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Abstract—This paper presents the scheme and evaluation of a robust audio-visual digit-and-speaker-recognition system using lip

motion and speech biometrics. Moreover, a liveness verification barrier based on a person’s lip movement is added to the system to

guard against advanced spoofing attempts such as replayed videos. The acoustic and visual features are integrated at the feature level

and evaluated first by a Support Vector Machine for digit and speaker identification and, then, by a Gaussian Mixture Model for speaker

verification. Based on � 300 different personal identities, this paper represents, to our knowledge, the first extensive study investigating

the added value of lip motion features for speaker and speech-recognition applications. Digit recognition and person-identification and

verification experiments are conducted on the publicly available XM2VTS database showing favorable results (speaker verification is

98 percent, speaker identification is 100 percent, and digit identification is 83 percent to 100 percent).

Index Terms—Speech recognition, speaker recognition, motion estimation, normal image flow, normal image velocity, lip reading, lip

motion, GMM, SVM, biometrics.

Ç

1 INTRODUCTION

THE performance of currently available interactive recog-
nition systems for speech and speakers is not robust

against changes of environmental conditions—background
noise, type of microphone, and so on. Using visual features
can improve the recognition rate in acoustically noisy
environments that have background noise or cross talk
among speakers. Another advantage of combining audio
and video for interactive person recognition is its ability to
prevent unknown user attacks using prerecorded facial
images or speech data of known people. In recent years,
techniques have been suggested to combine visual and
audio features to help solve recognition problems [7], [12],
[33]. The performance of multimodal systems using audio
and visual information is known to be superior to those of
the acoustic and visual subsystems [3], [7], [32], [1]. Visual
dynamic lip features can be used in speech and speaker-
recognition systems to provide complementary information
[39], [37], [23], leading to improved speaker-recognition
performance, as demonstrated by [32] and [17]. Williams
[38] suggested a method to capture facial parts with
markers attached to the face and DeCarlo and Metaxas
[10] presented a model-based full-face tracking system,
though its relevance to speech recognition has not been
shown. The lip information is suggested based on the shape
and intensity of the lip region [28], [11], [19], [6], [21]
because changes in the mouth shape, including the lips and
tongue, carry significant phoneme-discrimination informa-
tion. Luettin and Thacker [25] suggested shape models to
represent changed mouth shapes as feature vectors—for
example, gray-level distribution profiles around the lip

contours. Finally, whole-word models are built by Hidden
Markov Models (HMMs) for visual speech [25]. This
solution relies exclusively on the accurate detection of the
lip contours, often a challenging task under varying
illumination conditions and rotations of the face. Another
disadvantage is the fluctuating computation time due to the
iterative convergence process of the contour extraction. The
motion in dynamic lip images can be modeled by moving-
line patterns [13], [20], also known as normal image velocity.

Integration by fusion has been increasingly studied in
multimodal recognition systems [1], [35]. Here, we use
direct feature fusion to obtain the audio-visual observation
vectors by concatenating the audio and visual features. The
resulting vectors are called observation sequences and are
then modeled with a Gaussian Mixture Model (GMM) and
a Support Vector Machine (SVM) classifier for speech and
speaker recognition, respectively. Recent studies report
good performance with SVMs used as classifiers in
recognition [36], [15], [8]. An SVM can provide a powerful
discriminative classifier for finding models of the boundary
between a speaker and impostors compared to traditional
methods for speaker recognition such as GMMs [29] and
artificial neural networks [14]. By exploring SVMs, we
study the performance influence of the classification
method on speaker and speech recognition.

In this paper, we extend previous work [13] by introdu-
cing a new feature-reduction method used for quantization.
Furthermore, we study these lip features in three novel
types of applications—text-prompted audio-visual speech
recognition (digit recognition), speaker recognition, and
liveness detection.1 The paper starts by briefly describing
our feature-extraction technique for the mouth region along
with our feature-reduction method in Section 2, followed by
the acoustic feature extraction method in Section 3. The
database used and the experimental setup are described in
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1. A biometric system can increase its barriers against spoofing attacks
by seeking evidence for liveness, that is, by attempting to detect if the
biometric signal is captured from a physically present person as opposed to
a photograph or tape recorder.
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Section 4. Section 5 describes the GMM and SVM
classifiers used for speech and speaker recognition, and
the experimental results are shown in Section 6. We
conclude with a discussion of the results and remaining
issues in Section 7.

