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multiscale context. The multiscale CMPs are shown to approximate well the

1D angular fourier transform of the band in question. This observation is used

to derive further properties of the power spectrum in terms of texture orienta-

tions or n-folded symmetry patterns. A method is presented to approximate

the power spectrum using only separable filtering in the spatial domain. In-

teresting implications to the Gabor decomposition are shown. The number

of orientations in the filter bank is related to the order of n-folded symmetry

detectable. Furthermore, the multiscale CMPs can be estimated incremen-

tally in the spatial domain which is both fast and reliable. Experiments on

power spectrum estimation, orientation estimation and texture segmentation

are presented.
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1. Introduction

Frequency based features are an important set of texture descriptors1,2,3. A common ap-

proach is the use of a bank of Gabor filters to estimate the local spectrum4. After being

extracted, the Gabor spectrum (the coarse description of the spectrum given by the ordered

Gabor filter responses of the neighborhood, e.g. as seen in figure 1) can be put to a scheme

for deriving new features. This paper is concerned with the complex moments of the local

power spectrum (CMPs). These descriptors have been shown to have simple interpretations

in the spatial domain, in terms of local orientation and n-folded symmetry5.

We study here the CMP descriptors when they are calculated on distinct frequency bands,

i.e. in multiscale. Under this multiscale assumption we uncover novel properties of the

CMPs. These include that multiscale CMPs are DFT coefficients of the power spectrum.

Further more, we show that the discriminative power of CMPs can be increased in multiscale

without increasing their order.

This paper is not stating that the CMPs are superior to Gabor filters in descriptive

power. Indeed, our message is that CMPs and Gabor magnitudes are very similar to the

degree that in multiscale, they describe the same quantity, although in different domains.

CMPs are beneficial in how the information is encoded and can be efficiently computed.

The Gabor spectrum is a coarser version of the local spectrum (low-pass filtered and

sampled). In particular, sampling schemes where the sampling is finer closer to the zero

frequency are often used, an approach which is motivated from findings in both image

statistical studies as well as neurological research6.

A practical outcome of our findings is that the number of jointly detectable directions is

determined by the number of orientations in the Gabor filter bank. This provides simple

visual interpretations in terms of n-folded symmetries in the spatial domain. Conversely,

when using too few Gabor filters the information loss is equivalent to losing the ability to

detect jointly existing orientations in the image.

A consequence of the conclusions is that the multiscale CMPs can be calculated com-

pletely in the spatial domain (without the use of Gabor filters) by creating the frequency

bands via a laplacian pyramid. Complex moments estimated this way are compared to the

Gabor filters in the tasks of unsupervised texture segmentation, orientation estimation and

power spectrum estimation. The multiscale CMPs describe the frequency band uniquely up

to a 1D fourier transform which makes it possible to estimate the power spectrum without
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the use of Gabor filters.

In section 2 we outline the underlying concepts of local spectrum analysis, Gabor filters

and directionality estimation by CMPs. The precise definition of multiscale CMPs is given

in section 3 where we also present several of their properties. In section 4 a method for

estimating the CMPs in the spatial domain is presented, which also leads to a scheme for

estimating the power spectrum. We compare the two descriptors (Gabor power spectrum

vs the spatially estimated multiscale CMPs) in section 5. We present the results from

experiments in unsupervised texture segmentation. Finally, section 6 concludes the paper.

2. Local Spectrum Analysis

The local spectrum F�x0(�ω) is defined as

F�x0(�ω) = F {f(�x0 − �x)wσ(�x)} =

∫∫
f(�x0 − �x)wσ(�x) exp

(−j�ωT�x
)
dx (1)

where F is the Fourier transform, j =
√−1 and wσ(�x) is the window function with width

parameter σ. The local spectrum is thus arrived at by considering the neighborhood about

a pixel as an individual image, and taking its Fourier transform. This is a valuable tool to

image analysis1,2,3.

The global spectrum of an image is obtained when the window is large, i.e. when σ → ∞
in Eq 1. We will omit local and/or global and refer only to the spectrum when it is obvious

from the context or when the theory applies to both. Our concept of multiscale is to process

the information found in separate bands (annuli) of the spectrum, centered around the dc

component. We will use the terms scale and frequency band interchangeably. The magnitude

squared of the local spectrum is defined as the local power spectrum ρ(�ω) = |F �x0(�ω)|2.
We note that Eq 1 can be viewed as a convolution, if �x0 is the new spatial variable and

�ω is assumed fixed. This corresponds to applying a Gabor filter4 wσ(�x) exp
(−j�ωT�x

)
on the

image which yields samples of the local spectrum at a given position �x0.

Different flavors of Gabor filters can be constructed by placing 2D low pass filters in the

spectrum e.g. as seen in figure 1 (not frequency responses of low pass filters, but the actual

placement of low pass filters in the Fourier domain). We will henceforth use the log-Gabor

functions7,8,9 which are gaussian low pass filters in logarithmic polar coordinates(log(z)) of

the spectrum (which captures human frequency sensitivity better than cartesian frequency

coordinates). Using polar coordinates (still in the frequency domain) these filters are given

by
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where ro and φo are the placements of the filter in the radial and angular variable and σr

and σφ are the widths of the filter radially and angularly, in the Fourier domain.

