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Abstract

The present chapter reports on the use of lip motion as a stand alone biometric modality as well as 
a modality integrated with audio speech for identity recognition using digit recognition as a support. 
First, the auhtors estimate motion vectors from images of lip movements. The motion is modeled as the 
distribution of apparent line velocities in the movement of brightness patterns in an image. Then, they 
construct compact lip-motion features from the regional statistics of the local velocities. These can be 
used as alone or merged with audio features to recognize identity or the uttered digit. The author’s 
present person recognition results using the XM2VTS database representing the video and audio data 
of 295 people. Furthermore, we present results on digit recognition when it is used in a text prompted 
mode to verify the liveness of the user.  Such user challenges have the intention to reduce replay attack 
risks of the audio system.

Introduction

The performance of multimodal systems using audio and visual information in biometrics is superior 
to those of the acoustic and visual subsystems (Brunelli and Falavigna (1995)), (Tang and Li (2001)), 
(Bigun et al. (1997b)), and (Ortega-Garcia et al. (2004)) because these systems have a high potential for 
delivering noise robust biometric recognition systems compared to the corresponding single modalities. 
This is the general motivation for why there has been increased interest in multimodal biometric iden-
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tity recognition.  For example in audio based person recognition, phoneme sounds can be acoustically 
very similar between certain individuals and therefore hard to differentiate. By adding information on 
lip-motion, the discrimination of identities can be improved. 

Speaker recognition using visual information in addition to acoustic features is particularly advanta-
geous for other reasons too. It enables interactive person recognition which can be used to reduce impostor 
attacks that rely on prerecorded data. Raising antispoofing barriers, known as liveness detection, e.g. to 
determine if the biometric information being captured is an actual measurement from the live person 
who is present at the time of capture, for biometric systems is becoming increasingly necessary. 

In this chapter extraction of lip-motion features that takes advantage of the spatiotemporal information 
in an image sequence containing lip-motion is discussed. Motion features are suggested for recognition 
of human identities and word (digit) recognition which can be used for liveness detection. The discussions 
include filtering, feature extraction, feature reduction, feature fusion and classification techniques.

Section 2 presents a review of some previous studies relevant to the chapter. The emphasis is on 
audio-visual systems rather than the massive research body existing in the individual recognition tech-
nologies.  In particular, lip features suggested previously are discussed in greater detail. 

Section 3 presents the theory of three different concepts of motion estimation which is directly rel-
evant to this chapter. The motion estimation techniques based on texture translations and line transla-
tions are explicitly contrasted against each other. A further quantification of the speed accuracy of the 
used motion estimation that assumes moving lines or edges is given. How motion is exploited in other 
audio-visual recognition studies is also discussed. 

In Section 4 we present a discussion on how one can use estimated velocities to produce compact 
feature vectors for identity recognition and liveness detection by uttered digits. A technique for quan-
tization and dimension reduction is presented to reduce the amount of extracted features. The section 
also presents the audio and visual features concatenated at the feature level allowing, the integration 
of different audio and video sampling rates. The visual frames come at one fourth pace of the audio 
frames do, but contain more data. Yet the final concatenated feature vector must come at the same pace 
and contain approximately the same amount of data each, to avoid favoring one   over the other. The 
section also presents the performance of visual information as an audio complement feature in speaker 
recognition and speech recognition using the XM2VTS database. We present a single and multimodal 
biometric identity recognition system based on the lip-motion features using a Gaussian Mixture Model 
(GMM) and a Support Vector Machine (SVM) as model builders. Furthermore, we present the experi-
mental test using only one word (digit) to recognize the speaker identity. A discussion on related studies 
exploiting different techniques for audio-visual recognition is also included. 

Section 5 discusses the conclusions of the chapter and presents directions for future work.

Review

In speech recognition, two widely used terms are phoneme and viseme. The first is the basic linguistic 
unit and the later is the visually distinguishable speech unit (Luettin (1979)).1 Whereas the use of visemes 
has been prompted by machine recognition studies, and hence it is in its start stage, the idea of phonemes 
is old.  The science of Phonetics has for example been playing a major role in human language studies. 
The consonant letters complemented with vocals are approximations of phonemes and the alphabet 
belongs to greatest inventions of humanity.   
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Early work from (Petajan (1984)) and (Mase and Pentland (1991)) introduced visual information by 
the use of lip information as an important aid for speech recognition. (Yamamoto et al. (1998)) proposed 
visual information semi automatically mapped to lip movements through the aid of sensors put around 
the mouth to highlight the lips. The experimental results showed that significant performance could be 
achieved even by only using visual information. (Kittler et al. (1997)) presented a study using geometric 
features of the lip shapes from model based lip boundary tracking confirming the importance of lip 
information in identity recognition. 

(Luettin et al. (1996)) presented a speaker identification system based only on dynamic visual infor-
mation from video sequences containing the lip region. The geometrical features of the lips contained 
information about the shape and intensity information of the lips. The experiments were carried out 
by 12 speakers uttering digits and were later extended to the M2VTS database (37 speakers) by (Jour-
lin et al. (1997)). The person identification system based on Hidden Markov Model (HMM) achieved 
72.2% using labial information and 100% using merged acoustic and visual features. They achieved 
good performance with joint systems utilizing a score fusion (late integration) method. They used 14 
lip shape parameters, 10 intensity parameters, and the scale as visual features, resulting in a 25 dimen-
sional visual feature vector. The speaker verification system score is computed as a weighted sum of 
the audio and visual scores. 

(Brunelli and Falavigna (1995)) developed a text-independent speaker identification system exploiting 
acoustical information in combination with visual information from static face images. The system is 
based on several experts: two acoustic modalities (static and dynamic), containing derived features from 
short time spectral analysis of the speech signal, and three visual experts containing information from 
the eyes, nose and mouth. By using weighted function to classify the experts, the system performed well 
on approximately 90 speakers. Other studies using static visual information in recognition systems are 
(Tistarelli and Grosso (2000)) utilizing morphological filtering for a facial/eye localization followed by 
a simple matching algorithm for identity verification, (Duc et al. (1997) and Ben-Yacoub et al. (1999)) 
using Gabor filter responses on sparse graphs on faces but in the context of an audio-visual speaker 
verification system, (Sanderson and Paliwal (2004)) using Principal Component Analysis (PCA) for face 
feature extraction for identity verification and (Hazen et al. (2003)) using visual information from the 
different components in the face in a speaker identification system.

(Wark and Sridharan (1998)) developed a speaker verification system based on dynamic lip contour 
features extracted by Linear Discriminant Analysis (LDA) in combination with principal component 
analysis, yielding favorable results. This study was extended to merge audio-visual information by late 
integration using mixed densities of Gaussians, (Wark et al. (1999)). 

(Dieckmann et al. (1997)), proposed a system using multimodal visual information from a video 
sequence. The modalities, face, voice and lip movement, were fused utilizing voting and opinion fusion. 
A minimum of two experts had to agree on the opinion and the combined opinion had to exceed the 
predefined threshold. Other related work has exploited dynamic visual information for speaker recogni-
tion (Frischholz and Dieckmann (2000)) and (Kittler et al. (1997)), and used multimodal information 
for speaker identification (Bigun et al. (1997a) and Bigun et al. (1997b)).

(Nakamura (2001)) proposed a method based on HMMs to integrate multimodal information 
considering synchronization and weights for different modalities. He built compound HMMs, each 
including a large number of states, incorporating states in an audio HMM and a visual HMM for all 
possible combinations. The system showed improved performance of speech recognition when using 
multimodal information. 
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By utilizing the lip contour, such as the contour height, width and area, (Chen 2001)) presented a 
speech recognition system based on these features with real-time tracking using the multi-stream HMM 
without automatic weight optimization.

Biometric Recognition Framework
 
The generic framework describing biometric recognition systems is useful to understand the present 
work. We describe it in Fig. 1 and it consists of three main blocks that of capturing, processing (feature 
extraction and feature fusion) and classification. In the case of offline recognition one does not need 
to take into account the capturing methods. This chapter falls under the category of processing block, 
proposing novel methods mainly for visual feature extraction. The classification block, also known as 
matching, is based on already developed systems such as GMM (using HTK toolkit) and SVM using 
SVM library. Below, we outline the existing methods used for feature extraction and feature fusion.

Visual Feature Extraction
 
The main benefit, in speech recognition, of using visual cues is that they are complementary to the 
acoustic signal: some phonemes that are difficult to understand acoustically in noisy environments can 
be easier to distinguish visually, and vice versa. 