2 VISUAL FEATURES BY NORMAL IMAGE VELOCITY

Optical flow is the distribution of apparent velocities in the
movement of brightness patterns in an image sequence.
Horn and Schunck [18] and Lucas and Kanade [22]
presented widely used methods for determining the motion
by linear regression among a family of optical flow analysis
techniques. Horn and Schunck’s method is based on an
iterative algorithm that is more difficult to implement on
simple computational architectures. Lucas and Kanade’s
method has the advantage of only using two-frame
processing. This method is computationally inexpensive,
but can be unreliable when estimating motion in edge
displacements in image sequences because of its texture
assumptions. Bigun et al. [2] proposed a different motion
estimation technique based on an eigenvalue analysis of the
multidimensional structure tensor, allowing the minimiza-
tion process of fitting a line or a plane to the spectrum to be
carried out without the Fourier transform. Applied to
optical flow estimation and known as the 3D structure-
tensor method, the eigenvector belonging to the largest
eigenvalue of the tensor is directed in the direction of the
contour motion, if such a motion is present. However, this
method can be excessive for applications that need only line
motion (contour motion) features. Assuming that the local
neighborhood in the image contains lines or edges (not
points or “textures”), the computations can instead be
carried out in 2D subspaces of the 3D spatiotemporal space.
For lip motion in image sequences, this assumption is
realistic [13]. Lines in the spatiotemporal image will
generate planes with a normal that can be estimated by
using complex arithmetic and convolution.

A line in the image plane translated with a certain

velocity in the normal direction will generate a plane in

the spatiotemporal image. The velocity component of the

translation parallel to the line cannot be calculated; this is

referred to as the aperture problem. The normal unit vector

is denoted as k ¼ ðkx; ky; ktÞT and the projection of the

normal vector to the x-y coordinate axes represents the

direction vector of the line’s motion. The normal k of the

plane will then relate to the velocity vector va as follows:

v ¼ va ¼ � kt
k2
x þ k2

y
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where v is the normal image flow. The normal velocity

estimation problem becomes a problem of solving the tilts

ðtan �1 ¼ kx
kt
Þ and ðtan �2 ¼ ky

kt
Þ of the motion plane in the xt

and yt manifolds, which is obtained from the eigenvalue

analysis of the 2D structure tensor [2]. Using complex

numbers and smoothing, the angles of the eigenvectors are

given effectively by
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Here, ~u1 is complex valued ði ¼
ffiffiffiffiffiffiffi
�1
p

Þ such that its
magnitude is the difference between the eigenvalues of
the local structure tensor in the xt manifold, whereas its
argument is twice the angle of the most significant
eigenvector approximating 2�1. The interpretation of ~u2 is
analogous to that of ~u1. The function f represents the
continuous local image, whose sampled version can be
obtained from the observed image sequence. Thus, the
arguments of ~u1 and ~u2 deliver the Total Least Square
estimations of �1 and �2 in the local 2D manifolds xt and yt,
respectively, but in the double-angle representation [16],
leading to the following estimated velocity components:
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The tildes over vx and vy indicate that these quantities
are estimations of vx and vy. With the calculated 2D-
velocity feature vectors ðvx; vyÞT in each mouth-region
frame (128� 128 pixels), we have dense 2D-velocity vectors.
Our earlier method [13] reduced the 2D-velocity vector to
one dimension and then used a computationally exhaustive
clustering method. Here, we suggest replacing the cluster-
ing method with a mean approximation, yielding a much
faster and more intuitive algorithm for feature reduction.
We reduce the 2D-velocity feature vectors ðvx; vyÞT at each
pixel to one-dimensional scalars where the expected
directions of motion are 0, 45, and �45 degrees—marked
with three different gray-scale shades in six regions in
Fig. 1a. The motion vectors within each region become real
scalars that take the signs þ or � depending on which
direction they move relative to their expected spatial
directions (differently shaded boxes):

fðp; qÞ ¼ ðvxðp; qÞ; vyðp; qÞÞ
�� �� � sgnðffðvxðp; qÞ; vyðp; qÞÞÞ: ð6Þ

Here, p; q ¼ 0 . . . 127.
Why use three spatial directions in six regions? This is

because local lip motions are not completely free but must
follow physical constraints. Mase and Pentland [26] and
Yamamoto et al. [39] investigated lip articulation during
speech by means of motion detection around different
people’s mouths. It is possible to conclude from these and
other observations that the articulation of the lips pro-
gresses in a constrained manner during lip movement. For
instance, when making the sound /o/, the lip articulators
deform so that the right and left sides of the mouth move
toward each other while the upper and lower areas move
up and down, respectively (Fig. 1b).
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The next step is to quantize the estimated velocities from
arbitrary real scalars to a more limited set of values.
Empirically, we found that direction and speed quantiza-
tion significantly impacts the effect of noise on our estimate
of the motion around the lip area. The quantized speeds are
obtained from the data by calculating the mean value as
follows:2

