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Abstract

Reliable feature extraction is crucial for accurate bio-
metric recognition. Unfortunately feature extraction is
hampered by noisy input data, especially so in case of fin-
gerprints. We propose a method to enhance the quality of
a given fingerprint with the purpose to improve the recog-
nition performance. A Laplacian like image-scale pyramid
is used for this purpose to decompose the original finger-
print into 3 smaller images corresponding to different fre-
quency bands. In a further step, contextual filtering is per-
formed using these pyramid levels and 1D Gaussians, where
the corresponding filtering directions are derived from the
frequency-adapted structure tensor. All image processing is
done in the spatial domain, avoiding block artifacts while
conserving the biometric signal well. We report on com-
parative results and present quantitative improvements, by
applying the standardized NIST FIS2 fingerprint matcher to
the FVC2004 fingerprint database along with our as well as
two other enhancements. The study confirms that the sug-
gested enhancement robustifies feature detection, e.g. minu-
tiae, which in turn improves the recognition (20% relative
improvement in equal error rate on DB3 of FVC2004).

1 Introduction

Automatic fingerprint image enhancement plays a piv-
otal role in fingerprint recognition, since it strongly deter-
mines the success of all further steps. By succeeding the
sensing stage and directly preceding feature extraction, the
purpose of image enhancement is to facilitate the latter by
“denoising” the signal. It has been shown previously that
the quality of a fingerprint image directly affects the per-
formance of a given recognition system [11, 12, 15]. In
an ideal fingerprint image, ridges and valleys alternate and
flow in a locally constant direction [16]. In realistic sce-
narios though, the quality of a fingerprint image may suffer
from various impairments, caused by i) scares and cuts, ii)
moist or dry skin, iii) sensor noise/blur, iv) wrong handling
of the sensor (e.g. too low/high contact pressure), v) gener-
ally weak ridge-valley pattern of the given fingerprint, etc.

While not acting against low quality fingerprints, methods
to automatically assess the quality of a given impression,
such as [7, 12, 19], are useful and complementary to this
study.
The task of a fingerprint enhancement algorithm is to coun-
teract the aforesaid quality impairments and to reconstruct
the actual fingerprint pattern as true to the original as pos-
sible. Furthermore, unrecoverable areas should be labeled
as such, since fingerprint enhancement at too noisy parts
yields spurious information. There are several published
studies on fingerprint image enhancement. Hong et al. [13]
proposed an algorithm using Gabor band-pass filters tuned
to the corresponding ridge frequency and orientation to re-
move undesired noise while preserving the true ridge-valley
structures. Here, all operations are performed in the spatial
domain, whereas the contextual filtering in [8, 17] is done
in the Fourier domain. Either way, block-wise processing
is used to obtain the enhancement result causing restora-
tion discontinuities at block boundaries. These methods are
likely successful in extreme bad quality regions, but also
rather rigid under easy conditions. In [20, 22], the finger-
print’s block-wise power spectra were multiplied by them-
selves but raised to the power of k, thus magnifying the
dominant orientation. A block-wise Fourier transform is
also employed by Chikkerur et al. [8, 9], followed by con-
textual filtering using raised cosines. In a related study [2], a
standard discrete scale space has been used to contextually
process fingerprints. To the contrast, we employ an effi-
cient multigrid representation of a discrete differential scale
space and follow a different enhancement strategy. For a
more detailed review of fingerprint enhancement schemes
we refer to [16].
In this study we propose the use of an image-scale pyramid
and directional filtering in the spatial domain for fingerprint
image enhancement. Image pyramids or multi-resolution
processing is especially known from image compression
and medical image processing [10,14], but has not been uti-
lized to enhance fingerprint images before. The Laplacian
pyramid [1, 18] resembles bandpass filtering in the spatial
domain. In this study, we decompose fingerprint images
in a similar manner, since we expect all the relevant infor-
mation to be concentrated within a few frequency bands.



Furthermore, we propose Gaussian directional filtering to
enhance the ridge-valley pattern of a fingerprint image us-
ing computationally cheap 1D filtering on higher pyramid
levels (lower resolution) only. The filtering directions are
recovered from the orientations of the structure tensor [3]
at the corresponding pyramid level. In contrast to other al-
gorithms, no block-wise processing is performed, thereby
avoiding block boundary artifacts.
In the following section, a detailed description of the pro-
posed fingerprint enhancement algorithm is given. In sec-
tion 3 we report on experiments performed on the FVC2004
database using the NIST FIS2 fingerprint matcher [21, 23].

