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Abstract

Recently, image quality awareness has been found to increase recognition rates and to support

decisions in multimodal authentication systems significantly. Nevertheless, automatic quality assessment

is still an open issue, especially with regard to biometric authentication tasks. Here we analyze the

orientation tensor of fingerprint images with a set of symmetry descriptors, in order to detect fingerprint

image quality impairments like noise, lack of structure, blur, etc. Allowed classes of local shapes are

a priori application information for the proposed quality measures, therefore no training or explicit

image reference information is required. Our quality assessment method is compared to an existing

automatic method and a human opinion in numerous experiments involving several public databases.

Once the quality of an image is determined, it can be exploited in several ways, one of which is to

adapt fusion parameters in a monomodal multi-algorithm environment, here a number of fingerprint

recognition systems. In this work, several trained and non-trained fusion schemes applied to the scores

of these matchers are compared. A Bayes-based strategy for combining experts with weights on their

past performances, able to readapt to each identity claim based on the input quality is developed and

evaluated. To show some of the advantages of quality-driven multi-algorithm fusion, such as boosting

recognition rates, increasing computational efficiency, etc., a novel cascade fusion and simple fusion

rules are employed in comparison as well.

Index Terms

Structure tensor, orientation fields, biometrics, fingerprints, quality assessment, filtering, symmetry

descriptors, simple fusion schemes, cascaded fusion, adaptive fusion, Bayesian statistics.

I. I NTRODUCTION

Automatic assessment of image quality by a machine expert is challenging, but useful for a

number of tasks: monitor and adjust image quality, optimize algorithms and parameter settings

or benchmark image processing systems [1]. Image quality assessment methods can be divided

into full/reduced/no-reference approaches, depending on how much prior information is available

on how a perfect candidate image should look like. In this work we study quality assessment

of the second kind, where images come from a specific application. There exist general quality

metrics originally suggested in image compression studies [2], e.g. mean square error (MSE) or

peak signal to noise ratio (PSNR). These earlier approaches are excluded here because of their

notorious poor performance in recognition applications, which do not have the same objectives

as compression applications.



In biometrics, a “universal” quality metric appears to be impossible as one application may

use relevant information of an image not useful to another application. For example, a face

image contains information not useful to a fingerprint matcher. Ideally a quality model involves

features that should be reusable for different applications. In this work symmetry features are

used to automatically assess the quality of fingerprint images. We are forced to use generic

models when trying to estimate the quality of biometric images, since a high-quality reference

image of the same individual is usually not available, i.e. the link to the individual cannot be

established in advance.

Once available, the benefits of having an automatic image quality estimate include the fol-

lowing. First, when acquiring biometrics, all samples presented by a person (either for an

enrolment or authentication purpose) can be checked automatically to assure quality for stored

templates, [3]. Second, in an authentication configuration involving several modalities, e.g. face

and fingerprint, the quality of the presented images can be used to adjust the weight given to the

respective expert at fusion stage, where a final decision is made. The recognition improvement

benefits of quality-aware fusion have been shown previously, although mainly involving quality

assessment done by humans [4]–[6]. Third, as the quality of an image might vary across different

regions, when measuring the similarity among biometric samples, high quality regions can be

favored [7], [8]. Although we address here a specific image domain, even in other computer vision

applications which involve visual recognition, e.g. object recognition, image database retrieval,

tracking, geometry reconstruction etc. are in need of automatic image quality assessment, which

is still an open research issue. As a result of recent fingerprint verification competitions involv-

ing particularly low quality impressions, even state-of-the-art systems’ performance decreases

remarkably [9]. Recent advances in fingerprint quality assessment include [3], [8], [10]. A

taxonomy of fingerprint quality assessment methods is given in [11]. A novelty of the present

paper consists in the continuous modeling of all details in a fingerprint allowing them to be used

for dual purposes, recognition and quality estimation.

Specializing in a single biometric modality and taking into account several systems’ responses

on the present claim, is commonly referred to as the monomodal multi-expert or multi-algorithm

type of fusion (in contrast to multimodal fusion which involves different modalities). In this study

we are combining fingerprint recognition systems at score level, and we prefer the term “multi-

algorithm” for it. Furthermore, we will use “system” or “expert” to address a fingerprint matcher,



whereas we refer to a quality assessment method as “method” or “approach”. Besides, this will

become clear from the context. Considering fusion within a modality, in particular fingerprint

recognition, [12], [13] showed that combining systems with heterogeneous matching strategies

is most desirable, leading to recognition rates even higher than the combination of the best

systems relying on common features. This is further developed in [5], where the image quality

of the fingerprints is used to adjust two experts’ weights in the final decision using a weighted

sum rule. Furthermore, the additional information through quality estimation is exploited as a

substitution for training the experts’ weights, due to the experts’ different skills with regard to

image quality. When trying to fuse several experts with unknown skills and matching strategies,

some sort of training is mandatory to systematically improve the combined performance [14],

[15]. The performance can be increased even more, if the trained fusion scheme is adaptive as

well, meaning that it takes into account current signal conditions trial by trial. This was also

confirmed in [4], although unlike here, for a multimodal configuration and employing quality

estimates by humans. For this reason, a trained adaptive fusion scheme, in which Bayes theory

is used to calibrate the different experts based on their misclassification history and on the

current image quality, has been used in this study. Interestingly enough, some recent works have

nevertheless reported comparable performance between fixed and trained combining strategies

[16], [17] and a debate has come out investigating the benefits of both strategies [18], [19].

