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Local Features for Enhancement and Minutiae
Extraction in Fingerprints

Hartwig Fronthaler, Klaus Kollreider, and Josef Bigun, Senior Member, IEEE

Abstract—Accurate fingerprint recognition presupposes robust
feature extraction which is often hampered by noisy input data.
We suggest common techniques for both enhancement and minu-
tiae extraction, employing symmetry features. For enhancement,
a Laplacian-like image pyramid is used to decompose the original
fingerprint into sub-bands corresponding to different spatial
scales. In a further step, contextual smoothing is performed on
these pyramid levels, where the corresponding filtering directions
stem from the frequency-adapted structure tensor (linear sym-
metry features). For minutiae extraction, parabolic symmetry is
added to the local fingerprint model which allows to accurately
detect the position and direction of a minutia simultaneously. Our
experiments support the view that using the suggested parabolic
symmetry features, the extraction of which does not require
explicit thinning or other morphological operations, constitute
a robust alternative to conventional minutiae extraction. All
necessary image processing is done in the spatial domain using
1-D filters only, avoiding block artifacts that reduce the biometric
information. We present comparisons to other studies on enhance-
ment in matching tasks employing the open source matcher from
NIST, FIS2. Furthermore, we compare the proposed minutiae
extraction method with the corresponding method from the NIST
package, mindtct. A top five commercial matcher from FVC2006
is used in enhancement quantification as well. The matching error
is lowered significantly when plugging in the suggested methods.
The FVC2004 fingerprint database, notable for its exceptionally
low-quality fingerprints, is used for all experiments.

Index Terms—Differential scale space, fidelity, fingerprint
restoration, image enhancement, image pyramid, linear symmetry,
minutiae extraction, orientation tensor, parabolic symmetry, sym-
metry features.

I. INTRODUCTION

OR THE processing of fingerprint images, two stages
Fare of pivotal importance for the success of biometric
recognition: image enhancement and feature/minutiae extrac-
tion. A topical review of fingerprint processing technologies
can be found in [1]. Applied immediately after sensing but
before feature extraction, an optional image enhancement
can be performed to facilitate the feature extraction and the
subsequent processing by “de-noising” the signal. In an ideal
fingerprint image, ridges and valleys alternate and flow in a
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locally constant direction [2]. In realistic scenarios though,
the quality of a fingerprint image may suffer from various
impairments, caused by 1) scares and cuts, 2) moist or dry skin,
3) sensor noise/blur, 4) wrong handling of the sensor (e.g.,
too low/high contact pressure), 5) generally weak ridge-valley
pattern of the given fingerprint, etc. While not acting against
low-quality fingerprints, methods to automatically assess the
quality of a given impression, such as [3]-[5], are useful
and complementary to this study. The task of fingerprint en-
hancement is to counteract the aforesaid quality impairments
and to reconstruct the actual fingerprint pattern as true to the
original as possible. The latter part is especially noteworthy.
Furthermore, unrecoverable areas should be labeled as such,
since the enhancement at too noisy parts may generate spurious
features. There are several published studies on fingerprint
image enhancement. Hong e al. [6] proposed an algorithm
using Gabor bandpass filters tuned to the corresponding ridge
frequency and orientation to remove undesired noise while
preserving the true ridge-valley structures. All operations are
performed in the spatial domain, whereas the contextual fil-
tering in [7] and [8] is done in the Fourier domain. Either way,
blockwise processing is used to obtain the enhancement result
causing restoration discontinuities at the block boundaries.
These methods are likely successful in extremely bad-quality
regions, but also rather rigid under easy conditions, due to the
radical processing. In [9] and [10], the fingerprint’s blockwise
Fourier transform is multiplied by its power spectrum raised
to a power k, thus magnifying the dominant orientation. A
blockwise Fourier transform is also employed by Chikkerur
et al. [8], [11], followed by contextual filtering using raised
cosines. In a related study [12], a standard discrete scale space
has been used to contextually process fingerprints. We employ
a multigrid representation of a discrete differential scale space
following a novel enhancement strategy. For a more detailed
review of fingerprint enhancement schemes, we refer to [2].

In this study, we propose the use of an image-scale pyramid
and directional filtering in the spatial domain for fingerprint
image enhancement to improve the matching performance as
well as the computational efficiency. Image pyramids or mul-
tiresolution processing is especially known from image com-
pression and medical image processing [13], [14], but their rel-
evance to fingerprint image enhancement has not been quanti-
fied before. The Laplacian pyramid [15], [16] is equivalent to
bandpass filtering in the spatial domain. Here, we decompose
fingerprint images in a similar manner, since we expect all the
relevant information to be concentrated within a few frequency
bands. Furthermore, we propose Gaussian directional filtering
to enhance the ridge-valley pattern of a fingerprint image using
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computationally cheap 1-D filtering on higher pyramid levels
(lower resolution) only. The filtering directions are recovered
from the orientations of the structure tensor [17], [18] at the cor-
responding pyramid level. Linear symmetry features are thereby
used to extract the local ridge-valley orientation (angle and reli-
ability). In contrast to other studies, e.g., [6] and [11], no block-
wise processing is performed, avoiding block boundary arti-
facts.