We distinguish two challenges in lip features processing, Fig. 2, i) detection of face/mouth/lips and 
ii) extraction of features. The first problem amounts to finding and tracking a specific facial part (mouth, 

Figure 1. The figure illustrates a block diagram of audio-visual biometric system used for speech and 
speaker recognition studies of this chapter
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Figure 2. The figure illustrates visual feature representation approaches

Figure 3. The figure illustrates the stages of information extraction in a biometric recognition system 
utilizing lip features.   The video stream is first processed by a tracking and detection technique and 
in the second block the lip features are extracted from the tracked object (mouth region, lip contours, 
lips, etc.) 
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lips, lip contours etc.)  whereas the second problem comprises the extraction of the visual information 
in terms of a small number of informative variables or  measurement entities. 

Successful mouth tracking is still challenging in cases where the background, head pose and lighting 
vary greatly, (Iyengar and Neti (2001)).  After successful face detection, the region is processed further 
to obtain lip features. Though not very detailed in terms of lip motion description,  even the bounding 
boxes of lip regions can reveal useful lip features if they are estimated for every frame independently 
because such rectangles  reveal the dynamic evolvement of the height and width (Zhang et al. (2002)) 
and (Luettin et al. (1996)) during speech  production. However, the lip information within the mouth 
region is most commonly extracted. Visual features are then extracted either from single frames (static) 
or from a set of consecutive   images (dynamic).  The visual features can be categorized into two groups: 
pixel based approaches and model based approaches, Fig. 3, regardless of whether they model the static 
or dynamic information.

•	 Pixel based approach: Each pixel in the image participates into computations of features such 
as Fourier transform, discrete cosine transformation, optical flow, etc. The features are directly 
pixel driven without form constraints between pixels which are to be contrasted to for example 
lip contour models. However, even pixel driven techniques presuppose the extraction of at least a 
sufficiently narrow region containing the mouth. The extracted lip region is often processed further 
with normalization techniques in an attempt to improve resilience against disturbances caused 
by head pose and lighting information. The pixels of the found mouth region can be mapped to 
a different space for lip features extraction. A popular mapping is projection to an image basis 
obtained by PCA. Such methods model static information in single image frames explicitly, even 
though they implicitly can represent the dynamic information between the frames, such as motion. 
Motion estimation (optical flow) which can capture the lip velocity and acceleration information in 
each pixel over time is by contrast an approach that explicitly models motion information. (Chan 
(2001)) presented a combined geometric lip features utilizing the PCA projection. The PCA are 
determined by a subset of pixels contained within the mouth. (Chiou and Hwang (1997)) on the 
other hand, presented combination of a number of snake lip contour vectors with PCA features 
from the color pixel values of a rectangle mouth region of interest. Furthermore, (Neti et al. (2000)) 
and (Matthews et al. (2001)) uses joined model of PCA techniques for estimating dimensionalities 
of shape models and appearance vectors. In this chapter we pursue the motion modeling approach 
to extract lip-motion features. The features are undoubtedly pixel driven, yet it describes but the 
allowable motions are restricted in direction to conform to what can be expected from a lip-mo-
tion. Using the motion estimation technique, requirements for accurate mouth state or lip contour 
extraction may be eased since a rough detection of the mouth region is sufficient to obtain visual 
features.

•	 Model based approach: Geometric and shape based methods represent the dynamic visual lip 
images by lip contour information and shape information of lips (Chan (2001)) and (Chiou and 
Hwang (1997)). These features are normally extracted from the region-of-interest equipped with 
a lip tracking preprocessing algorithm. Excluding the preprocessing part (lip contour tracking), 
these methods require less computation since they only work with a few control points. However, 
lip contour detection can be computationally demanding and prone to errors.       

	



  501

Lip Motion Features for Biometric Person Recognition

Next, we will present three mouth region features, proposed by (Jourlin et al. (1997)), (Dieckmann 
(1997)) and (Liang et al. (2002)) as they represent well the two categories outlined above.

Lip Feature Representation Approaches
 

Jourlin et al. (1997)

The lip feature extraction proposed by (Luettin et al. (1996)) is model based and assumes that most 
relevant information is contained in the shape (contours) of the speaker’s lips. 

The approach consists of a combination of lip contour information and the gray level distribution 
around the mouth area. During speech production the lip shape varies. For each speaker a spatiotemporal 
model that describes the mouth shape of the speaker and its temporal change is built.

They use a shape model that describes the outer and inner lip contour and a deformable gray level 
model to describe intensity values around the lip contours. Active shape models are used to locate, track 
and parameterize the lips over an image sequence. The principal modes of deformation are obtained by 
performing PCA on a labeled training set. A shape model is then approximated by a linear combination 
of the first few principal modes of deviation from the average lip curve. 

Gray levels representing the intensities perpendicular to the contour at each control point of the model 
are concatenated to form a profile vector.  The profile vectors of speakers in a training set are subjected 
to PCA to capture the profile variation modes. A profile is then represented as a linear combination 
of deviation modes (PCA basis) from the average gray profiles. The concatenated vectors of all model 
points represent a profile model for a speaker. PCA is performed on all profiles to obtain the principal 
modes of the profile variation.

In a lip sequence unseen by the system, the profile model is used to enable tracking whereby the 
curve parameters (weights, or basis coefficients) corresponding to the curves defined by the tracked 
control points are subsequently computed.  The found contour and profile parameters are used as lip 
features for speaker recognition.

Dieckmann et al. (1997)

(Dieckmann et al. (1997)) presented a speaker recognition system (SESAM) using lip features that are 
pixel based. Beside the lip information, facial information from the speaker was added.

Their approach is based on the optical flow analysis using the (Horn and Schunck (1981)) method 
applied to mouth sequences. The Horn and Schunck method is a differential motion estimation method 
based on two frame differences. The main difference between Horn and Schunck technique and Lukas 
and Kanade technique is the weighting function to enforce the spatial continuity of the estimated optical 
flow. If we set the weighting function to zero we will have the method suggested by Lucas and Kanade, 
which we will discuss in detail in Section Performance measurement.

The lip movement estimation of the SESAM system calculates a vector field representing the lo-
cal movement of each two consecutive frames in the video sequence. An averaging is used to reduce 
the amount of velocity vectors to 16 (one fourth of the original size), representing velocities in 16 sub 
regions. 3D fast Fourier transforms are applied on the velocity vectors to represent the movement of 
identifiable points from frame to frame.
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Zhang et al. (2002)

Automatic speech reading as well as speaker recognition by visual speech has been studied by (Zhang 
et al. (2002)). In this pixel based work, the authors suggest a primarily color driven algorithm for auto-
matically locating the equivalents of 3 bounding boxes for the i) mouth region, outer lip contour, inner 
lip contour. Though this is not part of the features, motion is also modeled but after that the points of the 
bounding boxes have been identified.  The used fusion is a decision fusion consisting of averaging the 
audio and lip expert scores. The study presents visual feature performance comparisons and confirms 
that the visual information is highly effective for improving recognition performance over a variety of 
acoustic noise levels.

Liang et al. (2002)

The technique proposed by (Liang et al. (2002)) is categorized as pixel based because its features are 
extracted using all pixels without an explicit constraint on the shape of the lips. 

The visual observation vector is extracted from the mouth region using basically two algorithms in 
cascade. The gray pixels in the mouth region are mapped to a 32 dimensional eigenvectors produced 
from a PCA decomposition of gray value deviations from the average mouth region. This is computed 
from a set of approximately 200000 mouth region images. Temporally, the feature are up sampled and 
normalized to match the acoustic sample rate. The visual observation vectors are concatenated and 
projected on a 13 class linear discriminant space, using Linear Discriminant analysis (LDA). By this 
the visual features are reduced to a new set of dimension 13.

Other Relevant Studies

PCA has been used by (Luettin et al. (1996)), (Potamianos et al. (1998)) and (Sanderson and Paliwal 
(2004)) to represent mouth movements in speaker and speech recognition systems. The PCA data pro-
jection achieves optimal information compression in the sense of minimum square error between the 
original vector and its reconstruction based on its projection. The achieved dimension reduction serves 
to reduce the massive image data. Here, however, it serves an even more important purpose, to prevent 
the intra class covariance matrix, needed at the next stage (LDA), from being singular. This is because 
there is typically never enough data to compute a reliable estimation of the intra class covariance matrix 
for a high dimensional dataset, as is the case in a mouth region image  (which has approximately 40000 
gray values, and there are  a couple of hundreds of frames available per class/person, typically). LDA 
transform maps the feature space to a new space for improved classification, i.e. features that offer a 
clear separation between the pattern classes. In image pattern classification, it is common that LDA is 
applied in a cascade following the PCA projection of a single image frames.      