As an example, and within this debate, some researches have shown how to learn user-specific

parameters in a trained fusion scheme [20], [21]. As a result, they have reported that the overall

verification performance can be improved significantly.

We report quantitative and comparative experimental results of our quality assessment with

respect to an existing fingerprint quality estimation method [3], as well as, manually assigned

quality labels on the QMCYT database [22], [23], and also on two databases employed in

FVC2004 [9]. Three fingerprint recognition systems [3], [7] and the modified version introduced

in [24] are employed toa) observe how well manually and automatically assigned quality esti-

mates are agreeing, andb) carry out the quality-based multi-algorithm fusion. These recognition

systems are relying on minutiae, texture/minutiae and texture features respectively, using thus

expert diversification in fingerprint recognition.



II. QUALITY ESTIMATION

In this work we employ a novel method to automatically assess the quality of fingerprint

images. Although the algorithm is mainly used for fingerprint image quality assessment, its

applicability to other biometric modalities was indicated by means of face images [25]. In the

first part of this section a more general description of the quality assessment features is given.

The ideas are then adapted to fingerprint quality estimation.

A. Quality Assessment Features

The orientation tensor holds edge and texture information, which is exploited in this work to

assess the quality of an image. We wish to determine whether this information is structured and

generic in some sense, i.e. to distinguish noisy content from relevant non-trivial structures, e.g.

minutiae. These relevant structures are for example essential for many recognition algorithms,

representing the individuality of a biometric signal. Our method decomposes the orientation

tensor of an image into symmetry representations, where the included symmetries are related

to the particular definition of quality and encode the a priori content-knowledge about the

application (e.g. fingerprints, face images, ...). The resulting quality metric mirrors how well

a test image comprises the expected symmetries.

The orientation tensor is given by the equation

z = (Dxf + iDyf)2, (1)

whereDxf andDyf denote the partial derivatives of the image w.r.t.x- andy-axes. The squared

complex notation directly encodes the double angle representation [26]. For the computation of

the derivatives, separable Gaussians with a small standard deviationσ1 are used. Next, the

orientation tensor is decomposed into symmetry features of ordern, where thenth symmetry is

given byexp (inφ + α) [26]–[29] representing the argument of (1). The corresponding patterns

are shown in figure 1, e.g. straight lines forn = 0, parabolic curves and line endings forn = ±1.

Higher orders include circular, spiral and star patterns. In figure 1, the so called class memberα,

which represents the global orientation of the pattern, is zero. Filters modeling these symmetry

descriptions can be obtained by

hn = (x + iy)n · g for n ≥ 0, (2a)



Fig. 1. Patterns with orientation descriptionz = exp (inφ): Straight lines forn = 0 (linear symmetry); parabolic curves and

line endings forn = ±1 (parabolic/triangular symmetry)

hn = (x− iy)|n| · g for n < 0, (2b)

whereg is denotes a 2D Gaussian with standard deviationσ2 in x and y direction. These features

are algebraic invariants of physical operations e.g. translation, rotation and zooming (locally). For

a more detailed review of symmetry filters and the symmetry derivatives of Gaussians, we refer

to [26]. Decomposing an image into certain symmetries involves calculating〈z, hn〉, where〈·, ·〉

denotes the 2D scalar product, yielding complex responsessn = c · exp (iα), with c representing

the certainty of occurrence andα (class member) encodes the direction of symmetryn (for

n 6= 2). Normalized filter responses are obtained by calculating

sn =
〈z, hn〉
〈|z|, h0〉

, (3)

where the nominator is the total energy of the symmetry (all possible orders) [26]. In this way,

{sn} describe the symmetry properties of an image in terms ofn orders.{n} can be chosen

to match the expected symmetries in a candidate image, thus modeling a reference image by

a limited number of symmetry features. The definition of quality for a specific application

determines the orders and scales (σ) used by this model. Furthermore, we demand{sn} to be

well separated over the image plane, in which we look for a high and dominant symmetry at

each point. Equation 4 denotes an inhibition scheme [29]

sI
n = sn ·

∏
k

(1− |sk|), (4)

wherek refers to the remaining applied orders, to sharpen the spatial extension of filter responses

and I is a label that stands for inhibition. Consequently, a high certainty of one symmetry type



requires a reduction of the other types. We calculate the covariance among{|sI
n|} in blocks of

size b× b in order to test if the filter responses have been mutually exclusive. A large negative

covariance supports that this is the case and the neighborhood behaves as a high quality local

image. On the other hand, positive covariance implies the co-occurrence of mutually exclusive

symmetry types in the vicinity of a point, which is an indication of noise or blur. We incorporate

this information by weighting the symmetry certainty. We sum{sI
n} overn at each pixel resulting

in a total symmetry image

s =
∑

n

sI
n (5)