Furthermore, we focus on minutia points, which are disconti-
nuities in the ridge flow. The most prominent minutiae are ridge
bifurcation and termination (=ending), which refer to points
where a ridge divides into two and a ridge ends, respectively. In
what follows, we benchmark a recent method to detect the minu-
tiae’s position and direction [19]. Existing minutiae extraction
approaches comprise so-called “direct grayscale” and “binariza-
tion-based” methods. In “binarization-based”” methods [20], the
fingerprint image is binarized and morphologically analyzed for
minutiae. In “direct grayscale” methods, mainly the image gra-
dient and local grayscale neighborhood are used to locate minu-
tiae, either by tracking ridges [21], or by classifying directional
filter responses [22]. The direction of a minutia is mostly inher-
ited from the associated ridge. The presented method is a “direct
grayscale” approach, as it operates exclusively on the local di-
rection field of a fingerprint image. Note that with partial finger-
prints lacking singular points [23] at hand, only local features
can be used for alignment and matching purposes. We extend
the features used to enhance the image by higher orders sensi-
tive to parabolic symmetry which enable us to detect the minutia
points’ position and direction. The targeted minutia types are
ridge bifurcation and termination. Linear and parabolic sym-
metry are the only features used throughout our study.

We corroborate our techniques by experiments on a state-of-
the-art database for fingerprint recognition, the FVC2004 data-
base [24]. We use the matching module of the NIST FIS2 soft-
ware [25], [26] to compare our features to the binarization/mor-
phology based features of the software, in an attempt not to
favor our features by using a commonly referred matcher. Fur-
thermore, we compare two different fingerprint enhancement
methods with our method qualitatively (by human vision) and
objectively (via matching performance experiments). We also
test the proposed enhancement in conjunction with a top per-
forming matcher of the FVC2006.

II. LOCAL FEATURES

We use two types of symmetries to model and extract the local
structure in a fingerprint, which are parabolic and linear sym-
metry. Both symmetries can be estimated by separable filtering
of the orientation tensor. For a more detailed review of sym-
metry filters, i.e., symmetry derivatives of Gaussians, we refer
to [18] and [27]. The starting point for the extraction of our local
features is the linear symmetry tensor! image, described by the
complex expression

= (fm + Lfy>2
= [(D2G(01) + iDyG(01)) * fT° (1)

ITt is also known as the structure tensor or the inertia tensor which can be
fully represented by (1).

where i = v/—1, and f, and f, denote the derivatives of the
image f in z and y direction, respectively. The rightmost part
of (1) indicates the actual implementation with a Gaussian bell
G(o1) = exp(—(z% + y?)/0?), and “x” denotes a 2-D convo-
lution. The operations D, f and D, f are realized by means of
convolutions via CzG(o1) * f and CyG(o1) * f (1-D) with C
being the nonessential constant —1 /2. The calculation of the
tensor implies complex filtering but the synthesis of the com-
plex z happens afterwards at pixel level. This is also true for
the symmetry features to be explained next. A symmetry in the
image and the associated filter detecting it can be modeled by
exp(img), where m represents its symmetry order [27]-[29].
Parameter m can be any integer, including negative ones. It was
shown that to detect a symmetry of type m > 0 in an image, one
can convolve z, described by (1), with the complex filter given
by the following polynomial:

2 2
m) . )

hm = (x 4+ iy)™ - exp <— 207

Even symmetries of the type m < 0 can be detected in the
same way. The corresponding filter is then given by the com-
plex conjugate of the |m|-filter in (2). The first type of sym-
metry used in this study is linear symmetry, which occurs at
points of coherent ridge flow. It naturally encodes the local ori-
entation and coherence of the ridge-valley structure as a com-
plex number. The discrimination power of this information has
been shown in fingerprint pattern matching [30]. In the case of
linear symmetry, which can also be described as symmetry of
order m = 0 the polynomial in (2) reduces to a Gaussian filter
G(o2), where 0o > o1. Applying this filter to the orientation
tensor z(z,y) corresponds to complex summation/averaging of
the linear symmetry tensor in the local neighborhood of each
point. To obtain a reliable measure for the linear symmetry, we
first calculate the second order complex moments I5g = (z, ho)
and I1; = (]z|, ho), as suggested by [17] and [31]. The measure
for linear symmetry used in this study is denoted in (3)

LS = <12—°> _ (zho) 3)

hin) o (|zl: ho)

Moment /17 acts as an upper boundary for the linear sym-
metry certainty, and by dividing I5¢ through I7; unreliable ori-
entations are attenuated, whereas the strong ones are promoted.
It is worth noting that linear symmetry detection is also useful
for locating minutiae in an inverse fashion, as “lack of linear
symmetry” occurs at minutia points [32] (compare Figs. 4 or 6).