Integration of Audio and Visual Information

Feature fusion is used here fuse different information sources with the ultimate goal of achieving supe-
rior recognition results. Fusion techniques are divided into three categories: feature fusion, intermediate 
fusion and decision fusion, (Sanderson and Paliwal (2004)) and (Aleksic and Katsaggelos (2006)). 
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•	 Feature fusion: Because it occurs early in the information processing chain leading to the decision, 
feature fusion can intuitively be perceived as the simplest fusion method as it can be implemented 
by concatenation. Though used in other fields frequently, there are few studies using feature fusion 
in audio-visual pattern recognition, (Liang et al. (2002)), essentially because of increased dimension 
and different data rates and types, causing modeling difficulties if carried out in a straight forward 
manner. There are even fewer studies reporting results on large, publicly available audio-visual 
databases. Other studies using feature fusion is (Chaudhari et al. (2003)) and (Fox et al. (2007)). 

•	 Decision fusion: Some form of recognition is performed separately for each modality and these 
results are fused at the decision level.  When there are more than 2 machine experts, ranked lists 
can be utilized (Brunelli and Falavigna (1995)), (Kittler et al. (1997)), (Wark et al. (1999)), (Luettin 
and Thacker (1997)) and (Chibelushi et al.  (2002)). This is relevant even in multiple algorithms or 
multiple classifier decision making strategies too. The latter strategy has been specifically used 
here, when we identified people and the digits they uttered, where numerous 2-class SVM are 
combined to obtain a decision on n-class (persons or digit identities) problems. The majority vot-
ing and combined voting are commonly utilized techniques in decision fusion. Majority voting 
refers to that the final decision is made by taking the (common) decision of most sub classifiers. 
For ranked lists, each sub classifier provides a ranked list that is combined with other classifiers’ 
lists in the final stage. The method requires less computation but can be more complex to grip and 
implement because some combinations will not work for some users and an automatic selection 
and combination rules will be needed.  

•	 Intermediate fusion: Information from audio and visual streams is processed during the proce-
dure of mapping from feature space into opinion/decision space. In a decision fusion process this 
mapping for audio and video streams would run in parallel and without influence on each other.  
In intermediate fusion HMMs are used often to couple and extend these two processing strands 
ending in a common decision (Liang et al. (2002)), (Aleksic and Paliwal (2002)), (Chaudhari et al.  
(2003)), (Bengio (2003)) and (Fox et al. (2007)). Complex intermediate fusion schemes promise to 
take into account for the different reliability of the two streams dynamically, and even for different 
temporal sampling rates.

	
Decision fusion can be complex quickly if it is user adaptive. This is because for large number of 

classes (users), a large amount of training is needed. 
Many biometric systems support multiple experts even within one modality as they apply decision 

fusion. However, with increased number of machine experts, the complexity of the classifier increases 
because in addition to training individual experts the training of supervisors will be mandatory as the 
experts will differ in their recognition skills (performance).  Accordingly, it is not self evident that de-
cision fusion will yield a more efficient decision making as compared to feature fusion with increased 
number of independent experts. Feature fusion might have a higher computational entry cost  in terms 
of implementation because modality specific issues need to be tackled e.g. the audio and video feature 
rates as well as the amount of data are significantly different between audio and video. On the other 
hand, feature fusion gives a better opportunity to design an effective synergy between the audio and 
video signals reducing the need for more complex decision making rules later.
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Databases

There exist only few databases suitable for recognition systems using audio-visual information. Data-
bases usually vary in the number of speakers, vocabulary size, number of sessions, scenarios, evaluation 
measures or protocols. The way of collection of databases can influence the methods or scenarios for 
which they can be useful.  For example, the database could have been collected with a specific scenario 
in mind whereas the real scenario for which a biometric system needs to be developed could be very 
different from this scenario. This makes the comparison of different visual features and fusion methods, 
with respect to the overall performance of a biometric system difficult. Here, we present an overview 
of some of the datasets that are currently publicly available and have been utilized in several published 
literatures aiming audio-visual biometric systems.

•	 M2VTS and XM2VTS database: The M2VTS (Multimodal Verification for Teleservices and Se-
curity Applications) database consists of audio and video recording of 37 subjects uttering digits in 
different occasions, (Pigeon and Vandendorpe (1997)). Because it has a small set of different users 
the work was extended to 295 subjects (Messer et al. (1999)). The resulting XM2VTS (extended 
M2VTS) database is actually a different database  that offers three fixed phrases, two ten digit 
sequences and one seven word sentence and a side view images of the subjects. All recordings 
were performed in a studio in four sessions, separated by a lapse of approximately 6 weeks, dur-
ing a period of five months. The database is intended for researches in areas related to biometric 
multimodal recognition systems and have been frequently used in the literature. (Teferi and Bigun 
(2007)) presented recently the DXM2VTS (Damascened XM2VTS) by replacing the background 
of the speakers in the XM2VTS database with videos of different real scenes. Furthermore, the 
merged images are offered with appropriate test protocols and different levels of disturbances 
including motion blur, (translation, rotation, zooming), and noise (e.g. Gaussian and salt/pepper 
noise) to measure the performance of biometric systems at different scenarios.

•	 BANCA database: The BANCA (Biometric Access Control for Networked and e-Commerce 
Applications) database consists of audio and video recordings of 208 subjects recorded by three 
different scenarios, (Bailly et al.  (2003)). The subjects were recorded while they were saying a 
random 12 digit number, name, address and date of birth. The BANCA database contains four 
different language recordings. It is aimed for realistic and challenging conditions for real time 
applications, though there are very few studies which have published results on it.  

•	 AV-TIMIT: The database consists of 223 subjects, (Sanderson (2002)), and its main properties are 
continuous phonetically balanced speech, multiple speakers, controlled office environment and 
high resolution video. Speakers were video recorded while reciting sentences from the TIMIT 
corpus. Each speaker was asked to read 20 to 21 sentences. The first sentence of each round was 
identical for all speakers and the rest of the sentences were random for each speaker.

Additional datasets, (Potamianos et al. (2003)), are DAVID, containing 100 speakers uttering digits, 
the alphabet, syllables and phrases, VALID which consists of 106 speakers recording the same sen-
tences as recorded in the XM2VTS database with some additional environment and acoustical noise, 
and AVICAR (AV speech corpus in a car environment) which consists of 100 subjects uttering isolated 
digits, isolated letters and phone numbers inside a car.
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Our experiments have been performed on XM2VTS because a large number of biometric recognition 
studies are based on it using standard protocols.  A major reason for its popularity is that it is publicly 
available and that it contains biometric data of a large number of individuals in several modalities across 
time, allowing for both impostor and client tests.

Performance Measurement

In general, the performance of a biometric recognition system is evaluated by its error rates at various 
situations. The performance of identification systems is normally reported in terms of identification 
error, defined as the probability that the correct match of the unknown person’s biometric data is cor-
related to one of the speaker subjects in the dataset. In practice this translates often to give a list of 10 
(or any other practicable number) best matches sorted in resemblance order. Such systems could also 
be equipped with an option to reject to provide a “10 best” list on various valid grounds, e.g. because 
data quality is too poor, or the likelihood that the queried identity is in the database of clients is below 
a preset threshold.

For verification systems, two commonly used error measures are the false acceptance rate (FAR)—
that is an impostor is accepted—and false rejection rate (FRR)—where a client is rejected. These error 
rates are defined by

FAR = IMA / IM
FRR = CLR / CL

where IMA and IM denote the number of accepted impostors and the number of impostor claims and 
CLR and CL represent the number of rejected clients and the number of client claims, respectively. FAR 
and FRR curves of a biometric system decrease, respective increase as a function of the threshold (as-
suming 0 means the identity claim is false, an impostor, and 1 means it is true, a client). Verification 
systems also present the performance by choosing a threshold where FAR is equal to FRR, called the 
equal error rate (EER).

In the Lausanne protocol, (Luettin and Maitre (1998)), the system performance is tested at two levels 
after the training. Although there is a fully functional system at hand at the end of the training, one has 
yet to set a threshold to make it operational. The evaluation test presents the performance of the system 
by plotting FAR and FRR curves for all possible thresholds (in practice a discrete set of  thresholds) by 
using  images that the recognition system has not seen during the training (evaluation set). The FAR 
and FRR in all our experiments are obtained on the evaluation set of the Lausanne protocol.  How-
ever, a system owner is yet to decide at which point (or points) on the ROC curve the system should 
be operated, and determine the corresponding threshold. In our publications we reported the (correct) 
verification rate (VR) which is 

VR = (1 – (FAR + FRR))

to represent the successful or correct decision rate.
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Motion estimation techniques

A fundamental problem in image sequence processing is the measurement of optical flow (or image 
velocity). The aim is to determine (approximate) the 2D motion field from spatiotemporal patterns of 
image intensity. The computed measurements of the image sequence are used, here, providing a close 
approximation to the lip motion in the 2D field. 