The s is further averaged in the blocks (tiles) of sizeb× b yielding s̄ (we usē· to denote block

wise operating variables). The quality measureq̄ for each block is the computed as follows

q̄ = y(|r̄|) · χ(−r̄) · s̄, (6)

whereχ represents the Heavyside function (1 for positive arguments, 0 otherwise) andr̄ denotes

the block wise correlation coefficient among{|sI
n|}. The quantityr̄ is calculated as an average

of the correlation coefficients between any two involved ordersr̄k,l, as defined by

r̄k,l =
Cov(|sI

k|, |sI
l|)√

Var(|sI
k|)Var(|sI

l|)
(7)

Note that r̄k,l = r̄l,k, and that in case of employing only two orders for the decomposition,

e.g. 0 and 1,̄r equals r̄01. The expressionχ(−r̄) signals a contribution tōq if and only if

the average covariancēr is negative. The mapping functionm controls the influence sensitivity

of r̄ and is chosen empirically, e.g.m(t) = t2 makes the method more responsive to quality

changes. A quality metric is established by averagingq̄ over the “interesting” blocks̄i, which

are represented by blocks wheres̄ > τ , thus having a minimum total symmetry response. The

proposed technique is implemented and tested by means of automatic fingerprint image quality

estimation.

B. Fingerprint Quality Estimation

By human opinion, the quality of a fingerprint image is usually expressed in terms of the clarity

of ridge and valley structures, as well as the extractability of certain points (minutiae, singular

points) [8]. We can model the behavior of the orientation tensor of a typical fingerprint entirely

with symmetry features. On one hand, a coherent ridge flow has mostly linear symmetry and thus



Fig. 2. Decomposition of example fingerprints: a) Original fingerprint; b) linear symmetry magnitude (sI
0); c) parabolic symmetry

magnitude (sI
1); d) “total symmetry” (summed magnitudes) contains relevant portions (s)

can be modeled by symmetry features of order 0. On the other hand, far fewer minutia points

such as ridge bifurcation and ending have parabolic symmetry and can be modeled locally by

symmetry features of order 1. An effective local feature extraction method for fingerprint images

using these symmetry orders as traits to recognize a fingerprint is presented in [7]. There, linear

and parabolic symmetries have been employed to extract minutia points, and spurious minutiae



could successfully be excluded because they would be surrounded by lower linear symmetry

compared to authentic ones. This property is encoded in the correlation coefficient here. Other

prominent points in fingerprints such as core and delta points can likewise be modeled by

symmetry features of order 1 and -1 respectively by using a different scale. Intuitively, features

of order |n| > 1 are considered not meaningful here and are therefore omitted. Because the

pattern of symmetry order -1 contains implicitly subpatterns characterized by order +1, we

can model both patterns with an appropriately sized symmetry filter of order +1. Since there

might occur difficulties to distinguish some small minutia points from ridge-valley breaks, e.g.

scars, we focus on the global ridge structure. This can be achieved by employing large filters.

Alternatively, as we are doing, one can downsize the original image by one half before applying

the algorithm. The more a fingerprint looks like either of the symmetry patterns n=0 and n=1

in a small neighborhood (e.g.20 × 20 px), and the better classification possible, the higher

will the assessed quality be. So, good quality ridge-valley structure exposes smooth transitions

between the two (and only these) involved symmetries. Only three scalar products are needed

with the orientation tensor,〈z, h0〉, 〈|z|, h0〉 and〈z, h1〉. The first two scalar products essentially

correspond to averaging the orientation tensorz and its magnitude|z| respectively, whereas

the last scalar product corresponds to a derivation ofz. All convolutions can be implemented

employing 1D Gaussian filters and their derivatives. The used value for block sizeb is 8 px, the

symmetry features use aσ2 of 3. For the construction of the orientation tensor, aσ1 of 0.6 is

employed. These values were chosen in an optimization search. Slight variations will however

not affect the functionality of the method fundamentally.

Figure 2 depicts the results for some example fingerprints of the QMCYT database. As can

be seen,s (column d) contains the relevant portion of the image.sI
0 and sI

1 are (depending

on the quality) well defined at linear and parabolic symmetry neighborhoods respectively. The

quality of the fingerprint shown in the first row in figure 2 is rather good, although appears to be

lower in the upper right part. This is also mirrored in the linear and the total symmetry image

(columns b and d respectively). The fingerprint depicted in the center row indicates that the core

point does not need to be of type “loop” in order to be included insI
1 as its subpatterns can be

modeled by the order 1 filter. The quality of the fingerprint represented by the bottom row of

figure 2 worse. The sensor appears to be dirty and the finger is too dry.sI
0 reflects the structural

weaknesses by exhibiting fewer points having large magnitudes and the contrast in magnitude



Fig. 3. Intermediate steps in fingerprint quality estimation: e) Tiled (averaged block by block) total symmetry (s̄) and f)

thresholded(̄i); g) Correlation coefficient between the tiled parabolic and linear symmetry magnitudes (r̄); h) Tiled quality

measure (̄q)

between the core point and the rest insI
1 is not that clear any more. In this case the correlation

coefficient is even in some blocks of the foreground.

The tiled images representing the block wise variables for the example fingerprints are dis-

played in figure 3. Column f (ī) indicates that fingerprint segmentation is done implicitly. We



observe, that the covariance is negative in reasonably good-quality regions, whereas it is positive

in noisy and bad-quality regions. This separation is not so apparent when considerings̄ only.