Next, we are interested in parabolic symmetry of order m =
1, since the parabolic pattern is most similar to a minutia point
in a fingerprint. Equation (4) describes how complex filtering is
applied to detect this type of symmetry, where (, ) represents the
2-D scalar product (as before) and g(x,y) denotes the Gaussian
window

PS = (z,h) = ((fo +ify)*, ( +iy) - g(2,y)). @)

The two grayscale images in Fig. 1 show minutia points of
type ridge bifurcation (top) and ridge ending (bottom), with their
directions indicated. Next to them, the corresponding complex
filter responses of h; are displayed. The latter can be described
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Fig. 1. Parabolic symmetry filter responses PS for (top) ridge bifurcation and
(bottom) ridge ending.

Enhanced
Fingerprint

Original |
Fingerprint

Fig. 2. Data flow: (rectangles) images and (connection labels) applied pro-
cessing. The abbreviations will become clear within this section.

as ¢; = - exp(i). The value 4 is a certainty measure and
the argument o represents the geometric orientation of the sym-
metric pattern in symmetry order m = 1. An important property
of parabolic symmetry filtering for minutiae detection is that the
minutia direction is retrieved at the same time (see Fig. 1) as its
position, and that this minutia direction estimation is indepen-
dent of the ridge direction estimation.

Symmetry features of these and higher orders have been
useful in a number of tasks in image processing, for example,
singular point extraction in fingerprints [33], image quality
estimation [3], texture analysis and optical flow estimation
[34], recognition of crash test cross trackers [27], etc.

III. FINGERPRINT IMAGE ENHANCEMENT

It has been shown previously that the quality of a fingerprint
image directly affects the performance of a given recognition
system [3], [24], [35]. In lack of higher quality images, e.g.,
from a crime scene, or due to worn fingerprints, a carefully un-
dertaken high-fidelity enhancement is frequently the only option
that remains to enable identity establishment via fingerprints.
The steps involved in the proposed strategy are arranged as il-
lustrated in Fig. 2, each of them to be detailed as follows.
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TABLE 1
PYRAMID BUILDING PROCESS

a) Pyramid Decomposition PD

Gaussian-like Laplacian-like

g1 = reduce (fp, ko) ; l1 = g1 — expand (g2, k) ;

g2 = reduce (g1,k) ; lo = g2 — expand (g3, k) ;

gs = reduce (g2, k) ; l3 = g3 — expand (ga, k) ;

ga = reduce (g3, k) ;

b) Reconstruction R
fp = expand (..., ko) ;
1t expand (..., k) + 11
1 expand (I3, k) + lo

A. Pyramid Decomposition (PD)

A pyramid decomposition requires resizing (scaling, or geo-
metric transformation). To create our Gaussian and Laplacian-
like pyramids, we define the reduce (I, k) and expand (1, k)
operations, which decrease and increase an image I in size by
the factor k, respectively. During reduce, the image is initially
low-pass filtered to prevent aliasing using a Gaussian kernel.2
The latter’s standard deviation depends on the resizing factor,
which here follows the lower bound approximation of the cor-
responding ideal low-pass filter, o = (0.75 - k)/(2) [18]. We
initially reduce the original fingerprint image fp by a factor of
ko > 1.5 in order to exclude the highest frequencies. In a fur-
ther step, we reduce the image size by a factor £ < 1.5 for
three times. This is also outlined on the upper left hand side of
Table 1. To create images containing only band limited signals
of the original image, we expand the three images go_ 4 by factor
k and subtract each of them from the next lower level, yielding
l1—3. The latter contain the adequately high, medium and low
frequencies (ridge-valley pattern) of the original fingerprint. It
is worth noting, that only the Laplacian-like pyramid levels [ _3
are used subsequently in this study. In a further step, the contrast
of the single band images is enhanced, following I; = CE(l;)
where CE(z) = sign(z) - y/|z], to depreciate small vectors
of  in comparison with those of large magnitude. Note, that /;
contains no DC content, i.e., ridge pixels have negative values
whereas valley pixels are positive (ideally). In Fig. 3, we show
example fingerprints of different quality besides their contrast
enhanced pyramid levels [;_3. For easier comprehension, the
latter are used for an initial reconstruction step, which is dis-
played rightmost. This reconstruction is crude so far and rep-
resents only an isotropic (nondirectional) enhancement, which
is implemented as listed at the bottom of I. It is already visible
that the portions of the fingerprint image that have been retained
and contrast improved contain significant recognition informa-
tion, whereas others containing high-frequency isotropic noise
are attenuated.