Several methods for computing optical flow have been proposed (Barron et al. (1992)). Here, we will 
give an overview of the differential method proposed by (Lucas and Kanade (1981)) and the structure 
tensor based technique proposed by (Bigun et al. (1991)) in addition to our proposed method.  Next we 
present the motion of two image patches that contain fundamentally different patterns.

Point and Line Motion

We can study motion in image sequences by making assumptions on the contents of the (local) 2D 
image patches on the move. Although patch types are many and therefore difficult to enlist, two types, 
the motion of lines and the motion of points, are particularly important for motion estimation. When 
an image patch consisting of points translates (the dots move in a group) relative to a fixed camera, the 
image plane of the camera registers continuously images of the motion which can be stacked to generate 
the 3D volume.  The interest in this motion has been uncertain in image analysis community mainly 
because it is possible to establish automatically by “walking” along a fixed direction (the direction of 
the parallel bunch of lines in the figure) in the stack of images.  Because every point in the original 
patch can be tracked without ambiguity in the next frame, it is this type of motion that is used to “track” 
patches and even real objects in image sequences.  The (common) direction of the lines generated by 
the moving dots represents the velocity of the 2D patch in motion, which is known as the Brightness 
Constancy Constraint (BCC).

However, images are also full of other patches (local images) that do not contain points and they 
too move. A particularly important class of patches is those that contain lines, edges and other patterns 
that have a common direction patches that possess linear symmetry, (Bigun and Granlund (1988)). 
When such a patch translates, this motion generates a tilted plane (or several parallel planes if there 
are parallel lines in the patch. Here the motion does not generate a bunch of lines that can be utilized 
to establish correspondence between points belonging two different image frames any more. One can 
track lines between image frames but not the individual points (of the lines) since it is not possible to 
observe a difference between a line that translates perpendicular to its direction, and the same line 
when  it  translates along its direction in addition to the  translation it performs in the perpendicular 
direction2. This non uniqueness (at point level) in tracking is generally not desirable in image analysis 
applications and is therefore called as the aperture problem with emphasis on “problem”. When opti-
cal flow is computed patches containing directions (linear symmetries) are typically avoided whereas 
patches containing points (texture) are promoted.  There is a BCC assumption even in this scenario but 
the brightness constancy is now at the line level.

The question is whether the motion of lines, normally not desirable in image sequence analysis, can 
be useful for lip-motion quantification. This is significant from resource utilization point of view because 
the moving patches that contain lines outnumber greatly those that contain dots3 in lip sequences. Before 
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discussing how to proceed to obtain lip-motion, we outline two methods, (Lucas and Kanade (1981)) and 
(Bigun et al. (1991)) that represent the distinction between point-motion and line-motion well.

Motion Estimation by Differentials
 
The motion direction of a contour is ambiguous, because the motion component parallel to the line 
cannot be inferred based on the visual input. This means that a variety of contours of different orien-
tations moving at different speeds can cause identical responses in a motion sensitive neuron in the 
visual system.

Differential techniques, (Lucas and Kanade (1981)) and (Horn and Schunck (1981)) compute the 
optical flow from spatial derivatives of the image intensity and the temporal difference between a pair 
of frames in an image sequence Fig. 4.  The approach assumes that the studied patch contains points 
and that the patch undergoes a translational motion,  to be precise  the image observed a time instant t 
later is obtainable from the original patch at t = 0 by translation, as follows 

)0,(),( tItI vxx −= 										          (1)

Here I represents the local image with the spatial vector x, and v = (vx,vy)
T is the velocity to be es-

timated. A differential expression for the brightness change constraint equation can be obtained if the 

Figure 4. The figure illustrates a lip sequence for a speaker uttering digits zero to nine. The vertical and 
horizontal cross section indicates the existing lip movements. 
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mathematical concept of total differential is utilized. It amounts to that the gray value change of the 
same point, i.e. the total differential, is nil as represented by the following equation

0=
dt
dI

												           (2)

This, when the chain rule of multivariable functions is utilized,

0=++=
dt
dt

dt
dI

dt
dy

dy
dI

dt
dx

dx
dI

dt
dI

								        (3)

yields the desired differential expression for BCC.

,0),(),( =+⋅∇ tItI ts xvx 									         (4)

Here, It(x,t) denotes the partial time derivative of  I(x, t)  and T
yxs tItItI )),(),,((),( xxx =∇  is the 

spatial gradient.  The first component of this equation is  a projection of the velocity vector on the gradi-
ent. If the local patch is a line (violating the underlying assumption of translating points),   the velocity 
components that are parallel to this line will be orthogonal to the gradient (which is orthogonal to  the 
line in the patch)  and will produce zero after the projection. This means that any velocity parallel to 
the line direction will not be recoverable from equation (4), which is another way of telling that there 
is an aperture problem.   

However, as it stands this equation cannot be solved even if the patch contains only points because 
there is one equation and two unknowns, (vx,vy). To obtain  the velocity components, the equation is 
applied to every point in the patch and new equations are obtained for different  points, in practice for 
all points of the patch. Because the patch pattern consists of dots (and not lines) and all dots move with 
the same translational velocity, the common velocity components can be obtained in the least squares 
error sense as below. 

g = – Gv     											           (5)

where v is unknown 
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The equation (6) contains the first order partial derivatives coming from all points in the observed 
image patch (N in total) and can be estimated by convolutions efficiently. Suggested by (Lucas and 
Kanade (1981)), this is a linear regression problem for optical flow estimation. The standard solution of 
such a system of equation is given by mean square estimate, obtained by multiplying the equation with 
GT and solving the 2x2 system of equations for the unknown v

GTg = – GTGv			    	            							       (7)

For a discrete 2D neighborhood I(xk, yk, t0), a unique solution exists if the matrix 

∑ ∇⋅∇==
k

T
ss

T II
kk

)()(GGS
  								        (8)

is invertible where 



















∂
∂

∂
∂

=∇

y
tyxI

x
tyxI

I
kk

kk

ks ),,(

),,(

)(
0

0

	            								        (9)

However, S is the structure tensor for the 2D discrete image I(xk, yk, t0),
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with “< >” representing the average over the pixels (K is the number of pixels) in the 2D neighborhood. 
If the structure tensor S has en eigenvalue that equals to zero (singular S) then no unique velocity can 
be estimated from the image measurements. This is explained by the fact that then the pattern in the 
patch consists of lines. The tensor can be singular no matter how many points participate into the regres-
sion of velocities, because the 2D pattern can consist of long (possibly parallel) lines. Accordingly, this 
situation represents the aperture problem. In this case the structure tensor is not invertible, which the 
method in (Lucas and Kanade (1981)) chooses to avoid by not calculating it. Alternatively the optical 
flow estimations for such patches are down weighted (Horn and Schunck (1981)) since they otherwise 
would cause severe discontinuities.

Motion Estimation by the 3D Structure Tensor

This method can estimate both the velocity both in the translating points, and the translating lines sce-
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narios, as it can provide a measure of confidence as to which type of scenario is most likely prevailing 
in the investigated patch.

Assume that the local intensity function f represents the intensity (gray value) of a local image in a 
3D spatiotemporal image (continuously stacked patches) and that the local intensity function f consists 
of parallel planes. This corresponds to parallel planes in 3D which is the same as that the energy is con-
centrated along an axis through the origin in the 3D Fourier transform of f. Thus, the problem of finding 
a representative velocity for the local image corresponds to finding the inclination angle of the parallel 
planes, which in turn can be solved by fitting an axis through the origin of the local image’s Fourier 
representation (Bigun (2006)). Fitting an axis is classically performed by the minimization problem, in 
the total least square error (LSE) sense. The solution is obtained by an eigenvalue analysis of the 3x3 
matrix, also known as the 3D structure tensor of the local intensity function. This 3x3 tensor can, how-
ever, be obtained directly in the spatial domain thanks to the conservation of the scalar product between 
the spatial and Fourier (frequency) domains. It can be written as follows in the spatial domain

J = trace(A)I –A	  		             							       (11)

with

∫∫∫

∫∫∫∫∫∫∫∫∫

∫∫∫∫∫∫∫∫∫

∫∫∫∫∫∫∫∫∫

∇∇=


































∂
∂









∂
∂
⋅

∂
∂









∂
∂
⋅

∂
∂









∂
∂
⋅

∂
∂









∂
∂









∂
∂
⋅

∂
∂









∂
∂
⋅

∂
∂









∂
∂
⋅

∂
∂








∂
∂

= Tff

t
f

t
f

y
f

t
f

x
f

t
f

y
f

y
f

y
f

x
f

t
f

x
f

y
f

x
f

x
f

))((

2

2

2

A

where 








∂
∂

x
f

, 









∂
∂

y
f

 

and 








∂
∂

t
f

 



  511

Lip Motion Features for Biometric Person Recognition

correspond to partial derivatives of the image in x, y and t coordinate directions and trace(A) is the sum 
of the diagonal elements of A, which also equals to the sum of all eigenvalues of A. The matrix A can 
be estimated by a discrete approximation:

∑ ∇∇≅
j

T
jj ff ))((A

           									         (12)

where )( jf∇ is the gradient at a specific discrete image position j wherewith j running over all positions 
(in all 3 directions x, y and t in the three dimensional neighborhood). The least square error corresponds 
to the least eigenvalue of J with its corresponding eigenvector representing the optimal plane fit. Find-
ing the eigenvector corresponding to the least eigenvalue of J is the same as finding the eigenvector 
corresponding to the largest eigenvalue of A. By investigating the errors of the fit (the eigenvalues), an 
approximation of the quality of the fit to the local image can be estimated along with the plane fit, the 
normal of which encodes the normal velocity in f. 