Column h (̄q) visualizes the final quality blocks, with brightness representing good quality. By

averagingq̄ a overall quality metricQ in [0, Qmax] for some constantQmax ≤ 1 is retrieved.

Although we have confined our reporting to adapt multi-algorithm fusion, it should be noted that

q̄ can also be used in other fingerprint processing modules, e.g. to steer a fingerprint enhancement

process, to favor robust feature extraction or matching. Note that the symmetry features applied

here have already been used for fingerprint alignment as well as matching [7], [30], indicating

its added value by dual usage.

Previously published studies on fingerprint quality assessment methods measure spatial coher-

ence of the ridge flow only, by essentially determining or approximatings0. Additionally the latter

is commonly partitioned into blocks̄s0, which are then weighted decreasingly with distance to

the fingerprint’s centroid when calculating a quality metric. Inspecting, figure 4 reveals that this

strategy may not be enough, because important regions such as singular points (e.g. core, delta)

are per definition incoherent to the ridge flow, and their strong presence therefore automatically

impairs the estimated quality. In figure 4̄s0 and our metric are shown on three images from the

QMCYT database. Note the different shape of the singular point regions not leading to different

results though. Quantitative results with comparisons will be presented further below. To the

best of our knowledge, there is no other method to measure quality from both typical and high

curvature ridge-valley structure, or to deal with it explicitly, e.g. to preventively disregard high

curvature regions. It is often the latter region, which carries the most discriminative information,

though.

III. F USION

In section III-A, Bayes-based training shall help to weight several recognition experts responses

for an optimal joint decision. By additionally incorporating a confidence measure modeled by

the inverse quality of the fingerprints, the quality sensitivity of a single recognition algorithm

is used to adapt (shift) those weights based on the current claim - trained, (quality) adaptive

fusion. In section III-B, we propose a cascade type fusion, which exploits a similar effect, but

without training and a more aggressive weight adaptation. The purpose here is to save resources

(computation time) by executing just one recognition system mostly, while several systems are



Fig. 4. Illustrating the differencēs0 (b) and q̄ (c): Here we can see that the core point is misinterpreted in terms of quality

when just averagings0



executed if the current fingerprints are of bad quality - untrained, (quality) adaptive fusion.

Finally, in section III-C, we list and motivate some simple fusion schemes, where different

recognition experts are weighted equally, because we use such schemes for comparison in our

experiments - untrained, non-adaptive (to quality) fusion.

A. Bayesian Supervisor

Fig. 5. Multi-algorithm system model: Schematics including all components of the proposed Bayesian supervisor. All experts

deliver a certainty in addition to their score, which is estimated as the inverse of the image quality here

This section is devoted to an adaptive fusion scheme using Bayes theory [31]. For a more

profound description of the employed model we refer to [4], [14]. Its probabilistic background is

further detailed in [32]. As indicated in figure 5 we combine independent fingerprint recognition

systems yielding a monomodal multi-algorithm environment. An input fingerprint is referred to

as ashot. For each shot we get different expert opinions which are delivered to the Bayesian

supervisor. The following notation is used when describing the statistical model and the super-

visor within this paper:



i: Index of the experts,i ∈ 1 . . . m

j: Index of shots,j ∈ 1 . . . n, n + 1. It is the system clock since an expert has one shot

per evaluation time.

xij: The authenticity score computed by experti based on shotj

sij: The variance ofxij (estimated by experti).

yj: The true authenticity score of shotj

zij: The error (mis-identification) score of an expertzij = yj − xij

The true authenticity scoreyj can only take two numerical values, namely “True” or “False”. So

if the values ofxij are between 0 and 1, the values ofyj are chosen to be 0 and 1 respectively.

The training of the supervisor is performed on the shotsj ∈ 1 . . . n, wherexij andyj are known.

When the supervisor is operational, we consider the shotj = n + 1 as a test shot. In this case

only xi,n+1 is known and the task of the supervisor is to estimateyi,n+1. It is assumed that the

single experts and the supervisor are trained on different sets.

Note that the experts provide a quality estimate in addition to each score which is modeled

to be inversely proportional tosij. This variance is then used by the supervisor for evaluation.

1) Statistical Model: The employed adaptive fusion strategy uses Bayesian statistics and

assumes the errors of the single experts to be normally distributed, i.e.zij is considered to be a

sample of the random variableZij ∼ N(bi, σ
2
ij). This does not strictly hold for common audio-

and video-based biometric machine experts [14]. Nevertheless it was shown that this problem

can be addressed by considering client and impostor distributions separately. Thus, the following

two supervisors representing the expert opinionsyj = 1 andyj = 0 are constructed:

C = {xij, sij|yj = 1 and1 ≤ j ≤ n} (8)

I = {xij, sij|yj = 0 and1 ≤ j ≤ n} (9)

The two supervisors will be referred to asclient supervisorandimpostor supervisor, respectively.

The task of the client supervisors is to estimate the expected true authenticity scoreyj based on

its knowledge of client data i.e. computingM ′′
C = E[Yn+1|C, xi,n+1]. The prime notation is used

to distinguish the 3 different supervisor states. No prime means training, one denotes calibration

and two indicate the authentication (operational) phase. The impostor supervisor estimatesyj by

computingM ′′
I = E[Yn+1|I, xi,n+1].