We cover approximately half the bandwidth of the original
image through the bandpass images in total, e.g., by setting kg
and k to 1.5. This choice depends on the resolution of the fin-
gerprint and normally can be approximated off-line, either ex-
perimentally or by using information on the used sensor. In the
images studied here the ridge frequency in a fingerprint image

2The 2-D Gaussians are the only functions that are Cartesian separable and
yet being fully rotational symmetric, avoiding orientation bias [18].
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Fig. 3. Pyramid decomposition process of the (top row) high-quality impres-
sion 104_6 and a (bottom row) low-quality example 1_1 of the FVC2000-2
dataset; the column images represent 1) the original fingerprint, 2-3) its band-
pass like decomposition vial; _ 3 after contrast enhancement, and 4) the “so-far”
reconstructed fingerprint.

Fig. 4. HSV representation of linear symmetry filter responses LS;_j
(columns 1-3) for the two example fingerprints of the FVC2000-2 dataset,
where the magnitude steers V and the argument controls H.

is =60 cycles per image width/height [6]. This translates to
an image dimension of approximately 100-400 pixels for the
method to be most effective.

B. Orientation Estimation (OE)

The ridge-valley orientations for each of /;_3 are estimated
using (3). We calculate LS; = (I39)/(I11) for level i. Being
a complex valued image, LLS; encodes the local orientation in
a pixel’s argument, /LS;, and the reliability of this estimation
in the magnitude, |L.S;|. By using LS the measure becomes
independent of the signal energy. Furthermore, LS, is attenu-
ated if its orientations deviate too much from the ones of LSo,
which is done by LS; = LS; - | cos(£ZLS; — ZLS,)|. This is

3 (‘;Esy sk
'mj/,ﬁ.; A

Fig. 5. Directional filtering process of the example fingerprint images featuring
high (top row) and a low quality quality (bottom row); the column images rep-
resent 1) the original fingerprint, 2-3) directionally filtered pyramid levels [, _3
and iv) the final fingerprint after reconstruction and contrast enhancement.

meaningful because LS; contains the most localized orienta-
tion (information also at minutia-level), but is also most sus-
ceptible to noise. In Fig. 4, LS 3 for the two example finger-
prints from 3 are displayed using a HSV model, where the mag-
nitudes modulate value V and the arguments (local orientation)
steer hue H. Note the effect of low quality on LS;, especially
in the second row. However, the higher pyramid levels LSo_3,
which contain a coarser description of a fingerprint’s orienta-
tion, are still intact. When compared to a low-pass pyramid
(e.g., Gaussian pyramid), the estimated orientations via band-
pass pyramids (e.g., Laplacian pyramid) were found noticeably
more robust, in this context.

C. Directional Filtering (DF)

To enhance the SNR (signal-to-noise ratio), i.e., to remove
sweat pores, scars, etc., we apply directional averaging to all
levels [; 3 independently, described next. The local filtering di-
rection within /; is given by Z(LS;)/2 — /2, thus it follows the
ridges/valleys of the fingerprint. At every point, the neighboring
pixels along a line having the same local direction are averaged
with a (1-D) Gaussian, yielding the new value. The possible
number of different averaging directions is quantized (here 20).
Additionally, we exploit the magnitudes of the complex pixels
of LS;. First, pixels where |LS;| < 7 are assigned to the back-
ground, i.e., they are set to O (effectively amounting to a seg-
mentation of the fingerprint from the background or the heavily
noisy regions). Second, only if |L.S;| > 7> when measured
on a small annulus centered at the current pixel, a reasonable
quality (presence of ridge-valley pattern at level 7) is ensured
and the above filtering is done. Otherwise, the pixel is again
set to 0. Generally, 75 should be chosen higher than 77, advis-
able values are below 0.5. In this pyramidal process, the struc-
ture tensors become spatial frequency selective and adaptively
steer the smoothing amount and direction along the ridge-valley
structures. At the lowest level /1, fine minutiae are preserved be-
cause the LS, filtering directions are sensitive to them. At higher
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Fig. 6. Minutia point detection process for an example fingerprint; 1) impression 6_0 of the FVC2000-2 dataset and 2) its enhanced version, 3) LS (HSV), 4) |PS|,

5) |PS| - (1 — |LS]), 6) 30 strongest minutiae.

levels [5_ 3 the rough ridge-valley flow is smoothed, and gaps are
closed (e.g., caused by scars) because LS, _ 3 contain the global
orientation. By use of the filtered levels /;_3 only, the image is
reconstructed (R). A final contrast enhancement (CE) is done
subsequently. In Fig. 5, the filtered versions of {;_3 for the ex-
ample fingerprints are displayed besides the reconstructed final,
contrast enhanced images. /1 is most susceptible to noise, which
can be observed in the bottom row, where the threshold condi-
tions for 7 and 75 are not fulfilled in many parts of the potential
matching area. Note that in this case, the smoother levels [5_3
manage to fill these holes. Singular points like core and delta
points do not need further attention during the filtering process,
due to the small size of the employed 1-D Gaussians. In Sec-
tion VI, we will quantify the benefits this fingerprint enhance-
ment affords along with a comparison to alternative strategies.