gðl; kÞ ¼
XN�1

p;q¼0

fðNlþ p;Nkþ qÞ: ð7Þ

Here, p; q ¼ 0 . . . ðN � 1Þ and l; k ¼ 0 . . . ðM � 1Þ, where N ¼
10 and M ¼ 12 represent the window size of the boxes
(Fig. 1a) and the number of boxes, respectively. The resulting
mean values were used as a feature vector representing 144-
dimensional ðM �MÞ feature vectors containing the statis-
tics of lip motion. It is worth noting that the original
dimension before reduction is 128� 128� 2 ¼ 32; 768.

3 ACOUSTIC FEATURES

A person’s vocal tract structure is a distinguishable physical
property that is implicitly reflected in the speech spectrum.
The Mel-Frequency Cepstral Coefficient (MFCC) is a
commonly used instance of the filter-bank-based features
[9] that can represent the speech spectrum. The speech
features in this study were the MFCC vectors generated by
the Hidden Markov Model Toolkit (HTK) [40] processing
the data stream from the XM2VTS database. The use of an
MFCC can be further motivated as the approximation of a
basic psychophysical function in the human oral system
reflected in the speech spectrum.

The input signal is preemphasized and divided into one
25-ms frame every 10 ms. A Hamming window is applied
to each frame that is computed by MFCC vectors from the
fast Fourier transform (FFT)-based Mel-warped log-ampli-
tude filter bank, followed by a cosine transform and cepstral
filtering. This MFCC vector contains 12 cepstral coefficients
extracted from the Mel-frequency spectrum of the frame
with normalized log energy, 13 delta coefficients (velocity),
and 13 delta-delta coefficients (acceleration).

4 XM2VTS DATABASE

All experiments in this paper use the XM2VTS database,
currently the largest publicly available audio-visual database

containing speech with faces [27]. The XM2VTS database
contains image sequences and speech of 295 subjects (male
and female), captured over four sessions. In each session, the
subject is asked to pronounce three sentences when recording
the video sequence; we use only “0 1 2 3 4 5 6 7 8 9.” Two test
protocols using GMM and SVM were applied in the
experiments.

Protocol 1. This is the Lausanne protocol (Configuration 1)
defined by the M2VTS consortium standardizing person-
recognition experiments. It splits the database into train-
ing, evaluation, and test groups [24]. The evaluation set is
used to quantify client and impostor access performance
after training. The evaluation set is used to find the
threshold for accepting or rejecting a person at predefined
operation points. Finally, the test data is used to quantify
how well the algorithm performs with respect to the desired
performance once the thresholds are fixed. The training
group contains 200 subjects as clients, the evaluation group
contains an additional 25 subjects as impostors, and the
testing group contains yet another 70 subjects as impostors.
For clients, sessions 1, 2, and 3 are used as the training and
evaluation sets and session 4 is used as the test set. This
protocol is used in the person-verification (GMM) and
person-identification (SVM) experiments below. For the
XM2VTS database, the Lausanne protocol is commonly
used as a standard protocol for speaker-identity experi-
ments. However, no standard protocol is proposed for
speech recognition by the M2VTS consortium. For our
experiments on speech recognition, we use protocol 2,
explained next. It is also used by other studies, such as that
of Gavat et al. [15].

Protocol 2. It is worth noting that the XM2VTS data is
difficult to use as is for speech recognition experiments
because the speech and image sequences are not annotated.
Therefore, before defining a protocol, we needed to annotate
both the speech and visual data, which we did nearly
100 percent automatically by speech segmentation. For each
person in the XM2VTS database, the “continuous” pronun-
ciation “0 1 2 3 4 5 6 7 8 9” was divided into single digit
subsequences of 0 to 9 using the HMM models. For our
segmentation, we used HMM models of the digits. Further-
more, we manually verified and corrected the segmentation
results so as to eliminate the impact of database segmentation
errors when interpreting our recognition results. From the
segmented database, we use 10 words (digits from 0 to 9)
spoken by 295 speakers, each with eight pronunciations. The
training and test group contains 295 subjects. Sessions 1 and 2
are used for the training group and sessions 3 and 4 are used
for the test set. Although there was no specific identity
modeling, the same speakers were used in both the training
and the testing of the SVMs. The training samples we used
were completely disjoint from the test samples. We used a
total of four pronunciations for training and another four for
testing (Fig. 2).