The supervisor which comes closer to the ideal case (1 for the client supervisor, 0 for the

impostor supervisor) is considered as the final conciliated overall scoreM ′′:

M ′′ =

 M ′′
C if |1−M ′′

C | − |0−M ′′
I | < 0

M ′′
I otherwise

(10)

2) Supervisor:Having the experts scores and the quality estimates, the Bayesian supervisor

can be summarized as follows:

1) Training Phase: In case of the client supervisor, the bias parameters for all experts are

estimated as follows:

MCi =

∑
j

zij

σ2
ij∑

j
1

σ2
ij

and VCi =
1∑
j

1
σ2

ij

(11)

here,j is the index of the training setC. The variancesσ2
ij are calculated bȳσ2

ij = sij ·αCi,

where

αCi =

(∑
j

z2
ij

sij
−

(∑
j

zij

sij

)2 (∑
j

1
sij

)−1
)

nC − 3
(12)

nC denotes the number of shots inC. If one or more experts do not provide any quality

estimatessij is set to 1. The bias parametersMIi andVIi for the impostor supervisor can

be estimated similarly.

2) Operational Phase: At this stage authentication on “live” data is performed i.e. the time

instant isn+1 and the trained supervisors can access the expert opinionsxi,n+1 but not to

the true authenticity scoreyn+1. In a first step, the client and impostor supervisor have to

be calibrated in order to adapt to their past performance. In case of the client supervisor

this calibration is denoted according to

M ′
Ci = xi,n+1 + MCi and V ′

Ci = si,n+1 · αCi + VCi (13)

Having the calibrated experts, they are combined as follows:

M ′′
C =

∑m
i=1

M ′
Ci

V ′
Ci∑m

i=1
1

V ′
Ci

(14)



The computations for the impostor case (M ′
I , V ′

I and M ′′
I ) follow the same pattern. The

final supervisor decision is made according to 10.

The procedure described above was successfully applied in risk analysis [32] and in multimodal

authentication applications [4], [33]. In these studies verification performance improvements of

almost an order magnitude were achieved, compared to the best single modality. In our multi-

algorithm framework the quality of a shot is estimated automatically and not by humans, which

constitutes one novelty of this work.

3) Quality adaptive strategy:As indicated in figure 5, each expert provides a scorexij and

a variancesij for every single authentication assessment. The variance is not an estimation

of the general reliability of the expert itself. It is considered as a certainty measure for the

current score based on the quality of the input shot. So we propose to calculatesij using the

qualitative knowledge of the experts on the input biometric data they assess. Section II details

our approach to extract such a quality estimate from a shot. In the second part of equation 13

the trained supervisor adapts the weights of the experts employing the input signal quality. We

define quality indexqij of the scorexij as follows:

qij = min (Qij, Qi,claim) (15)

whereQij is the quality estimate produced by experti in shotj andQi,claim is the average quality

of the biometric samples used by experti for modeling the claimed identity. All quality values

are in the range[0, qmax] whereqmax > 1. In this scale 0 is the poorest quality, 1 is considered

as normal quality andqmax corresponds to the highest quality. The final variance parametersij

of the scorexij is obtained by

sij =
1

q2
ij

(16)

Training is the key point with the Bayes-based fusion approach. The biasesMCi/(MIi) and

VCi/(VIi) that represent classification performance of experti during training are used to weight

the experts scores in the joint accept/reject decision. This is done in non-adaptive fusion without

incorporating any experts confidences into their scores. In adaptive fusion, these confidences

are included withsij 6= 1 to the effect that low confidence in its score for the current claim

decreases the experts say in the joint decision. This confidence is modeled inversely by the

square of the quality measure for the involved fingerprints, and the according biases are adapted



during training. So a connection between image quality and an experts credibility is established,

which is later exploited to continuously shift decision power among experts as a function of

both image quality and past classification performance.

B. Cascaded Fusion

One may ask why to use several experts within one modality, instead of using multimodal

configurations or simply combining the best capabilities of each expert into a single one? For

a variety of reasons, e.g. vendors’ conditions, legal confinements, the single experts have to be

regarded as black boxes (closed systems) while recognition rates still have to be raised. One can

also argue that the time issue is problematic if several systems have to be executed for every

single match, i.e. for identification within a large database e.g. U.S.-VISIT. A reasonable way to

address this issue is to dynamically include further experts if a single one cannot come up with

a clear decision. In such a configuration a minimal number of experts is active most of the time.