IV. FINGERPRINT MINUTIAE EXTRACTION

Given the enhanced fingerprint image, both LS and PS
are computed via (3) and (4) to obtain features to be used in
matching. Some more steps have to be considered to reliably
detect minutia points. First, the selectivity of the parabolic
symmetry filter responses is improved, using the simple inhi-
bition scheme PSi = PS - (1 — |LS]), [36]. Essentially, the
parabolic symmetry is attenuated if the linear symmetry is
high, whereas it is preserved in the opposite case. In Fig. 6,
the minutiae detection process is visualized for an example
fingerprint. The first two images depict the initial fingerprint
and its enhanced version, respectively. The parabolic symmetry
displayed in image IV (|PS|) is inhibited with the absolute
value of the linear symmetry shown in image III (LS). The
latter image also represents the local orientation. The resulting
sharpened magnitudes |PSi| are displayed in image V. In a
further, step all filter responses below a certain threshold Tpg
are set to zero. LS provides a good measure for segmenting the
fingerprint from the background in order to discard responses
in the marginal area of the fingerprint image. The remaining
filter responses within P.S¢, which are concentrated to pixel “is-
lands,” are used for the extraction of minutia candidates. During
this extraction process, we search for the highest filter response
in a small neighborhood (here 9 x 9, determined empirically)
throughout the fingerprint area to avoid multiple detection of
the same minutia. Finally, we demand each minutia to be fully
surrounded by high linear symmetry, by ensuring whether the
average linear symmetry on a ring around a minutia candidate is

above a threshold 71,5. Thus, we can exclude spurious minutia
points which occur at the transition from the fingerprint to the
background and at impurities, comprising regions lacking fin-
gerprint structure, e.g., due to low contact pressure, humidity,
greasiness, dust, wounds, sensor deficiency, etc., within the
fingerprint area. If this condition is fulfilled, the position and
the complex filter response are stored. One should set Tpg very
close to 0 and 71,5 near to 1. The final minutiae list is ordered by
magnitude of PS since it represents the presence of parabolic
symmetry. In image VI of Fig. 6, the circles indicate detected
minutiae when considering only the 30 highest magnitudes.

V. EXAMPLES AND QUALITATIVE OBSERVATIONS

In this section, we inspect the proposed techniques for en-
hancement and minutiae extraction visually, including existing
methods for both tasks. We discuss the systematic qualitative
differences briefly.

First, we show typical examples of enhancement using the
proposed method and two other published studies by Hong et al.
[6] and Chikkerur et al. [8], respectively. The implementation
of the two latter methods are due to the authors of [8]. Fig. 7
depicts two fingerprint images representing (top row) high- and
(bottom row) low-quality from the FVC2004-1 dataset together
with their enhanced versions as delivered by the mentioned
techniques. The images in the second column, corresponding to
the output of [6], are obtained by the use of Gabor-filters, tuned
to the estimated spatial frequency and orientation within small
blocks of the fingerprint. The filtering is only performed if the
corresponding region exhibits sufficient ridge-valley structure
according to an estimated signal strength. The results of [8] are
visualized in the third column of Fig. 7. Here, all calculations
are performed in the frequency domain, using short time fourier
transform (STFT), involving small overlapping blocks. The
ridge frequency and orientation are determined in the Fourier
domain, to steer the contextual filtering by steep bandpass func-
tions. The segmentation of a fingerprint is done by comparing a
block’s energy to a predetermined threshold. The final column
in Fig. 7 depicts the results of the proposed method. As to be
expected, our approach does not show block-artifacts because
the data processing is not blockwise. Qualitatively, our method
produces high contrast between ridges and valleys and the
result generally exhibits more fidelity to the original compared
to the alternative approaches. The latter can be well observed
in the bottom row of Fig. 7, where the alternative approaches
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Fig. 7. Enhancement results for the high-quality impression 99_5 (top row) and a low-quality example 1_7 (bottom row) of the FVC2004-1 dataset; the columns
correspond to 1) the original image, enhanced by 2) Hong’s, 3) Chikkerur’s, and 4) the proposed method.

seem to give in (second column) or tamper structure (third
column). The images created by the method of [6] (second
column) appear more blurred while the ones produced by [8]
(third column) contain visible block-artifacts, especially near
minutia points. Being the basic resource for most fingerprint
recognition techniques, including semiautomatic forensics, it
is to be expected that minutia neighborhood degradation will
decrease recognition performance.

