance obtained when using coefficients both from dynamic image and speech
are considerably higher than when using a single modality based on speech pa-
rameters. These results show that our features can perform well in identification
problems.

6.2 Speech recognition system by SVM

In Table 2, we illustrate all systems based on only acoustic, only visual and
merged audio visual feature information. We obtain the best recognition rate for
digits ”1, 6, and 7” 100%. One cause why the results in Table 2 vary is that there
is not enough information (especially visual information) for certain utterances.
This is not surprising because the XM2VTS database was collected for identity
recognition and not speech recognition. During the segmentation we could verify
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Word Audio features Visual features Audio-Visual features

0 89% 70% 92%
1 90% 77% 100%
2 86% 60% 89%
3 90% 75% 96%
4 89% 55% 85%
5 90% 50% 83%
6 100% 90% 100%
7 93% 100% 100%
8 91% 54% 83%
9 90% 49% 85%

Table 2. Speech-recognition rate of all digits using protocol 2 in one against one SVM.

that when uttering the words from 0 to 9 in a sequence without silence between
words, the words “4, 5, 8, 9” are pronounced in shorter time-lapses and the
amount of visual data is notably less in comparison to other digits. Additionally
amount of speech for each speaker differ when uttering the same word or digit
depending on the manner and speed of the speaker. The average of the speech
recognition over all digits is ≈ 68% and ≈ 90% for only visual and only audio
system respectively.

7 Conclusion and discussion

In this paper we described a system utilizing lip movement information in dy-
namic image sequences of numerous speakers for robust speech and speaker
recognition by no use of iterative algorithm or assuming successful lip-contour
tracking. In environments such as airports, outside traffic, train station etc. the
automatic speech recognition or speaker recognition system based on only acous-
tic information would with high probability be unsuccessful. Our experimental
results support the importance of adding lip motion representation in speaker-
or speech-recognition systems that can be installed for instance in mobile devices
as a complement to acoustic information.

We presented a novel lip-motion quantization and recognition results of lip-
motion features as standalone and as a complement to audio for speaker and
speech recognition tasks using extensive tests. Significant improvements of au-
dio based recogntion utilizing our motion features to achieve high recognition
performance, for speech as well as identity are provided.

We noted via our segmentation that the words “4, 5, 8, 9” were containing less
visual information during the speech utterance in the XM2VTS database. The
poor recognition performance of these digits indicate that XM2VTS database
does not contain sufficient amounts of visual information on lip movements.
Not surprisingly, if the visual feature-extraction is made on sufficient amount of
visual speech data, the available modelling for recognition tasks appears to be
sufficient for successful recognition.
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