The gradient image )( jf∇  can be estimated through convolutions with partial derivative filters of 
three dimensional Gaussians. After that, the above mentioned outer products and the three dimensional 
smoothing corresponding to the triple integral equation (12) is carried out. 

It turns out that even motion of points case reduces to the same eigenvalue problem as above. The 
difference is that the multiplicity of the smallest eigenvalue is 1 and this smallest eigenvalue is zero, (close 
to zero in practice) whereas for motion of lines case the multiplicity of the smallest eigenvalue is 2. 

Figure 5. The graph shows the geometry used to derive the 2D velocity vector from the 3D normal vector 
along with the plane generated by a translating line
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However, this method requires multiple image frames although it simultaneously derives the velocity 
of moving points and lines. Accordingly, the computations can be excessive for applications that only 
need line motion features. Assuming that line motion is the most relevant motion type in lip images 
the computations can instead be carried out in 2D subspaces of the 3D spatiotemporal space.  This is 
described next.

Motion Estimation by Line Translation, Normal Optical Flow

Assume that f(x,y,t) is generated by a line translated in its normal direction with a certain velocity. The 
local image containing a moving line in the xy manifold will generate a plane in the (spatiotemporal) xyt 
space, Fig. 5. The normal of the plane, k = (kx, ky, kt)

T with || k || = 1 , is directly related to the observable 
normal velocity. Thus this velocity is encoded by the orientation of the spatiotemporal plane in the xyt 
space.  Let the normal velocity, v = (vx, vy)

T, be encoded as v = va with v as the absolute speed and a 
as the direction of the velocity which also represents the normal of the line. Being a normal vector, the 
length of a is fixed to 1, i.e. ||a|| = 1. Because the local image f is assumed to consist of a moving line, 
it can then be expressed as

TT yxvtg ),()( =− s         ,sa        							                    (13)

for some 1D function )(g , where s represents a spatial point in the image plane and t is the time. 
Defining now k~  and r as

),,(,),,(~ tyxvaa T
yx =−= r        k        								        (14)

in equation (13), we have a (linearly symmetric) function f that has iso-curves that are parallel planes 
i.e. 

)~(),,( rk Tgtyxf =

Here 1||~|| ≠k  because 

( ) 122 =+ yx aa

is required by the definition of k~  (equation (14)). Given f, the problem of finding the best k fitting the 
hypothesis

1||||with)(),,( == k    rkTgtyxf

in the total LSE sense is given by the most significant eigenvector of A. Calling this vector k, and as-
suming that it is already computed using A, k~  is simply obtained by normalizing k with respect to its 
first two components as follows
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In agreement with the definition of k~ , equation (14), we will have a (2D direction of the velocity in 
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Consequently, the velocity or the normal optical flow can be obtained by va
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so that the velocity components are given by
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As discussed above, k can be estimated by the most significant eigenvector of 3D tensor A, (Bigun 
et al. (1991)), if computational resources would not be an issue. 

Forming the 3D matrix A via triple integrals and solving for its eigenvectors and eigenvalues may 
be avoided all together if only normal flow is needed for the application at hand. From equations (18)-
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(20), the velocity and direction can be estimated by determining the tilts ( )tx kk  and ( )ty kk . The 
tilts can in turn be estimated by local orientation estimation of the intersection of our original motion 
plane with the tx and ty planes, (Isaac-Faraj and Bigun (2006)) and (Kollreider et al. (2005)). This 2D 
orientation estimation can be done by fitting a line to the 2D spectrum in the total least square error 
sense. This is discussed next.

A local 2D image with ideal local orientation is characterized by the fact that the gray values do 
not change along one direction. Since the gray values are constant along lines, local orientation is also 
denoted as linear symmetry orientation. Generally, an image is linearly symmetric if the iso-gray val-
ues are represented by parallel hyperplanes. A linearly symmetric 2D image in particular consists of 
parallel lines in 2D, and has a Fourier transform concentrated along a line through the origin. Detecting 
linearly symmetric local images is consequently the same as checking the existence of energy concen-
tration along a line in the Fourier domain, which corresponds to the minimization problem of solving 
the inertia matrix in 2D. By analyzing the local image this time as a 2D image, f, the structure tensor 
can be represented as follows for the tx plane:
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Note that this structure tensor has double integrals as opposed to its 3D counter part in equation 
(11). Eigenvalue analysis in 2D yields a particularly simple form by using complex numbers (Bigun 
and Granlund (1987))
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The argument of I20, a complex number in the t- and x-manifold, represents the double angle of the 
fitting orientation if linear symmetry exists. In consequence, this provides an approximation of a tilt 
angle via
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Using this idea both in the tx and ty manifolds and labeling the corresponding complex moments as 
txI20 , and tyI20  the two tilt estimations and in turn velocity components are obtained as follows:
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The tx and ty manifolds are shown in Fig. 5 along with the angles 1 and 2 . The tyI20  corresponds 
to equation (21) but applied to the ty manifold.

Feature Quantization and Reduction: Lip Motion Features

We need to perform additional processing to extract lip-motion specific and discriminative information 
for speech and speaker recognition applications.  To this end we proceed as follows.

1.	 In each pixel of the lip region image we have a motion estimation, given by the horizontal and 
vertical components of the velocity, (vx, vy).

	
)(|||| 22

yx vvv +== v
									         (25)	

Figure 6. The figure illustrates the quantization and reduction technique. (Left) Only a limited free degree 
of the velocity component is allowed, e.g. direction restraints. (Right)  The amount of features is reduced 
by applying 10x10 block wise averaging. 
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2.	 The image is divided into six regions, which are physically meaningful in the case of lip move-
ments, e.g. mid of upper lip, left of lower lip, etc. The regions are used to quantize the angle of 
the velocity estimation. The angle α is computed for every pixel and is represented as –1, 0 or 1. 
These values represent the motion direction relative to the predetermined line directions  of each 
region 

	
	

))(sgn(arctan)sgn(
xy vv=∠= v

							       (26)

	 We only allow 3 orientations (0 ,̊ 45 ,̊ –45˚) as marked with the 6 solid lines in the 6 regions, (Fig. 
6 – left). The 1D scalars at all pixels take the signs + or – depending on which direction they move 
relative to their expected spatial orientations (solid lines).

3.	 Due to the large dimension of the data, using velocities, v at each pixel is not a realistic option for 
applications. We found that direction and speed quantization are significant to reduce the impact 
of noise on the motion information around the lip area. The quantized speeds are obtained from 
the data by calculating the mean value in the boxes shown in Fig. 6 – right as follows,4
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	 where

	 ),(),(),( qpqpvqpf = 	           								        (28)

	 Here, (p, q) = 0 … (N – 1), and (l, k) = 0 … (M – 1), where N = 10 and M = 12 represent the window 
size of the boxes and the number of boxes, respectively. 

Implementation

The proposed motion estimation technique is a fast and robust alternative to its more time consuming 
variant discussed earlier. We will present the implementation steps to determine the optical flow com-
ponents (vx, vy), according to the scheme illustrated in Fig. 7. The Gaussian filter derivative, known for 
its separable filters, are represented here by wz , where z represents an arbitrary axis x, y and t. Given a 
spatiotemporal image of four { f} frames the following steps are performed:

Step 1. The images of the video sequence are cropped to the lip area with size 128x128 pixels and fur-
thermore converted to a grayscale image by 0.21*R + 0.72*G + 0.07*B. 

Step 2. The sequence is extracted and the orthogonal cross sections {tx} and {ty} are generated from 
the permuted xyt space. 

Step 3. The {tx} and {ty} space time manifolds are determined by computation of the orientation ac-
cording to equation (22) and its analogue for {ty}. For each {tx} plane and {ty} plane calculate its 
gradient by filtering with Gaussian derivative filters wx, wy and wt, yielding a set of images with 
complex values representing the linear symmetry.
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Step 4. Every calculated linear symmetry slice enables us to estimate the normal image velocities in 
the lip images from equation (23)-(24). In that, only the processing along two planes embedded in 
the 3D spatiotemporal images is needed. 