To provide an initial comparison for the proposed minutiae
extraction method, we extract the minutiae with the method
suggested by the (US) National Institute of Standards and
Technology (NIST, FIS2 mindtct package), [25], [26]. This
method takes a fingerprint image, whether pre-enhanced or
not, and determines its minutia points fully automatically by
means of binarization followed by morphological analysis. The
output file contains position, angle, and quality of each detected
minutia point. We employ two fingerprint impressions from the
FVC2004-3 dataset for a visual comparison, which are shown in
the first row of Fig. 8. The first image is of good quality, whereas
the second one represents very low-quality conditions intended
to pinpoint the limits of both fingerprint image enhancement
and minutiae extraction (worst case scenario). The images in the
second row of Fig. 8 depict the local minutiae extraction results
of the NIST provided method, whereas the third row contains
the corresponding result of our minutiae extraction method.
Both impressions were pre-enhanced by the introduced method
and the detected minutia points are superimposed (rings) on
the enhanced fingerprint images. Minutia angles are indicated
by directed lines originating from the circles. In the case of
(first column) high quality , the method of [25] and [26] detects

some spurious, as well as misses some minutiae in comparison
to our algorithm. The NIST algorithm quantizes the minutiae
angles in =~ 12° intervals, causing visible deviations from the
actual minutiae directions. Additionally, the minutiae tend to
be imprecisely located with a random error, which is likely due
to the information loss during binarization and thinning needed
by that method. When facing very low-quality conditions
(second column), the enhancement can only recover parts of
the original ridge/valley structure with rather low contrast. The
NIST provided method is possibly not trained on such images
and is, therefore, not able to perform reasonable minutiae
extraction in this case. Apart from some spurious and missed
minutia points, the proposed method appears to adapt better
to these quality conditions. When taking a closer look, five of
the detected minutiae are actually valid ones. The others were
introduced by enhancement and minutiae detection errors.

Next, we will detail experimental results supporting the qual-
itative observations above.

VI. EXPERIMENTS

To quantify the capability of the suggested features and
enhancement method we need to test them on very low-quality
fingerprint data, where reliable enhancement and minutiae
extraction becomes indispensable. Therefore, we use the FVC
2004 database [24], which was collected to provide a more
challenging benchmark for state-of-the-art recognition systems
than previous fingerprint verification competitions [37]. When
collecting the fingerprint data, individuals were asked among
other things to vary the contact pressure applied to the sensor
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Fig. 8. Minutiae extraction applied to the (left column) high-quality impres-
sion 7_land (right column) a very low-quality example 42_8 of the FVC2004-3
dataset; The three rows show 1) the original fingerprint, minutiae’s positions
and angles detected by 2) the NIST FIS2 mindtct package versus 3) the pro-
posed method. The fingerprint images were enhanced by our method and the
second column shall also indicate its limitations.

and their fingers were additionally dried or moistened to en-
force challenging image quality conditions. The FVC 2004
consists of four datasets, which were acquired using different
sensor types and each of them contains eight impressions of
100 fingers. Subsequently, we will refer to these datasets as
DB1-4. It is worth mentioning that DB4 was created using the
SFinGE synthetic fingerprint generator [38] whereas DB1-3 are
populated by images representing authentic fingerprints sensed
by real sensors. When carrying out fingerprint verification for
a single dataset, we follow the FVC protocol involving 2800
genuine trials and 4950 impostor trials.

In our first experiment, we pre-enhanced all fingerprints
of DB1-4 with three different enhancement methods: The
proposed method, and the ones of Hong [6] and Chikkerur [8],
which we already illustrated by way of examples in Section V.
We employed the complete NIST FIS2 fingerprint matcher,
consisting of a minutiae extractor (the mindtct package) and a
method that evaluates the correspondence of the minutiae sets
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TABLE 11
EERS OF THE NIST FIS2 MATCHER ON THE ORIGINAL AND PRE-ENHANCED
FVC2004 DATABASE, FOR DIFFERENT ENHANCEMENT METHODS

Enhancem. Method | DBI DB2 DB3 DB4

no pre-enhancem. 14,5% 9,5% 62% | 7,3%

Hong [6] (169%) | 144% | 7,1% | 9.8%

Chikkerur [8] 19,1%) | 119% | 7,6% | 10,9%

proposed method 12,0% 8.2% 50% | 7,0%
TABLE III

EERsS, FMR100s, FMR1000s, AND ZEROFMRS OF THE COMMERCIAL
MATCHER ON THE ORIGINAL AND PRE-ENHANCED FVC2004 DATABASE

Origi- | Pre-en- | Change [[ Origi- | Pre-en- | Change
nal hanced | in % nal hanced | in %
DBI DB2
EER 8.1% 6.8% -16% 3.6% | 2.1% -41.7%
FMR100 13% 9.5% -27% 4.6% | 2.5% -45.7%
FMR1000 | 14.9% | 11.6% -26.2% 53% | 3% -43.4%
ZeroFMR | 16.9% | 14.3% -15.4% 74% | 4.4% -40.5%
DB3 DB4
EER 3.4% 2.9% -14.7% 2.1% 1.5% -28.6%
FMR100 5.3% 3.6% -32.1% 2.5% 1.6% -36%
FMR1000 | 7.3% 57% -20.5% 2.9% 1.9% -34.5%
ZeroFMR | 7.9% 7.1% -10.1% 31% | 2.1% -32.3%