2 Fingerprint Image Enhancement

This section describes the proposed image enhancement
for fingerprints and presents a comparative discussion with
two other methods. The involved steps are arranged as il-
lustrated in figure 1, each of them to be detailed below.

Figure 1. Data flow: Images (rectangles) and
applied processing (connection labels).

2.1 Pyramid Decomposition (PD)

A pyramid decomposition requires resizing (scaling, or
geometric transformation). To create our Gaussian and
Laplacian-like pyramids, we define the reduce (I, f) and
expand (I, f) operations, which decrease and increase an
image I in size by the factor f , respectively. During reduce,
the image is initially low-pass filtered to prevent aliasing
using a Gaussian kernel. The latter’s standard deviation de-
pends on the resizing factor, which here follows the lower
bound approximation of the corresponding ideal low-pass
filter, σ = 0.75·f

2 [3]. We initially reduce the original fin-
gerprint image fp by a factor of f0 ≥ 1.5 in order to ex-
clude the highest frequencies. In a further step we reduce
the image size by a factor f ≤ 1.5 for three times. This is
also outlined to the left in table 1. To create images con-
taining only band limited signals of the original image, we
expand the three images g2−4 by factor f and subtract each

a) Pyramid Decomposition PD

Gaussian-like Laplacian-like

g1 = reduce (fp, f0) ; l1 = g1 − expand (g2, f) ;

g2 = reduce (g1, f) ; l2 = g2 − expand (g3, f) ;

g3 = reduce (g2, f) ; l3 = g3 − expand (g4, f) ;

g4 = reduce (g3, f) ;

b) Reconstruction R
fp = expand (., f0) ;

expand (., f) + l1
expand (l3, f) + l2

Table 1. The pyramid building process.

of them from the next lower level, yielding l1−3. The lat-
ter contain the adequately high, medium and low frequen-
cies (ridge-valley pattern) of the original fingerprint. It is
worth noting, that only the laplacian-like pyramid levels
l1−3 are used subsequently in this study. In a further step,
the contrast of the single band images is enhanced, follow-
ing li = CE (li) where CE (x) = sign (x) ·√|x|, to depre-
ciate small vectors of x in comparison with those of large
magnitudes. Note, that li contains no DC content, i.e. ridge
pixels have negative values whereas valley pixels are posi-
tive (ideally). In figure 2, an example fingerprint beside its
contrast enhanced pyramid levels l1−3 are displayed. The
latter are used in an initial reconstruction step R as shown
rightmost. This reconstruction is crude so far and represents
only an isotropic (non-directional) enhancement, involving
signal values starting at l3 (see table 1). It is already visi-
ble that the portions of the fingerprint image that have been
retained and contrast improved contain significant recogni-
tion information, whereas others containing high-frequency
isotropic noise are attenuated.
Worth mentioning, we cover approximately half the band-
width of the original image through the band-pass images
in total, e.g. by setting f0 and f to 1.5. This choice de-
pends on the resolution of the fingerprint and normally can
be approximated off-line, either experimentally or by using
information on the used sensor. In the used images studied
here the ridge frequency in a fingerprint image is ≈60 cy-
cles per image width/height [6]. This translates to an image
dimension of approximately 100-400 pixels for the method
to be most effective.

2.2 Orientation Estimation (OE)

The ridge-valley orientation for each of l1−3 is estimated
using the complex structure tensor approach [3]. The latter



Figure 2. i) Example fingerprint of the FVC2000-2 database, i-iv) its band-pass like decomposition
via l1−3, v) the “so-far” reconstructed fingerprint.

tensor is built as in equation 1

zi = [(DxG(σ1) + jDyG(σ1)) ∗ li]
2

= C · [(x · G(σ1) + jy · G(σ1)) ∗ li]
2 (1)

where G (σ1) = exp
(− (

x2 + y2
)
/σ2

1

)
, j =

√−1, and
“∗” denotes a 2D convolution. As the equation shows, the
operations Dxli and Dyli are realized by means of convo-
lutions via CxG(σ1) ∗ li and CyG(σ1) ∗ li with C being
the non-essential constant −1/σ2. To obtain a robust es-
timation of the dominant direction (linear symmetry orien-
tation) at a point, zi is averaged using a Gaussian G (σ2),
where σ2 > σ1 to yield the complex image I20. Like-
wise the magnitude of zi is averaged to yield I11. To be-
come independent of signal energy, we calculate LSi = I20