Step 5. The motion features are quantized and reduced by the mean method.

Using the quantization and reduction the feature vector is represented by 144 dimensions (free vari-
ables) instead of the original 128x128x2 = 32768 (free variables) dimensions that describe the motion 
at all pixels of the mouth region. It is worth noting that the local lip motions are not completely free but 
must follow physical constraints. It is possible to conclude from related studies and our early published 
work that the articulation of the lips progresses in a constrained manner during lip movement, i.e. mo-
tion in lip image sequences is very symmetrical.

Figure 7. The figure illustrates the processing steps to obtain quantized and dimension reduced lip-mo-
tion features 
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Identity recognition and liveness detection by uttered digits 

Acoustic Feature Vector

In our experiments, the data stream comes from the audio part of the XM2VTS database and the Mel 
Frequency Cepstral Coefficient (MFCC) vectors are generated by the Hidden Markov Model Toolkit 
(HTK) (Young et al. (2000)), where the vectors originate from 25 ms frames (overlapping time periods), 
streaming out every 10 ms. For each frame, the audio feature vector contains a total of 39 real scalars–12 
cepstral coefficients plus normalized log energy, 13 delta (velocity) coefficients, and 13 delta-delta (ac-
celeration) coefficients.

Visual Feature Vector

The image sequences used for our experiments are based on the video part of the XM2VTS database. 
The video was captured with 720x576 pixel frames. In order to reduce the computational complexity, 
the image frames, before computing the lip-motion features, were automatically cropped to the lip area 
(128x128) by the technique presented in (Kollreider et al. (2007)). This method suggest quantized angle 
features (“quangles”) designed to reduce the impact of illumination variation. This is achieved by using 
both the gradient direction and the double angle direction (the angle provided by the 2D structure ten-
sor, (Bigun and Granlund (1988))), and by ignoring the magnitude of the gradient. Boosting techniques 
are applied in a quantized feature space to detect the mouth. However, by visual inspection, we verified 
that the cropping functioned as intended to eliminate the impact of localization errors on the errors that 
can be attributed to the suggested lip-motion features. Furthermore, the color images are transformed 
to grayscale.  After the motion estimation, the features were quantized and the dimension is reduced to 
represent the relevant mouth movement information automatically.

Feature Fusion: Association and Concatenation 

Images come at 4 times slower pace than the audio features. If a classifier is to model the audio and 
video information at a certain time, somehow the rates of audio and video features must be equalized 
while keeping as much information as possible from both. For simplicity, this rate equalization problem 
is called synchronization, which is a term also used by several audio-video compression studies, here. 
The vectors will be merged to a single vector because we wanted to develop synergetic (joint) modeling 
of the data as opposed to merging decisions in a late stage of the classification process.

Synchronization is carried out by first extracting the reduced motion features discussed earlier.  This 
amounts to a 144 feature vector. The lip image is divided into 4 sub quarters so that each sub quarter is 
represented by 36 scalars of the total 144, Fig. 8. Second, each one of the obtained sub quarter feature 
vectors is  concatenated with one of the four audio vectors available at the time support of the lip image 
(the audio features come at 4 times faster rate than image frames). There are different possibilities to do 
this concatenation given that the four visual vectors can be associated with 4 audio vectors in different 
combinatorics. However, it turns out that, the particular order does not impact the recognition perfor-
mance significantly, (Isaac-Faraj and Bigun (2007)). Even using only one of the lip sub quarter motion 
features in the mentioned concatenation (i.e. repeating it 4 times) will yield almost as good recognition 
results. Experimental results on this will be presented in Section Experimental setup and tests.
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Throughout this work, we assumed that motion in lip images is reasonably symmetric. Because of 
this and that the motion vectors are both quantized and compactly represented as 1D scalars, we as-
sumed that the order of associating  the four visual sub quarters of lips with speech has not a significant 
impact on the performance.  In next section we present experiment where this assumption is tried out. 
In the experiment we have merged audio visual feature vectors by only using 1 sub quarter of the visual 
frame and repeating it 4 times, Fig. 8.

	
Experimental Setup and Tests

The XM2VTS Database

In all the experiments, one sequence (“0 1 2 3 4 5 6 7 8 9”) was used from the XM2VTS database for 
every speaker. The database contains 295 speakers (speech with faces) (Messer et al. (1999)). In each 

Visual frame 

V-F 1                          V-F 2

V-F 3                         V-F 4 

Audio frame 

A-F 1       A-F 2 

        A-F 3         A-F 4 

  Audio visual feature vector 
Frame 1:                              A-F1    V-F 1 

Frame 2:  A-F2    V-F 1 

Frame 3:  A-F3    V-F 1

Frame 4:   A-F4    V-F 1 

…..
….
….
…
..
..
..

Figure 8. The figure illustrates the joint audio-video information utilizing only 1 sub quarter of the 
visual information 
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session, the subject is asked to pronounce three sentences when recording the video sequence. Because 
of the different purposes, one extra protocol is presented for digit recognition in addition to the well 
known Lausanne protocol used for identity recognition. The database needed to be segmented for the 
digit recognition experiment, which was performed nearly 100% automatically. The “continuous” pro-
nunciation of “0 1 2 3 4 5 6 7 8 9” was divided into single digit subsequences 0 to 9 using the methods 
presented in (Teferi and Bigun (2007)). Furthermore, the segmentation was manually verified and cor-
rected so as to eliminate the impact of database segmentation errors. 

Protocol 1: Fig. 9(left), this is the Lausanne protocol (Configuration I) defined by the M2VTS con-
sortium standardizing person recognition experiments conducted on XM2VTS. It splits the database 
into training, evaluation, and test groups (Luettin and Maitre (1998)). This protocol is used in person 
verification and person identification experiments below. For the XM2VTS database, the Lausanne pro-
tocol is commonly used as a standard protocol for speaker identity experiments. However, no protocol 
is proposed for speech recognition by the M2VTS consortium which conceived the database. 

Protocol 2: Fig. 9(right), illustrates this protocol wherein 10 words (digits from zero to nine) are 
spoken by 295 speakers, each with 8 pronunciations. For the training group, sessions 1 and 2 are used 
and sessions 3 and 4 are used for the test set. The training samples we used were completely disjoint 
from the test samples. We used a total of 4 pronunciations for training and another 4 for testing. 

Classification: Speaker Verification
	
Speaker verification is carried out in the following steps and is implemented in the HTK software en-
vironment (Young et al. (2000)) and (Veeravalli et al. (2005)).

Figure 9. The figure illustrates protocol 1 (left) used for identity recognition and protocol 2 (right) used 
for digit recognition 
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Step 1. Partition the database for training, evaluation, and testing according to protocol 1.
Step 2. Use single left-to-right state constellation using 5 HMM states and a GMM comprised of 3 

Gaussians at  each state
Step 3. Perform training process by using Baum-Welch re-estimation. In the training, a model for each 

client is built. Additionally a world model (average impostor), is also built, λW. This world model 
is common for all clients and is built by aggregating the entire training set specified by the Lau-
sanne protocol.

Step 4. Verify using the Viterbi decoding giving a score L which is obtained as the difference between 
the client probability and the world probabilities log(L) = log(P(O| λi) – log(P(O| λW) ) given a 
word sequence O.5 Here, the score L is compared to a threshold T obtained from the FAR and 
FRR curves.6 Using the threshold T, the decision L is made according to the rule: if L > T accept 
the speaker else reject her/him. The reported verification rates are 1 – (FAR+FRR).

Classification: Speaker Identification

The following steps are conducted in our speaker identification system and are implemented by using 
an SVM:

Step 1. Partition the database for training, evaluation, and testing according to protocol 1.
Step 2. Train the SVM for an utterance so that the classification score, L, is positive for the user and 

negative for impostors. 
a.	 Identify the speaker from a group of speakers

i.		  We construct a classifier for each person in the group to separate the user from other 
users in the training data. The training data is defined by protocol 1 (Lausanne Pro-
tocol). 

ii.		  The speaker identity is determined by the classifier that yields the largest score.

Classification: Digit Recognition for Liveness Detection
	
The following steps are conducted in our digit recognition system for the purpose of liveness detection 
and are implemented by using an SVM (Chang and Lin (2001)):

Step 1. Partition the database for training, evaluation, and testing according to protocol. Audio-visual 
feature vectors of dimension 75 (39 audio and 36 video) for each digit utterance were extracted. 
Each digit had thus several feature vectors coming from the same digit. Furthermore the feature 
vectors of all speakers of uttering the same digit were given the same digit label to obtain a person 
independent digit recognizer.