of two fingerprints (the bozorth3 package). Needless to say,
pre-enhancement should lead to lower error rates for the finger-
print matcher, compared to when trying to match the original
fingerprints. Table II shows the equal error rates (EER) of this
setup using the full FVC2004 database (all four datasets). The
equal error rate marks a system’s operating point, at which it
erroneously recognizes genuine users and imposters with equal
probability. The results in the first row were achieved when
using no image enhancement at all. The other rows represent
equal error rates in case of all impressions being initially en-
hanced by the method of Hong (second row), Chikkerur (third
row), and by the proposed approach (last row). Interpreting
Table II, we conclude that it is not self evident that what is
perceived as an enhancement improves the recognition perfor-
mance. By contrast, there is a significant risk that it actually can
worsen (!) the recognition performance, especially when the
images are noisy. The method suggested here clearly has led
to favorable recognition rates among the tested enhancements,
resulting in the lowest EERs on all four datasets. In Section VII,
we will discuss the underlying reasons in further detail. No
parameters of our enhancement method have been specially
adapted to any of the used datasets, neither were the others.
Studying the matching failures, we could conclude that the
fingerprint area useful for recognition sometimes happened to
be very small, when enhanced by the other methods (especially
in DB1). This is indicated by the parentheses in Table II.

As to signal enhancement, it may seem easy to improve
recognition rates of a modest matcher, or to show qualitative
advantages over other research prototypes. For these reasons,
we assisted fingerprint recognition systems which were al-
ready state-of-the-art in all respects. A top five matcher of the
FVC 2006 benchmark, termed commercial matcher below,
was reevaluated on fingerprints that were pre-enhanced by our
method. Following the FVC evaluation style, we show full ROC
curves and explicitly list some operating points in this case.
Three such points are particulary important, besides the EER,
the FMR 100, FMR 1000, and ZeroFMR. FMR stands for false
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Fig. 9. ROC curves of the commercial matcher on the original and pre-enhanced (by the proposed method) datasets of FVC2004. The EER is to be read off at the

intersection point between a curve and the diagonal line.

match rate, the probability of an impostor being erroneously
recognized as genuine user. Furthermore, FMR 100, FMR 1000
and ZeroFMR are popular marks meaning 1 false match in 100
trials, 1 in 1000 and O such erroneous decisions. The lowest
false nonmatch rate (FNMR) that a system can achieve when
its FMR is below or equal to the mentioned amounts, is repre-
sented by these three indicators. In other words, they determine
how often a genuine user is not recognized as such, at a certain
security level, and are sometimes given more significance than
the EER by systems used in practice. This is because these
measures are more indicative for the user annoyance to be ex-
pected. In Table III, we have listed the recognition rates of the
commercial matcher on the original and pre-enhanced datasets
DB1-4. Next to these, we show the relative variation between
each pair of rates (columns Original serve as reference). The
enhancement method was the one proposed, with the difference
that the downsize factors fyo — f3 had been adjusted once to
match the fingerprints (dimensions) more accurately. Recalling
Table II, one can observe that the commercial matcher achieves
remarkably lower EERs than the one of NIST. This behavior
is valid also at other operating points. We omitted an explicit
list of those since the purpose here is not to compare the two
matchers, though. Studying Table III reveals that the proposed
enhancement leads to decreased error rates of the commercial
matcher at all listed operating points and on each of the tested
datasets. The best results were observed on dataset DB2 (high-
lighted column), for which the error rates dropped by over 40%,
measured in percentage point drop-off. In Fig. 9, we further
show the corresponding receiver operator characteristics (ROC)
curves, which extend the analysis to all possible operating
points. The axes of such a plot represent the false match and
false non match rates. Note, that the EER of a system can be
read off at the point where its curve intersects with the diagonal
line. As can be observed in Fig. 9, the commercial matcher
benefits from the pre-enhanced images in that the drop-off in
error rates is significant and occurs at all relevant operating
points across all the four datasets.

In our third experiment, we have studied the performance of
the proposed minutiae extraction. To be precise, we have com-
pared the minutiae extracted by the proposed method with those
of NIST FIS2 (mindtct), quantitatively. We used the fingerprints
enhanced by the introduced method from our first experiment
above, as they led to the best recognition results using the in-
dependent NIST matcher. Feeding the minutiae, as extracted

TABLE IV
EERS OF THE NIST MATCHER WHEN USING ITS OWN MINUTIAE VERSUS
USING MINUTIAE EXTRACTED BY THE SUGGESTED METHOD. THE FVC2004
DATABASE IMAGES WERE PRE-ENHANCED BY THE METHOD PRESENTED IN
SECTION III IN BOTH CASES