I11
for level i, encoding local orientation ( � ) and symmetry
strength (||). Also, by using LS, the magnitude of I20 is
attenuated if the underlying linear symmetry is not well-
defined [4]. It is worth mentioning that all convolutions
are separable and only 1D Gaussian (derivative) filters have
been used. Furthermore, LS1 is attenuated if its orienta-
tion deviates too much from the one of LS2. This is done
by LS1 = LS1 · | cos ( � LS1 − � LS2) |. This is meaningful
because LS1 contains the most localized orientation (infor-
mation also at minutia-level), but is also most susceptible
to noise. In figure 3, LS1−3 for the example fingerprint are
displayed using a HSV model, where its magnitudes modu-
late value V and the arguments (local orientation) steer hue
H. When compared to a low-pass pyramid (e.g. Gaussian
pyramid), the estimated orientation in band-pass pyramids
(e.g. Laplacian pyramid) was found much more robust, in
this context.

Figure 3. i-iii) HSV representation of LS1−3,
steering V (magnitudes) and H (arguments).

2.3 Directional Filtering (DF)

In order to enhance the SNR (signal-to-noise ratio), i.e.
to remove sweat pores, scars, etc., we apply directional av-
eraging to all levels l1−3. The filtering direction within li is
given by � (LSi) /2−π/2, thus it follows the ridges/valleys
of the fingerprint. At every position, the neighboring pixels
along a line are multiplied by a 1D Gaussian and summed
to yield the new value. The possible different line direc-
tions are restricted (here 20). Furthermore, we also exploit
the magnitude of LSi: First, pixels where |LSi| < τ1 are
assigned to the background, i.e. they are set to 0 (effec-
tively amounting to a segmentation of the fingerprint from
the background or the heavily noisy regions). Second, only
if |LSi| > τ2 when measured on a small annulus centered
at the current pixel, a reasonable quality (presence of ridge-
valley pattern at level i) is ensured and the above filtering is
done. Otherwise, the pixel is again set to 0. In this way, fre-
quency selective structure tensors have helped to smoothen
the image adaptively in the most appropriate direction per



Figure 4. i-iii) Directional filtered l1−3, iv) the reconstructed fingerprint, v) contrast enhancement.

layer. At the lowest level l1, fine minutiae are preserved be-
cause the LS1 filtering directions are sensitive to them. At
higher levels l2−3 the rough ridge-valley flow is smoothed,
and gaps are closed (e.g. caused by scars) because LS2−3

contain the global orientation. By use of the filtered levels
l1−3 only, the image is reconstructed (R). A final contrast
enhancement (CE) is done subsequently. In figure 4, the
filtered versions of l1−3 for the example fingerprint are dis-
played, beside the reconstructed image and the final, con-
trast enhanced image. The 1D Gaussians used for this pur-
pose are small and thus singular points like core and delta
points do not need further attention. The resulting enhanced
fingerprints exhibit a smooth ridge-valley flow, yet preserv-
ing the discriminative local and global information.

2.4 Qualitative comparison and discussion

Here, we present samples of enhancements to provide a
visual feedback for a qualitative comparison between the
proposed method and two other enhancement techniques
studied by Hong et al. [13] and Chikkerur et al. [8], re-
spectively. Implementations by the latter author, of both
methods were used. Figure 5 depicts a fingerprint image
from the FVC2004-1 database together with 3 enhanced
versions as delivered by the mentioned techniques. The sec-
ond image, corresponding to the output of Hong’s method,
is achieved by the use of Gabor-filters, tuned according to
estimated frequency and the orientation within small blocks
of the fingerprint. The filtering is only performed if the cor-
responding region exhibits ridge-valley structure that allows
correct enhancement. The result of Chikkerur’s method is
visualized in the third image of figure 5. Here, all calcula-
tions are performed in the frequency domain, using STFT
(Short Time Fourier Transform), involving small overlap-
ping blocks. The ridge frequency and orientation are de-
termined in the Fourier domain, to steer the contextual fil-
tering by steep band-pass functions. The segmentation of

a fingerprint is done by putting a pre-determined threshold
to a block’s energy. The final image in figure 5 depicts the
result by the proposed method. As to be expected, our ap-
proach does not exhibit block-artifacts because the data pro-
cessing is not block-wise. Qualitatively, it appears that our
method produces high contrast between ridges and valleys
and the result generally exhibits more fidelity to the origi-
nal compared to the alternative approaches, because Hong’s
method appears somewhat more blurred while Chikkerur’s
approach has visible block-artifacts, especially near minutia
points. Being the basic resource for most fingerprint recog-
nition techniques, including semiautomatic forensics, it is to
be expected that minituae neighbourhood degradation will
decrease recognition performance. However, the validity of
these qualitative observations need to be supported exper-
imentally using publicly available databases and standard
matching techniques, which we present next.