Through our semiautomatic segmentation, we noted that
the words 4, 5, 8, and 9 contained much less visual data
than the other digits during the speech utterance.

5 CLASSIFICATION

HMMs were introduced in speech recognition to provide a
better model of the dynamic spectral features. When using
an HMM in speaker recognition, the HMM is trained on a
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chosen unit (phoneme, word, or sentence) by a target
speaker (client). The query data are then compared to the
modeled data according to verification (1:1 matching) or
identification (1:many matching) tests. Depending on the
topology of the HMM, a model can be either text dependent
(sentences found in the training data set are also found in
the test data set) or text independent (words or sentences
found in training data do not necessarily reflect the words
or sentences found in the testing data). A special-case HMM
is the single-state (continuous-density) HMM; if the prob-
ability density function used for model observations in that
state is a Gaussian mixture density, the model is usually
called a GMM. Reynolds and Rose [30] introduced the GMM
into the speaker-recognition field, reporting favorable re-
sults. A GMM is trained to optimize some criterion defined on
the training data from a target speaker. This model then
generates a likelihood for the query data when the system is
operational. Another popular method is the SVM. SVMs were
explored in speaker-recognition experiments with different
types of kernels by Schmidt and Gish [31] and Wan and
Campbell [36]. SVM is a discrimination-based binary
classifier that normally models boundaries between two
classes of training data in some (usually high-dimensional)
feature space with no intermediate estimation of observation
densities [34], [4]. An SVM is characterized mainly by its
kernel function. Our observations indicate that SVM is a
faster tool than GMM when the system is operational.

5.1 GMM

This probability model can be understood as a weighted
sum of multivariate Gaussian distributions:

pðxj�Þ ¼
X
j¼1

pjbjðxÞ: ð8Þ

Here, x is a D-dimensional feature vector and pj and bjðxÞ
represent the mixture weights and the component densities,
which are multivariate Gaussian densities. The weights pj
represent the probability that identity �, a person, is
represented by the feature coming from a specific region
of the feature space x. In our system, we use the subword
level (phonemes) using a GMM with five states and three
mixtures in each state. Although it is reasonably simple to
implement and it yields good performance, training and
verification may take significant computation resources.

5.2 SVM

The SVM formulation is based on the Structural Risk
Minimization principle, which minimizes an upper bound
on the generalization error, as opposed to Empirical Risk
Minimization [34], [4]. An SVM is a discrimination-based
binary method using a statistical algorithm. It has good

ability to generalize, which is why it has been used in
pattern-recognition and information-retrieval tasks. The
background idea in training an SVM system is finding a
hyperplane w � xþ b ¼ 0 as a decision boundary between
two classes. There exist techniques allowing the use of the
fundamental SVM binary decision method in classification
tasks with more than two classes.

For a linearly separable training data set of labeled pairs

xj; yj, j ¼ 1; . . . ; l, where xj 2 <n and y 2 f1;�1gl, the

following equation is verified for each observation (feature

vector):

djðwTxj þ bÞ � 1� �j for j ¼ 1; 2; . . . ; l �j > 0; ð9Þ

where dj is the label for sample xj, which can be þ1 or �1,

wj and b are the weights and bias that describe the

hyperplane, and � controls the number of data samples left

inside the decision area, regulating the number of training

errors. In our experiment, we use the inner product kernel

function as the Radial Basis Function (RBF) kernel:

Kðx;yÞ ¼ expð��kx� yk2Þ; � > 0: ð10Þ

When conducting speech-classification experiments, we
will need to choose between multiple classes. The best
method of extending the two-class classifiers to multiclass
problems appears to be application dependent. One against
all consists of building SVM classifiers equal to the number
of classes. We train each SVM with one of the classes against
the rest of the classes. The one-against-one approach simply
constructs, for each pair of classes, an SVM classifier that
separates those classes. All tests here were performed for
only the speech signal, only the visual signal, and the
merged audio-video signal using the SVM toolkit [5] one-
against-one method. Based on the empirical evaluation of
SVM with � ¼ 2 and C ¼ 1, it gives optimal performance
using only the training data.