Minutiae Extraction Method | DBI1 DB2 DB3 DB4
NIST FIS2 mindtct 12,0% 82% | 5,0% 7,0%
Proposed method 9.8% 73% | 44% | 6,1%

by our method, to the NIST minutiae matcher (bozorth3) is not
less than fair because one would assume that the latter was de-
signed to cope best with its own minutiae. It is also worth noting
that there are many ways of doing a matching given two sets of
minutiae [39], and that this was the only way available to us
of quantifying the proposed technique for minutiae extraction.
In Table IV, second row, the corresponding EERs, employing
the proposed minutiae extraction method are given, whereas we
restate the error rates involving the NIST feature extraction in
the first row (the top row of Table IV and the bottom row of
Table II are naturally the same). We can observe that the pro-
posed scheme for minutiae extraction leads to improved recog-
nition on all four datasets. The improvements are substantial and
meaningful because neither of the methods (for enhancement
and minutiae extraction) were specially adapted to any of the
tested datasets or the NIST matching module.

VII. DISCUSSION

Generally, it is difficult to quantify the advantages of local
features used for recognition, other than by the success of known
procedures and contexts employing them. Using such proce-
dures on publicly available databases allows testing the methods
in numerous contexts of the reality, in addition to that the tests
can be repeated by others, and/or there can be a comparison at
the output level, e.g., recognition performance, without an im-
plementation. If one had the ground truth (de-noised images or
minutiae positions and angles) for a database, additional testing
strategies would have been possible. Unfortunately, there are no
such datasets available because annotated databases are difficult
to acquire.

Beside the datasets used, we had a set of rolled fingerprints
out of NIST’s special database 14 at our disposal. After a
rough adaptation to the ridge frequency of the fingerprints, the
proposed methods led to higher recognition rates than NFIS2
in initial experiments. The fingerprint pattern area is naturally
larger in case of rolled fingerprints and, thus, contains a lot
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more minutia points, which increases the recognition potential
substantially. Also in terms of impression quality, the FVC
2004 is regarded as more challenging than all earlier collected
fingerprint databases. Since we wanted to show the benefits of
our algorithms on more difficult fingerprint data, we did not
give an account of performance with rolled fingerprints.

Our experiments showed that even a commercial grade
matcher can benefit from pre-enhancement. We conclude
that this is only possible if the latter truly preserves signal
fidelity—in other words, if the enhancement does not distort
the fingerprint’s minutiae or texture. The reason for why the
other enhancement methods did not perform equally well is
not that they cannot deliver a meaningful enhancement as it is
beyond doubt that their ability has been well demonstrated in
published studies. However, it is to the best of our knowledge
the first time that they have been tested on a highly corrupted
database which poses greater challenges on the underlying
assumptions and side effects of the image processing.

A benefit of the proposed techniques is that they are pos-
sible to implement via fast signal processing techniques (1-D fil-
tering, pyramidal processing, etc.,) applied directly to the orig-
inal grayscale images, avoiding morphological operations all to-
gether. The latter also adds not the least to the accurateness of
the minutia extraction. Finally, our local features could also pro-
vide added value (complementary information) in nonminutiae
based fingerprint recognition systems. The parabolic symme-
tries reinforce the minutia definition and the linear symmetries
describe the texture outside of the minutia area, useful for ori-
entation matching in texture based fingerprint analysis.

VIII. CONCLUSION

Symmetry features for local fingerprint image processing
have been presented and exploited in a novel image enhance-
ment procedure as well as for reliable minutiae extraction. The
enhancement is applied progressively, i.e., blockwise opera-
tions are avoided, in the spatial domain. It does naturally not
suffer from blocking artifacts. Both absolute frequency (gran-
ularity or isotropic frequency) and orientation (nonisotropic
information) of the fingerprint pattern are utilized to obtain
the enhancement. The former is implemented by exploiting
several levels of a bandpass pyramid and treating them inde-
pendently. The typical ridge-valley flow is coherence enhanced
by using directional averaging and the structure tensor direction
(linear symmetry features) at each level. The processing of the
lowest level adds to the fidelity and details (conservation of
minutiae) whereas the rough ridge-valley flow is cleaned and
gaps are closed at higher levels. Furthermore, the suggested
minutiae extraction handles both ridge bifurcation and endings
and employs features from the enhancement, with addition
of parabolic symmetry features. They allow for simultaneous
detection of the minutiae’s position and direction. One-dimen-
sional filtering is applicable for all tasks. The suggested local
features can provide ridge-valley texture information also to
nonminutiae based systems. Comprehensive test results on
challenging datasets (FVC2004) are favorable to the suggested
methods: A standardized minutiae matcher from NIST achieves
the lowest equal error rate if the fingerprints are pre-enhanced

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 3, MARCH 2008

by our strategy. If we additionally replace its minutiae extrac-
tion with the proposed one, the error rates are decreased even
further. Similarly, we have evaluated a commercial matcher
in conjunction with the suggested enhancement method. The
results support that even state-of-the-art fingerprint recognition
systems benefit from the proposed techniques.
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