Step 2. We constructed simple SVM classifiers to separate the feature vectors of one digit (75 dimen-
sional each) from those of every other digit pair wise, i.e. we solved a two-class problem 45 times 
(10 choose 2 combinations). The responses of these classifiers, Lij were binary, i, or j.  After the 
training there were thus a fixed hyperplane associated with each classifier such that one could 
classify an unknown feature vector (of dimension 75) into one of the two digit labels i or j. 

Step 3. The feature vectors of the unknown digit were extracted. We note that the utterance of a digit 
normally has many feature vectors because the duration of utterances of digits are completely free, 
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i.e. they vary with the digit, the person, as well as the mood of the person, whereas each feature 
vector has a fixed time support of 25 ms. For each vector we obtained 45 decisions from the SVM 
classifiers Lij, obtained via training. These responses were digit labels i or j such that they could 
be used as a vote for one of the 10 digit labels, “Zero”, … , “Nine”.  A voting was thus carried out 
involving each feature vector (each casting 45 votes “Zero”, … , “Nine”). The digit label receiving 
most votes was output as the recognized digit label. 

Experimental Results and Discussion

The experiments were performed for speaker verification using GMM (states in an HMM setup within 
HTK), speaker identification using SVM and digit recognition for liveness detection using SVM. The 
systems were tested using joint audio-visual and single modalities, respectively. The tests used the XM-
2VTS with all 295 subjects uttering the sentence 0 to 9. The protocol 2 setup was introduced for digit 
recognition because the XM2VTS Lausanne protocol is mainly proposed for identity recognition.

Table 1 shows the results utilizing protocol 1 for the experiments. The verification performance is 
approximately 77% for a speaker verification system based on only visual information. Speaker veri-
fication based on a bimodal system gives approximately 98% correct verification, which is better than 
the single modality system based on the audio or the visual information.

In this experiment the merged audio-visual feature vectors are presented according to Fig. 10. The 
features are put into HMM system (with GMM at each state) for audio-visual speaker verification. The 
ROC curves in Fig. 10 illustrate the audio-visual speaker verification performance for the evaluation 
set. System 1(red) represents the feature fusion technique by associating four audio features with four 
different sub quarters of the video (as in the experiments above). The system 2 (blue) uses by contrast 
the motion features of one of the image sub quarters and repeats it for 4 consecutive audio frames dur-
ing the concatenation. The blue line across the figure represents the EER line, i.e. its intersections with 
the ROC curves yield the EER of the corresponding systems.  

We can see that using the EER threshold computed on the evaluation set, the verification rates (1 
– TER, i.e. equation (2.5)) are 98% and 97% for System 1 and System 2, respectively. The results sup-
port our hypothesis, that the lip-motion of an individual is highly symmetric. Accordingly, it would 
be possible to reduce the video computations with a factor of 4, with little degradation of recognition 
performance, Fig. 10. For demonstration purposes, we have chosen to use all the estimated velocities 
rather than repeating one sub quarter. However, if done in a real system, this extra computation can be 

Table 1. The table presents the results for acoustic, visual, and merged bimodal audio-visual speaker 
verification systems using protocol 1 in a GMM model

Set / System Evaluation Test
Audio
Visual

Audio-Visual

96%
81%
99%

94%
77%
98%
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viewed as a way  to increase the robustness against noise (including asymmetric lighting,  imperfect 
detection of lip area, etc.) as the feature vectors of the same (repeated) sub quarter contain noise that is 
more dependent on each other than those using estimations from 4 different sub quarters. It can also 
occur that for certain individuals the prevailing symmetry is less pronounced and can be discriminative 
information in identity recognition.

We also used SVM classifiers with a Radial Basis Function (RBF) kernel to perform speaker identi-
fication using a single word. The reason for using a single word is that SVM has a tendency to become 
computationally exhaustive for large feature vectors. The performance obtained using bimodal recog-
nition (100%) compares favorably with the classical single modality recognition system based only on 
the speech signal (92%) or only on the visual signal (80%). 
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Figure 10. The figure illustrates the ROC curve of verification performance for audio visual speaker 
verification systems using the evaluation set. System 1 represents the feature fusion technique obtained 
by association of four audio frames with one visual frame(4 sub quarters) and System 2 represents the 
feature fusion obtained by repeating one sub quarter of lips, Fig. 8. The straight line represents the 
threshold for FA=FR. 
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Fig. 11 presents the results for SVM digit recognition for the purpose of liveness detection using 
protocol 2.  Varying between 50-100% for individual digits, the system performed best for digits 1, 6 
and 7. The average of the digit recognition over all digits was 68% and 90% for the visual and audio 
systems in isolation, respectively. Digit recognition using combined audio and video varied between 
83% and 100%. The amount of visual information for some of the digits is very little for many people 
and digit utterances, which is not surprising because the XM2VTS database was collected for identity 
recognition. As a consequence the speech and the video were recordings of continuous speech without 
specific emphasis on utterance length or quality. The lack of sufficient visual data for certain digits 
has negatively influenced the results. However, the uneven results are attributable to the simple SVM 
classifier we used. The classifier is fast but it does not model the time relationships of the features. A 
classifier achieving a better and more even digit recognition performance is possible by employing time 
modeling (at the cost of making the classifier more complex), e.g. HMM or SVM with time modeling. 
However, it is worth noting that for our main purpose, which is to show that our features are informative 
in an application targeting digit recognition for liveness assessment, the performance of this classifier 
is sufficient. This is because we can demand from the user to utter the digits at which the recognizer 
is good, e.g. any combination of 1, 6 and 7 at any length, when the identity of the person is completely 
unknown. If the liveness detection is implemented after the identity recognition module, we have then 
even a possibility to pull out the digits at which the digit recognizer performance is good for the pre-
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Figure 11. The graph presents multimodal and single modal digit recognition system rates for digits 0 
to 9 using protocol 2 in an SVM classifier. 
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tended identity and increase the arsenal of digits to be uttered and decrease the length of the sequence 
to be uttered.  

To evaluate our suggested lip features we had to implement audio-visual speech and speaker recogni-
tion systems demanding purposive setups of classifier constellations, protocols and databases in addition 
to implementing compact features, fusing these with appropriate rate conciliation. Each implemented 
system has a unique difference, in the hope that it will help to evaluate the feature extraction.

Experimental Comparison	

We present in this section various audio-visual bi-modal and single modal systems and provide some 
comparisons related to our work, when possible.

•	 (Luettin et al. (1996)) developed a visual only speaker identification system using only the lip 
contour information by extracting model and pixel based features. These features were extracted 
by calculating the lip contours and then shape deformations of the contours were modeled tempo-
rally by a classifier (HMM). They used the Tulips database, consisting of 12 speakers evaluated 
by the identification on the speaker models (48 models for each speaker) of the spoken word. The 
identification system based on HMMs, achieved approximately 73%, 90% and 92% recognition 
rates when using shape based, pixel based and joint features. This experiment was extended by 
(Jourlin et al. (1997)) using the M2VTS database consisting of 37 speakers, utilizing audio-visual 
information in an identity verification system. The acoustic features were based on the Linear 
Prediction cepstral coefficients with first and second order derivatives. The visual feature repre-
sentation was based on the shape and intensity information according to (Luettin et al. (1996)) 
technique. They utilized HMMs to perform audio only, visual only and audio-visual experiments. 
The audio-visual score is computed as a weighted sum from the audio and visual classifier. They 
achieved approximately 97%, approximately72% and approximately 100% verification for audio 
only, visual only and audio-visual information. The discussed system is comparable to our system 
except that i) the video features modeled by the classifier were intra frame, and ii) it is a decision 
fusion system. Comparing the video only experimental results confirm that our features perform 
better (approximately 6 percentage points) and yet they are complementary because our video 
features are inter frame based. Their decision fusion has improved the recognition performance 
by 2 percentage points over the best performing expert (audio) in identification mode and 3% in 
the verification mode. Our feature fusion  has improved the recognition performance by  8 per-
centage points and 4 percentage points over the best expert (audio) in the (significantly larger) 
tests corresponding to identification and verification. This indicates that even our feature fusion 
contributes to performance improvement.

•	 (Wark and Sridharan (1998)) and (Wark et al. (1999)) presented a system using multi-stream HMMs 
to develop audio-visual speaker verification and identification systems tested on the M2VTS data-
base. By utilizing decision fusion on the acoustic (based on MFCC) and visual information (based 
on lip contours and applying PCA and LDA on them), they outperformed the system using only 
acoustic information. The verification experiments were performed using GMMs on the M2VTS 
database.