6 EXPERIMENTS

We want to quantify the performance of our visual features as
a single or multimodality system in speaker recognition and
speech recognition using the XM2VTS database. The experi-
ments use the protocol setups from Section 4 with two
classifiers. We use the feature-level direct-fusion technique.
The feature integration technique can be found in more detail
in the work of Faraj and Bigun [13]. First, the text-prompted
speaker-verification system is presented, followed by the
speaker-identification test using Protocol 1. Finally, we show
the digit-identification system test results using Protocol 2.

6.1 Text-Prompted Speaker-Verification System by
GMM

Table 1 presents the verification performance (with False
Acceptance being equal to False Rejection in the evaluation
set) of the acoustic, visual, and the combined audio-visual
systems using Protocol 1. The verification performance was
� 77 percent for the speaker-verification system based on
only visual information. Speaker-verification based on the
bimodal system gives � 98 percent correct verification,
which is better than the single-modality system based on
the audio or the visual information.
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6.2 Speaker-Identification System by SVM

We perform experimental tests using just one word (digit) to
recognize the speaker identity. The reason for using a single
word is that an SVM has a tendency to become a
computationally exhaustive machine for large data. How-
ever, it is possible to solve the volume problem by applying
simple clustering, as in the work of Wan and Campbell [36],
but that would introduce an unknown feature-selection
method. The results of using SVM classifiers with an RBF
kernel function to perform speaker recognition are shown in
Table 2. For the experiment, we used a smaller data set of
100 speakers to see the most significant word for the speaker-
recognition rate. Digit 7 gave the highest recognition rate,
which we also tested for the whole database of 295 speakers
(see Table 2). The experiment setup is given as follows:

. Partition the database for training, evaluation, and
testing according to Protocol 1.

. Train the SVM for an utterance so that the
classification score L (the mean of the classification
equation (9) for an utterance) is positive for the user
and negative for impostors.

. L is compared to a threshold T :

- Find the thresholdT such that False Acceptance is
equal to False Rejection using the evaluation set.

- Using the threshold T , the decision L is made
according to the following rule: If L > T , accept
the speaker; otherwise, reject her/him.

However, Protocol 1 is designed for verification
(1:1 matching). To perform identification (1:many match-
ing), we proceed as follows:

. Identify the speaker from a group of speakers:

- We construct classifiers to separate each speaker
from all other speakers in the training set.

- The speaker identity is determined by the
classifier that yields the largest likelihood score.

The performance obtained using bimodal recognition
(100 percent) compared favorably with the classical single-
modality recognition system based only on the speech
signal (92 percent) and only on the visual signal (80 percent).
When using coefficients from both the dynamic image and
the speech, the recognition rates are considerably higher
than when using a single modality based on speech
parameters. These results indicate that our features can
perform well in identification tasks.

6.3 Speech-Recognition System Using an SVM

We performed speech-recognition (digit-identification) tests
according to Protocol 2. Using the bimodal system based on
acoustic and visual-feature information, we obtain the best
identification rate for digits 1, 6, and 7 (100 percent), as
shown in Table 3. The results in Table 3 do vary, one cause
being that there is not enough information (especially visual
information) for certain utterances. This is not surprising
because the XM2VTS database was collected for identity
recognition and not speech recognition. The digits 4, 5, 8, 9,
and, sometimes, 2 give worse identification rates in the
bimodal mode than with just audio input for this reason.
The lack of visual data has negatively influenced the
bimodal fusion module, which presently assumes that the
quality of information is uniform across the digits. During
the segmentation, we could verify that, when uttering the
words from 0 to 9 in a sequence without silence between
words, the words 4, 5, 8, and 9 are pronounced in shorter
time lapses and the visual data is notably less in comparison
to other digits. Additionally, the duration of utterances for
each speaker differs when uttering a word or digit. For
instance, one speaker may take 10 image frames to utter one
digit and another may take only four frames for the same
digit. The average speech-recognition rate over all digits is
� 68 percent and � 90 percent for visual and audio systems,
respectively. The digit-identification rate using combined
audio and video varies between 83 percent and 100 percent.

6.4 Liveness Detection

We illustrate in Table 4 the confusion matrix containing the
digit-identification rate for one individual using only visual
information using Protocol 1. The aim in this study is to
interpret these probabilities of false/correct assignment as a
liveness detection barrier. From the illustrated matrix in
Table 4, we note that the probability estimation of correct
assignment for deciding a digit 1 when it is uttered is 0.9.