This is also visualized in figure 6, where we see a series of systems - primary, secondary, etc.

system in the following - triggered by certainty thresholds, meaning that systemn is utilized

if and only if cn−1 is below a certain threshold. Afterwards all available scoresxi are fused

according to a fusion rulef , which can be chosen simple. In our experiments, the systems

are ordered by recognition performance. This configuration is inspired by cascaded classifiers

Fig. 6. Cascaded fusion: Experts are triggered on demand and combined only under uncertainty (here: bad quality)

[34], i.e. degenerate decision trees [35], although classifiers could be ordered following different



aspects and scores are not fused there in general. Using scores themselves as certainty thresholds

is not recommendable since they are naturally low in most of the cases for identification, and

they might be wrong as well. In contrast, image quality is practicable, since the probability

of a false acceptance or rejection is higher if the quality of the involved impressions is lower,

while multi-algorithm fusion opposes this fact. The image quality used as certainty threshold

is relatively independent of the single experts, such thatci can be shortened toc (compare

figure 6). So the number of experts included into the current decision is determined by a single

certainty. The primary system can be a single system, although results will probably improve

if combinations are already used. But the idea is to utilize as few systems for any match as

possible, motivated by faster execution, while still getting the benefit of improved recognition

rates. It would be further desirable, if the quality assessment method exploited computational

steps necessary by the primary system to save resources. As we use an adaptive, yet untrained,

fusion scheme, inferior results compared to the previous strategy (under discussed conditions)

are to be expected but its advantages are clearly evident.

C. Simple Schemes

Past experiments indicated that combining systems in simple ways could already lead to

relatively good results. Such fusion schemes include, for example, sum and max rule, meaning

that the average respectively the maximum of all experts’ score is taken as the final score.

Because they are non-adaptive we also refer to them as global max, global sum, etc. It has

been claimed in several studies that simple schemes are not clearly outperformed by trained

(non-adaptive) strategies, for example, support vector machines, in neither monomodal fusion

[13] nor multimodal fusion [16]. Simple, yet adaptive schemes have been successfully applied

in quality-based multi-algorithm fusion [5]. In the latter study, minutia and texture-based, hence

heterogeneous systems have been simply combined but weighted according to the image quality,

because the texture based system proved to be more robust against quality impairments. In this

work, only non-adaptive simple schemes are used to facilitate comparison.

IV. EXPERIMENTS

As recent studies confirmed, recognition performance is heavily affected by the quality of

the input images [3], [22], [36], i.e. reliable feature extraction and image enhancement are



confined by the a priori image quality [8]. An approach to measure quality degradation effects

on the recognition performance is to divide the database into several quality groups, and to

run recognition tests within these groups only. Likewise, a quality assessment method can be

benchmarked against another one, here, estimates by automatic methods versus human grading.

We chose NFIQ1 to compare our method with. NFIQ was introduced as an independent fingerprint

quality estimator that is intensely trained to forecast matching performance in [3] and is publicly

available as a package of NIST2 FIS23 [37]. The method was tested on 300 different combinations

of fingerprint image data and fingerprint recognition systems and found to predict matching

performance for all systems and data sets.

In this study, all experiments are conducted on the QMCYT fingerprint database [23], and

some on two databases employed in FVC2004 [9]. The former is defining 75× 10 fingerprints

× 12 impressions, whereas the latter contain 100 fingerprints× 8 impressions per database.

For each impression in the QMCYT database a manually annotated quality label is available

[38]. We employ a recently developed fingerprint recognition system [7], called system A in the

following to validate the quality estimates. To investigate feature independency we also employ

the NIST FIS2 fingerprint recognition packages MINDTCT and BOZORTH3 - jointly referred to

as system B - in a similar test. Note, that system B is entirely minutia-based whereas system A is

exploiting both minutia and texture features for fingerprint alignment and matching respectively.

As a third expert, system C represents a non-minutia based recognition system utilizing Gabor

features similar to [24], as described in [22]. While there is a need to separate tasks, it is worth

noting that both recognition systems A and B use feature vectors which are effectively used

by the proposed quality assessment method and NFIQ respectively. The 750 fingerprints of the

QMCYT database are split into 5 equally sized partitions of increasing quality. The criteria

for a fingerprint to be part of a certain group I-V includes the average quality index for its

genuine trials. The latter are chosen to be 150× 9 per group, while 150× 74 impostor trials

are performed, taking fingers of the same type only as impostors (1 impression). We show the

EER of system A, B and C for all quality groups, which have been established according to the

1NIST Fingerprint Image Quality

2National Institute of Standards and Technology

3NIST Fingerprint Image Software 2



Fig. 7. EER for systems A, B, and C (from left to right) within quality groups I-V from the QMCYT database. The partitions

are established by means of different quality assessment methods (see legend).

different quality assessment methods (see figure 7). According to the EER curves we can observe

that both automatic quality assessment methods approximate the manual estimates very well, and

that the proposed method shows most similar behavior. Note that both recognition systems may

make errors independent of the image quality, but the performance trajectories given manually

divided quality groups support the view that the quality estimates of our proposal follow the

opinion of the human opinion quite well. To further investigate the equivalence of the differently

derived quality estimates, we calculate correlation coefficients (ρ) similar to equation 7, but

between arrays of quality values. The NFIQ and manual labels have the correlation coefficient

ρ = 0.38, whereas the proposed estimates and the manual labels correlate withρ = 0.47, thus

providing further support for the results of the previous experiment. It is worth mentioning that

the grading by the proposed method is continuous in [0,1], whereas it is discrete for NFIQ and

the human opinion being in [1..5] and [0..9] respectively. When applicable, the latter two output

ranges are normalized into [0..1].

The same experiment is repeated for databases DB2 and DB3 employed in FVC2004. The 100

fingerprints of each database are split into partitions following the rules from above. For each

database and per quality group, 20× 28 genuine trials and 20× 99 impostor trials are performed.