•	 (Fox et al. (2007)) developed an audio-video person identification system using HMMs as classifier. 
The experimental tests were performed on the XM2VTS database, using the experts consisting of 
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acoustic information, dynamic mouth information and static face information. The audio features 
used are MFCC and their first derivatives. The visual mouth features were derived from pixels to 
represent the visual information based on the discrete cosine transform. The face features were 
derived by the PCA technique using the FaceIt software. The 3 experts were fused by a cascade of 
fusion where expert 1 and 2, decisions were merged in parallel with expert 2 and 3. The resulting 
two decisions were then merged to yield the final decision. The results highlight the complementary 
nature of the mouth and face experts under clean and noisy tests.         

•	 (Dieckmann et al. (1997)) and (Frischholz and Dieckmann (2000)) developed a system using 
three experts acoustic, facial information and lip movements. The acoustic information is based 
on cepstral coefficients, and facial information is derived to be invariant to rotation and illumina-
tion. The optical flow of the lip movement is determined using the traditional method by Horn and 
Schunk. These three experts are combined by opinion threshold to perform person identification. 
The experiments were performed on a staff recording of 66 members, achieving best performance 
approximately 93% when all three modalities were used.

•	 (Nefian et al. (2002)) demonstrated accurate improvements of speech recognition using audio-
visual information. The extracted visual features based on Discrete cosine transform (DCT) 
and then LDA are combined with acoustic features (MFCC). These features are combined in an 
intermediate fusion sense, using coupled HMM. The tests were extended by (Liang et al. (2002)), 
using the XM2VTS database for speech recognition. An extension of visual extraction was also 
presented based on PCA and LDA and DCT and LDA. They performed in clean SNR environment 
approximately 99% correct digit recognition using XM2VTS database. 

•	 (Dupont and Luettin (2000)) present a speech recognition system based on bi-modal (audio-visual) 
information. The visual information is extracted according to (Luettin et al. (1996)) technique by 
shape and intensity information that generates models for a specific person. The audio information 
is based on perceptual linear predictive coefficients plus the first derivative and the energy. The 
features are combined in an intermediate fusion sense, by multi-stream HMMs which were possible 
by up sampling the visual features, performing approximately 99% correct word recognition.   

Other related work using static information are (Brunelli and Falavigna (1995)), (Ben-Yacoub et al. 
(1999))}, (Sanderson and Paliwal (2004)) and (Hazen et al. (2003)). They developed speaker recognition 
systems based on audio-visual static information. The visual information was based on static images 
from the face in combination or without combination of acoustic information. Vector quantization, 
HMM, GMM and SVM were used to perform different identification and verification tests. In all of 
these reports decision fusion are used to reconcile the individual decisions.

Applying SVMs to speech recognition can perform better than HMMs (Wan and Carmichael (2005)) 
in some cases by the use of an appropriate kernel function that can encode temporal information. An 
SVM will be more accurate than HMMs if the quantity of training data is limited, (Wan and Carmichael 
(2005)). The latter work exploited the fact that SVMs generalize well to sparse datasets and SVMs were 
applied on isolated word identification tasks. However, results on small vocabulary tests with sufficient 
data the accuracy of HMMs and SVMs will asymptote. In this case the HMM is favored because it is 
more efficient in terms of speed (Wan and Carmichael (2005)). In our case we exploited SVM classi-
fier to limit the scope of the study while obtaining a quick indication on the usefulness of the features, 
without introducing time variation models for features vectors.
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Conclusion

Biometric recognition is a popular subject in today’s research and has been shown to be an important 
tool for identity establishment. Using visual information as an adjunct to speech information improves 
accuracy for not only identity recognition but also speech recognition. 

In this chapter, we have described lip-motion features for dynamic lip image sequences to be used in 
different recognition systems. The technique exploits information from a set of 2D space time signals in 
the 3D space time image that yields the normal of an optimal motion plane and allows the estimation of 
velocities. The visual lip features are extracted without iterative algorithms or assuming successful lip 
contour tracking, which is a computationally efficient alternative to the available lip dynamics estima-
tions. The experimental tests were performed on the XM2VTS database. The database, representing 
hundreds of thousands of images and hours of speech, was segmented with respect to digit boundaries 
automatically and verified manually to be able to test the digit recognition systems for the purpose of 
liveness detection. The addition of visual data to the systems confirms that it is possible to do feature 
level fusion in such massive data and obtain benefits for biometric recognition systems. 

The experimental performance of the proposed biometric systems, yielding approximately 80% 
video only identification and 100% audio visual identification (for the word 7) of person identities, sup-
ports the conclusion that the proposed lip-motion features contain significant information for person 
authentication. Furthermore, the average digit recognition rate is approximately 70% using only visual 
information, is suitable for liveness detection system using simple classifier. Our technique for early 
audio-video feature integration results in an improved speaker verification performance (approximately 
98%) and speaker identification performance (approximately 100%), on top of the already high verifica-
tion rate achievable by speech only. 

The results of the digit recognition system are different for the 10 digits. Our examination of the 
results indicates that once the visual feature extraction is performed on a sufficient amount of visual 
speech data, the available modeling for recognition tasks is highly successful. Accordingly, the validation 
in the digit recognition with respect to digits can be explained with the lack of visual data. One obvious 
consequence is to use lip reading word selectively or by using weights in future designs. 

In all cases, no attempt was made to improve the recognition performance by optimizing the classifier. 
We used what was available to us and in largest diversity of classification constellation, as a significant 
goal has been to show that the same basic features contained sufficiently rich information for purposes 
of identity as well as message recognition, regardless what classification method has been used.  

 
Discussion

The system proposed by (Liang et al. (2002)) showing experimental results on XM2VTS database, 
can not be studied in conjunction with our results in depth primarily because the experimental details 
of their tests were not mentioned in the publication. The classification/fusion technique they used is 
an advanced HMM permitting synchronization of the different strands (audio and video) of the data.  
However, temporal up sampling of video is used to achieve synchronization between the two sampling 
rates of the audio and video. Their experimental tests report word error rates for a single word/number 
i.e. 0123456789, since this is the only word that was tested.  Because the temporal segmentation of the 
XM2VTS audio-video was not undertaken in the study, it is not clear how the performance will be 
affected if the digits are uttered in a different order. Part of this criticism is valid even to our system 
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despite segmentation because a digit’s utterance is influenced by the pre and post digit utterances in 
the continuous speech. However, we argue that this influence is more difficult to “abuse”  by  a simple 
classifier (our system) as compared to giving the full content of the pre and post digits to an advanced 
classifier, (the system of (Liang et al. (2002))). Even though a digit sequence is recognized from always 
the same 0-9 sequence uttered by different and same speakers at different times, no information on 
where in the uttered digit sequence the recognized digits are to be found is available in the reported 
experiments.  Accordingly, with which digits there is greatest confusion can not be evaluated.

The work of (Jourlin et al. (1997)) presented a speaker verification system using features originating 
from the work of (Luettin et al. (1996)). The main difference of this feature set and our features is that 
their model based features demand more from the pre processing step which both need. Whereas we 
need initially an approximately correct localization of the mouth region only, they would additional need 
a correct detection of the lip boundaries. Our results (undertaken on the XM2VTS database which is 9 
times larger than what was available to them at the time) suggest that one can obtain the same descriptive 
information even without precise boundary tracking while achieving as good as, or better recognition 
performance. Furthermore, we think that using a crude pre processing step has a significant importance 
for robustness since non satisfaction of higher pre processing demands will manifest a higher risk of 
system failure in practice. 

We reached favorable results for person recognition by feature fusion strategy. In the future one could 
quantify how much feature fusion has brought as compared to decision fusion. This would require to 
implement 3 classifiers (1 audio, 1 audio, and 1 for decision fusion) with their corresponding training. 
We refrained from doing this, because i) the qualitative comparisons with the studies of (Luettin et al. 
(1996)) and (Jourlin et al. (1997)) indicated that there was a gain in feature fusion, ii) this would be a sub 
optimal solution from computational, implementation, and maintenance view point (3 classifiers must 
be trained and maintained as opposed to 1), and iii) we had to limit the scope of our study.
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endnotes

1	 Several phonemes can correspond to the same visual configuration. In fact, in most cases, visemes 
are not uniquely associated with a single phoneme.

2	 We assume that the direction of a line is either of the two normals of the line
3	 It is worth noting that there is a patch type whose motion can not be observed at all,  the patches 

consisting of a constant gray value.
4	 4 pixels width boundary are removed in the lip region.
5	 The output from the Viterbi decoder is logarithmic, and we used this for convenience.
6	 According to Lausanne protocol, the evaluation set is selected to produce client and impostor access 

scores, thereby to produce FAR and FRR curves. From these certain operation points (thresholds) 
are selected to be used latter on as thresholds on the test set for recognition.