Accordingly, the probability of deciding “non-i” when
the signal is from an utterance of the digit “i” is thus called
~pi, for instance, ~p1 ¼ ð1� p1Þ for the digit 1 is 0.1. Liveness is
a relatively new research area in biometrics and there are
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several strategies to decide on liveness. Our strategy is to use
the recognized digits in the lip-reading (machine) expert
discussed above on what has been uttered, as a liveness
evidence or score. For instance, the liveness score for a
machine expert recognizing four times of five digits is 0.8,
representing the average identification rate. The liveness
assessment expert for a random digit sequence will be

p ¼
XI
i¼0

ð1� ~piÞ; ð11Þ

where I is the total number of digits. The rationale behind
this strategy is as follows: The liveness system knows the
correct answer to be uttered by the clients because the digit
is prompted by the system. Consequently, the system can
measure the correct digit-identification rate of a random
sequence from the utterances of the tested person. Effec-
tively, if the identification rate of the machine is signifi-
cantly less than the statistically expected p, the tested
person may be judged as not live. In Table 4, the average
identification of a digit based on (11) is approximately 0.78
using five digits, ~p being approximately 0.22. It is also
possible to add or remove the digits that are most difficult
to recognize from the prompt sequence to increase the digit-
identification chance of the machine, which in turn reduces
the probability to accept a recorded sequence as live
because the prerecorded sequence will not correspond to
the random prompt sequence.

The liveness system can be extended by several experts,
for instance, by a speech expert by summation fusion. For
example, wipi þ ð1� wiÞqi, where pi and qi are the visual
expert and the speech expert and wi is a reliability measure
in ½0; 1	 to prefer the visual expert over the speech expert.
The liveness score for the combined lip-motion and speech
system would be

L ¼
PI

i¼0ðwipi þ ð1� wiÞqiÞ
I

: ð12Þ

The parameter wi can be chosen statistically based on how
well the individual systems assess liveness independent of
the person.

7 DISCUSSION

We have described a system using lip motion in dynamic
image sequences of various speakers for robust speech and
speaker recognition without the use of iterative algorithms
or assuming successful lip-contour tracking. Our results
show that, through motion features, we can achieve
improved results for speaker and speech recognition by
fusing the audio and video signals at the feature level.

The experimental results confirm the importance of the
visual signal as complementary information to speech.
Furthermore, by utilizing only lip-motion information, we
have presented a lip-liveness expert with experimental
results on how to indicate liveness to raise a barrier against
spoofing attempts such as replayed videos or photographs
used as masks. In environments having heavy (acoustic)
noise (for example, airports, trains, and airplanes), the
recognition system based on only speech would, with high
probability, fail. Accordingly, these experiments support
the view of the added value of lip motion. A speaker or
speech-recognition system deployed in a noisy environment
(for example, an airport) could therefore potentially gain a
reduction of its error rate if sufficient lip-motion informa-
tion is added.

A speech-and-speaker-recognition system is presented,
based on only visual features and also on the joint
modalities of audio-visual features. Visual features from
dynamic images differ considerably across speakers due to
different looks and different mouth movements, which
makes speech and speaker recognition very difficult from
only images of lips. This is, to the best of our knowledge,
the first study presenting lip-motion features as standalone
and as a complement for speaker and speech recognition
using extensive tests. We have provided reasonable experi-
mental results that motion features contain rich information
to achieve good recognition performance for speech, as well
as identity, but, most importantly, in conjunction with
audio features.

A significant bottleneck in lip-motion research became
visible in our study, namely, the lack of a database that
contains sufficient amounts of visual information on lip
movements. The results indicate that, once the visual-
feature extraction is made on a sufficient amount of visual
speech data, the available modeling for recognition tasks is
highly successful. Future work will therefore include
suitable database construction with a larger vocabulary
and with more visual information.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of Halm-

stad University and the Swedish Research Council.

REFERENCES

[1] E. Bigun, J. Bigun, B. Duc, and S. Fischer, “Expert Conciliation for
Multi Modal Person Authentication Systems by Bayesian Statis-
tics,” Proc. First Int’l Conf. Audio- and Video-Based Person
Authentication (AVBPA ’97), J. Bigun, G. Chollet, and G. Borgefors,
eds., pp. 291-300, 1997.

[2] J. Bigun, G. Granlund, and J. Wiklund, “Multidimensional
Orientation Estimation with Applications to Texture Analysis of
Optical Flow,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 13, no. 8, pp. 775-790, Aug. 1991.

[3] K.R. Brunelli and D. Falavigna, “Person Identification Using
Multiple Cues,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 17, no. 10, pp. 955-966, Oct. 1995.

[4] C.J. Burges, “A Tutorial on Support Vector Machines for Pattern
Recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2,
pp. 121-167, 1998.