We show the EER of system A and B for all quality groups in the top row (DB2) and bottom row

(DB3) in figure 8. System C is left out due to the undesirable findings in the previous experiment

(lower recognition rates at higher quality). When looking at figure 8 we can observe a generally

higher EER level and variance. The correct estimation of the different quality categories has more



Fig. 8. EER for systems A and B (from left to right) within quality groups I-V from DB2 (top row) and DB3 (bottom row)

of FVC2004. The two automatic quality assessment methods are used to establish the partitions (see legend).

impact on recognition rates than before, even in absolute terms (compare figure 7). This lies

with the increased difficulty of the FVC2004 databases for recognition systems, which we also

consider relevant for quality estimation methods. The extreme conditions (extra low/high finger

pressure, fingers dried/moistened by intention) lead to severe image quality impairments, which

were obviously detected well by both quality estimators. The quality grading by our method

remarkably leads to monotonically decreasing EER curves for all involved recognition systems

and databases.

It is worth noting, that the QMCYT and FVC2004-DB2 databases were acquired with the

help of optical sensors, whereas a thermal sweep sensor was employed for the acquisition of



FVC2004-DB3. Different sensors produce different ground qualities as well as fingerprint looks,

which are obviously handled well by our untrained quality assessment method. The latter also

manages to deliver a fine quality grading that is most similar to those of independent humans. We

put this down to the usefulness of the employed symmetry features and their energy-independent

usage in our algorithm (using normalized filter answers).

A B C A,B A,C B,C, A,B,C

EER % 1.22 1.9 6.37 SUM 1.06 1.22 1.36 1.56

MAX 0.75 0.84 1.16 1.16

TABLE I

EER OF SINGLE EXPERTS(SYSTEMS) AND WHEN THEY ARE COMBINED USING SIMPLE FUSION SCHEMES(MAX/SUM)

In table I we state the EER for each recognition system (A, B and C) over the whole QMCYT

database, i.e. when the quality division is dissolved again. Note, that system A and B are

remarkably better than system C on the test set. In the following, the three systems A-C are

combined (at least two experts) using the fusion schemes explained in the section above. A

jackknife (leave-one-out) strategy is employed whenever training is involved, meaning that the

training set is all users but one (who together with the impostors forms the test set), and all

users are tested at some point, giving an averaged EER rate. A number of 4 impressions is

used for both client and impostor supervisor training, whereas 9 respectively 74 impressions not

belonging to the training set are being tested on. Note that each fingerprint is effectively treated

as user and that we take impostors of the same finger type only.

When employing non-trained fusion schemes, the test set is all available users, giving 750×

9 genuine and 750× 74 impostor trials again. The performance (EER) of expert combinations

using simple, non-adaptive schemes is given in table I. We can observe, that combinations

involving the best expert (system A) deliver the best results, actually outperforming the best

expert almost every time. In this test, fusion applying the MAX rule is better than using SUM,

although, the former was favored by shifting the experts to a common operating point. The

overall best result using simple schemes involves the two first systems and enables a drop in

EER of≈38% compared to the best expert when isolated. It is worth noting that combining all

three experts can worsen the joint performance compared to when selecting two (which need



not even be the leading ones). This lies with “simply” fusing severely differently skilled experts

without training.

Figure 9 shows the performance of cascaded fusion of system A and B as a function of certainty

τ , chosen as the thresholded quality index. Manual quality estimates are taken in case of the

dotted gray line to illustrate a best case, while estimates by our method are considered along

the path of the dotted black line. Recognition performance of the single systems, further fused

by simple schemes - independent of quality though - are indicated as well, with the MAX rule

giving the best result (EER of 0.75%). Employing a cascade with system A and B as primary and

secondary system respectively, this 0.75% are approached from above with a small remainder,

more precisely, with a difference in EER of 0/0.11% when employing manual/automatic quality

indices respectively. The big difference is that system A only is utilized in≈84% of all trials.

The corresponding choice for the quality threshold is marked by the leftmost arrow in the left-

hand part of figure 9, and its “efficiency impact” is marked by the corresponding topmost arrow

in the right-hand part of the figure. As illustrated, we (almost) maintain the best error rate for

simple fusion of the two systems, but actually need system B every sixth time only. Another

interesting ”operating point” is indicated by the second arrow in the left-hand part of figure 9,

at which the maximum is reached (EER of 0.75%) while both systems are utilized in≈49%

only. For these experiments, the MAX rule was employed as cascaded fusion functionf .