3 Experiments

In order to benchmark the capability of the proposed
fingerprint enhancement algorithm, we need to test it
on highly corrupted fingerprint data, where reliable en-
hancement becomes indispensable. Therefore we use the
FVC2004 database [15], which was created to provide
a tougher benchmark for state-of-the-art recognition sys-
tems than previous fingerprint verification competitions [6].
When collecting the fingerprint data, individuals were asked
among other things to vary the contact pressure applied to
the sensor and their fingers were additionally dried or moist-
ened in order to enforce challenging image quality condi-
tions. The test set of the FVC2004 consists of 4 databases,
which were acquired using different sensor types and each
of them contains 8 impressions of 100 fingers. Subse-
quently, we will refer to these databases as DB1-4. It is
worth mentioning that DB4 was created using the SFinGE
synthetic fingerprint generator [5] whereas DB1-3 are pop-



Figure 5. i) Example fingerprint of FVC2004-1, ii) enhancement by Hong, iii) Chikkerur, iv) proposed.

ulated by images representing authentic fingerprints sensed
by real sensors. When carrying out fingerprint verification
for a single DB, we follow the FVC protocol involving 2800
genuine trials and 4950 impostor trials.
First of all, we enhance all fingerprints of DB1-4 with three
different enhancement methods: The proposed algorithm,
and the methods of Hong and Chikkerur, which we already
compared and inspected visually in section 2.4. Further-
more, we employ an independent fingerprint matcher (NIST
FIS2 mindtct + bozorth3 packages [21, 23]) and take notes
of the achieved EER (Equal Error Rate) per database and
enhancement method. Ideally, all of the latter should lead
to lower error rates for the fingerprint matcher, compared
to when matching the original fingerprints. Table 2 shows

Enhancem. Method DB1 DB2 DB3 DB4
no pre-enhancem. 14,5% 9,5% 6,2% 7,3%
Hong [13] (16,9%) 14,4% 7,1% 9,8%
Chikkerur [8] (19,1%) 11,9% 7,6% 10,9%
proposed method 12,0% 8,2% 5,0% 7,0%

Table 2. EER of the NIST FIS2 matcher on the
original and pre-enhanced FVC2004.

the EER of the matcher on all 4 FVC2004 databases: The
results in the first row were achieved when using no im-
age enhancement at all. The other rows detail the matching
performance if all impressions were initially enhanced by
the method of Hong (second row), Chikkerur (third row),
and by the proposed approach (last row). Surprisingly, we
can observe that all enhancement methods but the proposed
worsen (!) the error rate. Our approach clearly leads to the
lowest EER on all 4 databases. Worth mentioning, no pa-
rameters of our enhancement method have been adapted to

any of the used databases1, neither were the others. Thus,
the available fingerprint area after enhancement sometimes
happened to be very small (especially in DB1). In figure
6 we show example fingerprints of DB1-4 next to their en-
hanced version, employing the proposed algorithm.

4 Conclusion

A novel image enhancement procedure for fingerprints
has been presented. It is a continuous, (in the sense of not
being block-wise), spatial domain approach. It does thereby
not suffer from blocking artifacts. Both absolute frequency
(isotropic information) and orientation (non-isotropic in-
formation) of the fingerprint pattern are utilized to obtain
the enhancement. The former is implemented by exploit-
ing several levels of a band-pass pyramid and treating them
independently. The typical ridge-valley flow is coherence
enhanced by using directional averaging and the structure
tensor direction at each level. The approach is efficient be-
cause the main computations are done at at least 1.5 times
lower resolution than that of the original, and by use of 1D
filters only. The processing of the lowest level adds to the
fidelity and details (conservation of minutiae) whereas the
rough ridge-valley flow is cleaned and gaps are closed at
higher levels. We have compared our approach to two other
enhancement methods, qualitatively and quantitatively by
use of a difficult fingerprint dataset. The results on the 4
FVC2004 databases are favorable to the suggested enhance-
ment method. While the alternative techniques have been
shown to improve the recognition performance in previous
studies when processing fingerprints with more moderate
noise than those affecting the FVC2004, the benefits of their
enhancement apparently do not outweigh the introduced ar-
tifacts at presence of heavy but realistic sensing noise.

1Our algorithm was checked by inspection on selected fingerprints of
DB2 from FVC2000 (compare figure 2-4)



Figure 6. One fingerprint of each DB of
FVC2004 next to its enhanced version
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