[5] C.-C. Chang and C.-J. Lin, “LIBSVM—A Library for Support
Vector Machines,” www.csie.ntu.edu.tw/cjlin/libsvm, 2001.

[6] T. Chen, “Audiovisual Speech Processing,” IEEE Signal Processing
Magazine, vol. 18, no. 1, pp. 9-21, 2001.

1174 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 9, SEPTEMBER 2007

TABLE 4
Confusion Matrix for the Digit Identification for One Person “370”



[7] C. Chibelushi, F. Deravi, and J. Mason, “A Review of Speech-
Based Bimodal Recognition,” IEEE Trans. Multimedia, vol. 4, no. 1,
pp. 23-37, 2002.

[8] P. Clarkson and P. Moreno, “On the Use of Support Vector
Machines for Phonetic Classification,” Proc. IEEE Int’l Conf.
Acoustics, Speech, and Signal Processing (ICASSP ’99), vol. 2,
pp. 585-588, 1999.

[9] S. Davis and P. Mermelstein, “Comparison of Parametric
Representations for Monosyllabic Word Recognition in Continu-
ously Spoken Sentences,” IEEE Trans. Acoustics, Speech, and Signal
Processing, vol. 28, no. 4, pp. 357-366, 1980.

[10] D. DeCarlo and D. Metaxas, “Optical Flow Constraints on
Deformable Models with Applications to Face Tracking,” Int’l J.
Computer Vision, vol. 38, no. 2, pp. 99-127, 2000.

[11] U. Dieckmann, P. Plankensteiner, and T. Wagner, “Acoustic-
Labial Speaker Verification,” Proc. First Int’l Conf. Audio- and
Video-Based Biometric Person Authentication (AVBPA ’97), pp. 301-
310, 1997.

[12] B. Duc, S. Fischer, and J. Bigun, “Face Authentication with Sparse
Grid Gabor Information,” Proc. IEEE Int’l Conf. Acoustics, Speech,
and Signal Processing (ICASSP ’97), vol. 4, no. 21, pp. 3053-3056,
1997.

[13] M.I. Faraj and J. Bigun, “Person Verification by Lip-Motion,” Proc.
Conf. Computer Vision and Pattern Recognition Workshop (CVPRW
’06), pp. 37-45, 2006.

[14] K. Farrell, R. Mammone, and K. Assaleh, “Speaker Recognition
Using Neural Networks and Conventional Classifiers,” IEEE
Trans. Speech and Audio Processing, vol. 2, no. 1, pp. 194-205, 1994.

[15] I. Gavat, G. Costache, and C. Iancu, “Robust Speech Recognizer
Using Multiclass SVM,” Proc. Seventh Seminar Neural Network
Applications in Electrical Eng. (NEUREL ’04), pp. 63-66, 2004.

[16] G.H. Granlund, “In Search of a General Picture Processing
Operator,” Computer Graphics and Image Processing, vol. 8, no. 2,
pp. 155-173, 1978.

[17] T.J. Hazen, “Visual Model Structures and Synchrony Constraints
for Audio-Visual Speech Recognition,” IEEE Trans. Audio, Speech,
and Language Processing, vol. 14, no. 3, pp. 1082-1089, 2006.

[18] B. Horn and B. Schunck, “Determining Optical Flow,” J. Artificial
Intelligence, vol. 17, no. 1, pp. 185-203, 1981.

[19] P. Jourlin, J. Luettin, D. Genoud, and H. Wassner, “Acoustic-
Labial Speaker Verification,” Proc. First Int’l Conf. Audio- and
Video-Based Biometric Person Authentication (AVBPA ’97), pp. 319-
326, 1997.

[20] K. Kollreider, H. Fronthaler, and J. Bigun, “Evaluating Liveness by
Face Images and the Structure Tensor,” Proc. Fourth IEEE
Workshop Automatic Identification Advanced Technologies (AutoID
’05), pp. 75-80, 2005.

[21] L. Liang, X.L.Y. Zhao, X. Pi, and A. Nefian, “Speaker Independent
Audio-Visual Continuous Speech Recognition,” Proc. IEEE Int’l
Conf. Multimedia and Expo (ICME ’02), vol. 2, pp. 26-29, 2002.

[22] B.D. Lucas and T. Kanade, “An Iterative Image Registration
Technique with an Application to Stereo Vision,” Proc. Int’l Joint
Conf. Artificial Intelligence, pp. 674-679, 1981.