For the Bayesian-based fusion scheme, indices derived from a quality assessment method are

assigned to either one of the systems A-C. This is because we wish to quantify the impact of

the image quality on the bayesian supervisor fusion and a certain expert’s ability. The remaining

two experts are assigned a quality of 1 (normal) for each trial. The best results in terms of EER

are shown in figure 10. It turned out that system A is most suitable to attach certainties based on

image quality, which is indicated by qA instead of A in figure 10. Worth noting, we can observe a

drop in EER of≈97/95% when adaptively fusing all experts (qA-B-C) compared to system A in

isolation. If manually assigned quality is entering fusion, the EER drops by≈97% and if quality

indices derived from our method are used the error rate drops by≈95%. Adaptive fusion is able

to significantly increase recognition performance independent of the quality assessment method

employed, while the improvement using three experts as compared to two is relatively small: By

including system C in non-adaptive Bayesian supervisor fusion the EER drops by≈35%. This

improvement is remarkably better than in case of the simple fusion schemes where the EER



Fig. 9. Left: Results for cascaded fusion compared to simple schemes; The arrows indicate favorable threshold values for the

certainty (=image quality) at which the secondary system is triggered. Right: “Efficiency impact” of cascaded fusion; The two

arrows are connected to the former arrows through the dotted lines. The function indicates, how many trials (matches) in percent

are performed by System A only at a certain trigger threshold (and a certain joint recognition accuracy).

even increase when systems A and B are complemented by system C. This is obviously another

effect of training. Previous work has shown that the training of these supervisors is relatively

soon satisfied (20 out of 75 users [4]).

It is worth noting that both training and non-training supervisors are important to different

applications as demands on computational efficiencies versus decision performance are different.

However, in both cases the automatic quality estimates delivered significant benefits as the

above experiments indicate. While there have been some studies on how to incorporate quality

into training supervisors, the corresponding strategies were largely unstudied for non-training

supervisors. The cascade strategy presented above intends to contribute to the latter.

V. CONCLUSION

In this work we proposed a reduced-reference image quality assessment method, together

with adaptive monomodal multi-algorithm fusion strategies. We showed how a priori content-

knowledge about fingeprints can be encoded and used in quality estimation. The practical benefit

is avoidance of expensive training. As the experimental results on fingerprint quality estimation

underline, the proposed method competes well with another, yet heavily trained automatic method



Fig. 10. Best combinations for Bayesian Supervisor Fusion: The quality indices were used to weight system A only (therefore

qA)

(NFIQ) on several databases. The introduced method was also behaving closest to human opinion

on fingerprint quality, which emerged as excellent in comparison to all computational approaches.

When exploited to adapt fusion parameters, levels of agreement studies between human and

machine quality assessments have not been reported before, to the best of our knowledge.

We employed three fingerprint verification systems, with varying performance in isolation, to

implement multi-algorithm fusion. We wanted to stress the importance of adapting the fusion

parameters as a reaction to the image quality of the claim to process. Already by applying a

simple fusion scheme (MAX rule) the combined performance exceeded the best expert’s (system

A with 1.22% EER), leading to an EER of 0.75%, yet could careless simple fusion of several

experts also increase the EER. Coming to adaptive fusion, we introduced a non-trained cascaded

scheme to dynamically switch on experts in case of uncertainty (low quality), assuming time is

the most limited resource. We experimented on two experts in this case, and we could approach

the best possible EER, for example, up to 0.11% with the help of our automatic quality indices,

while saving to run the second expert 5 out of 6 times. In order to show the full potential of

multi-algorithm fusion, we implement a more sophisticated Bayes-based supervisors for both

client and impostor expectation estimation. Taking advantage of training and additionally the

quality estimates by the proposed method, EERs of 0.17% and 0.07% are achieved, respectively.



It is worth mentioning that similar results can be achieved when the single experts are worse

than in this study, as long as they measure complementary information.
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Linköping University SE-581 83 Link̈oping, Sweden, December 2004. Dissertation No. 912, ISBN 91-85295-93-0.

[30] K. Nilsson and J. Bigun. Localization of corresponding points in fingerprints by complex filtering.Pattern Recognition

Letters, 24:2135–2144, 2003.

[31] J. M. Bernardo and M. F. A. Smith.Bayesian Theory. Wiley and Son, Chichester, 1994.

[32] E. S. Bigun. Risk analyis of catastrophes using experts’ judgement: An empirical study on risk analysis of major civil

aircraft accidents in europe.European J. Operational Research, 87:599–612, 1995.

[33] J. Bigun, B. Duc, S. Fischer, A. Makarov, and F. Smeraldi. Multi modal person authentication. In H. Wechsler et. al.,

editor, Nato-Asi advanced study on face recogniton, volume F-163, pages 26–50. Springer, 1997.

[34] P. Simard K. Chellapilla, M. Shilman. Optimally combining a cascade of classifiers. InDocument Recognition and

Retrieval XIII, 15–19 January 2006.

[35] R. J. Quinlan.Programs for machine learning. Morgan Kaufmann Publishers, 1992.

[36] R. Cappelli, D. Maio, D. Maltoni, J. L. Wayman, and A. K. Jain. Performance Evaluation of Fingerprint Verification

Systems.IEEE-PAMI, 28(1):3–18, January 2006.

[37] C. I. Watson, M. D. Garris, E. Tabassi, C. L. Wilson, R. M. McCabe, and S. Janet. Users Guide to Fingerprint Image

Software 2 - NFIS2. NIST, 2004.



[38] D. Simon-Zorita, J. Ortega-Garcia, J. Fierrez-Aguilar, and J. Gonzalez-Rodriguez. Image quality and position variability

assessment in minutiae-based fingerprint verification.IEE Proceedings Vision, Image and Signal Processing, Special Issue

on Biometrics on the Internet, 150(6):402–408, December 2003.