[23] S. Lucey, T. Chen, S. Sridharan, and V. Chandran, “Integration
Strategies for Audio-Visual Speech Processing: Applied to Text-
Dependent Speaker Recognition,” IEEE Trans. Multimedia, vol. 7,
no. 3, pp. 495-506, 2005.

[24] J. Luettin and G. Maitre, “Evaluation Protocol for the Extended
M2VTS Database xm2vtsdb,” IDIAP Communication 98-054,
Technical Report R R-21, number = IDIAP - 1998, 1998.

[25] J. Luettin and N. Thacker, “Speechreading Using Probabilistic
Models,” Computer Vision and Image Understanding, vol. 65, no. 2,
pp. 163-178, 1997.

[26] K. Mase and A. Pentland, “Automatic Lip-Reading by Optical-
Flow Analysis,” Systems and Computers in Japan, vol. 22, no. 6,
pp. 67-76, 1991.

[27] K. Messer, J. Matas, J. Kittler, and J. Luettin, “Xm2vtsdb: The
Extended M2VTS Database,” Proc. Second Int’l Conf. Audio- and
Video-Based Biometric Person Authentication (AVBPA ’99), pp. 72-77,
1999.

[28] E. Petajan, B. Bischoff, D. Bodoff, and N.M. Brooke, “An Improved
Automatic Lipreading System to Enhance Speech Recognition,”
Proc. SIGCHI Conf. Human Factors in Computing Systems (CHI ’88),
pp. 19-25, 1988.

[29] D. Reynolds, T. Quatieri, and R.B. Dunn, “Speaker Verification
Using Adapted Gaussian Mixture Models,” Digital Signal Proces-
sing, vol. 10, nos. 1-3, pp. 19-41, 2000.

[30] D. Reynolds and R. Rose, “Robust Text-Independent Speaker
Identification Using Gaussian Mixture Models,” IEEE Trans.
Speech and Audio Processing, vol. 3, no. 1, pp. 72-83, 1995.

[31] M. Schmidt and H. Gish, “Speaker Identification via Support
Vector Classifiers,” Proc. IEEE Int’l Conf. Acoustics, Speech, and
Signal Processing (ICASSP ’96), pp. 105-108, 1996.

[32] X. Tang and X. Li, “Fusion of Audio-Visual Information Integrated
Speech Processing,” Proc. Third Int’l Conf. Audio- and Video-Based
Biometric Person Authentication (AVBPA ’01), pp. 127-143, 2001.

[33] X. Tang and X. Li, “Video Based Face Recognition Using Multiple
Classifiers,” Proc. Sixth IEEE Int’l Conf. Automatic Face and Gesture
Recognition (FGR ’04), pp. 345-349, 2004.

[34] V.N. Vapnik, The Nature of Statistical Learning Theory. Springer,
1995.

[35] P. Varshney, “Multisensor Data Fusion,” Electronics and Comm.
Eng. J., vol. 9, no. 6, pp. 245-253, 1997.

[36] V. Wan and W. Campbell, “Support Vector Machines for Speaker
Verification and Identification,” Proc. IEEE Signal Processing Soc.
Workshop Neural Networks for Signal Processing X, vol. 2, pp. 775-
784, 2000.

[37] T. Wark, S. Sridharan, and V. Chandran, “The Use of Speech and
Lip Modalities for Robust Speaker Verification under Adverse
Conditions,” Proc. IEEE Int’l Conf. Multimedia Computing and
Systems (ICMCS ’99), vol. 1, 1999.

[38] L. Williams, “Performance-Driven Facial Animation,” Proc.
SIGGRAPH ’90, pp. 235-242, 1990.

[39] E. Yamamoto, S. Nakamura, and K. Shikano, “Lip Movement
Synthesis from Speech Based on Hidden Markov Models,”
J. Speech Comm., vol. 26, no. 1, pp. 105-115, 1998.

[40] S. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchev, and P.
Woodland, The HTK Book (for HTK Version 3.0), http://
htk.eng.cam.ac.uk/docs/docs.shtml, 2000.

Maycel Isaac Faraj received the BSc and MSc
(in 2003) degrees in computer science engineer-
ing from Halmstad University, Sweden, and the
Licentiate of technology degree in signals and
systems from Chalmers University of Technol-
ogy, Sweden, in 2006. Since 2004, he has been
a doctoral student in the Intelligent System
Laboratory at Halmstad University. His research
interests include biometrics, signal analysis,
computer graphics, computer vision, and their

applications in human-machine interaction.

Josef Bigun received the MSc and PhD
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