The Gabor filter responses are samples of a coarse local spectrum. The Gabor spectrum

is the ordered set of all responses, at some point of interest �x0, which corresponds to a low

pass filtered and sampled local spectrum, as seen in figure 1.

A. n-Folded Symmetry

An image consisting of only parallel lines is said to have one orientation. If two sets of

mutually parallel lines exists but with different directions, it is said to have two orientations.

To generalize this we now define n-folded symmetry5. An image is said to have n-folded

symmetry(n even, positive integer) if it has p = n
2

orientations such that the angle between

each successive orientation is constant. Then, a 2-folded symmetry image is one that has a

single orientation. A 4-folded symmetry image has only 2 orientations that are orthogonal,

etc. It is worth noting that the symmetry is defined with respect to the orientations in

the image, not the intensity (gray values) of the image. There is essential difference to the

concept of Rotational symmetry of order n, where the entire image is invariant to rotations

of 2π
n

. For n-folded symmetry, the joint directions of high energy are invariant to rotations

of 2π
n

, but the texture itself is not necessarily so. Figure 2 shows an example of a texture

with perfect 6-folded symmetry (it does however lack Rotational symmetry).

For each orientation of a texture, there exists nonzero values concentrated to a line

through the origin of the power spectrum. To find the amount and direction of n-folded

symmetry in an image, one could therefore search for best matching line structures in the

power spectrum.

The Structure Tensor10, maps the 2-folded case onto a well known problem from rigid

body mechanics solved by the inertia tensor. This idea has been extended by ways of

complex moments to find the group orientation pattern for the n-folded case5. Complex mo-

ments were introduced to spatial shape analysis as a technique to derive moment descriptors

invariant to rotation11,12. The complex moments of a function f(x, y) are defined by

Ia,b{f} =

∫∫
(x + jy)a(x − jy)bf(x, y)dxdy (3)
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Where a and b are non-negative integers. It is known that these moments, when taken

on the power spectrum, have crisp n-folded symmetry interpretations13. Here the notation

Ip,p and I2p,0 will only apply to moments taken on the power spectrum (CMPs) defined as

I2p,0 =

∫∫
(u + jv)2pρ(u, v)dudv = (λmax

p − λmin
p ) exp(j2ϕmin

p ) (4)

Ip,p =

∫∫
|u + jv|2pρ(u, v)dudv = λmax

p + λmin
p (5)

where λmax
p , λmin

p and ϕmin
p are for the n-folded structures (n = 2p), respectively, measure

of worst fit, best fit and the group direction of the best fit5. The Ip,p and |I2p,0| measures

are by construction rotationally invariant, while ∠I2p,0 contains only rotational information.

The function ρ is the power spectrum, ρ(u, v) = |F (u, v)|2. An alternative to Eq. (4) and

Eq. (5) can be found by use of the Parseval-Plancherel relationship yielding a method based

directly in the spatial domain:

I2p,0 =

∫∫
((Dx + jDy)

pf)2d�x (6)

Ip,p =

∫∫
|(Dx + jDy)

pf |2d�x (7)

For example, I4,0 =
∫∫

(fxx − fyy + 2jfxy)
2dxdy, where fxy denotes second order partial

derivatives w.r.t. x and y.

3. Multiscale CMPs

We will continue to use ρ to denote the power spectrum, but will for convenience write ρ(u, v)

when using cartesian frequency coordinates and ρ(r, φ) for polar frequency coordinates. We

will adopt the notation
[F {h(φ)} ∣∣

(p)

]
, to mean the 1 dimensional Fourier transform of the

2π periodic function h(φ) evaluated at ω = p ∈ Z.

The single-scale CMPs are defined as the complete set of CMPs for all p but where the

image is bandlimited to a band (annulus) at radius R, i.e. the power spectrum has nonzero

values essentially only on a narrow circular band located R units from the origin. By taking

sufficiently distinct and dense single-scale CMPs we obtain the multiscale CMPs. We will

use the notation I
(R)
2p,0 to denote that it is a CMP over the band represented by R.

Given an arbitrary image with power spectrum ρ(r, φ), we can limit it to a narrow band

at R by a band-pass filtering:

ρR(r, φ) = ρ(r, φ)g(r − R, σ) (8)
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where g(r, σ) is the Gaussian function with standard deviation σ.

With a power spectrum of the form in Eq. 8, the formula for complex moments becomes:

I
(R)
2p,0 =

∫∫
(u + jv)2pρR(u, v)dudv =

=

∫∫
r2p+1ρR(r, φ) exp (jφ2p) drdφ (9)

We are interested in the case when the frequency bands are narrow; i.e. when σ of the

gaussian in Eq. (8) is small. We take the limit of the gaussian which will then act as a Dirac

delta, i.e. when σ → 0 Eq. (9) reduces to:

I
(R)
2p,0 = Cp

[F−1 {ρ(R, φ)} ∣∣
(2p)

]
(10)

where Cp = R2p+1
√

2π and the transform is taken over the variable φ. In the same way we

have that, for the limit σ → 0

I(R)
p,p = Cp

[F−1 {ρ(R, φ)} ∣∣
(0)

]
(11)

The sequence of single-scale CMPs for p ∈ Z
+ encodes discrete samples of the 1 di-

mensional Fourier transform of ρ(R, φ). Furthermore, these CMPs contain all the infor-

mation of the transform. This can be seen by inspecting the ρ(R, φ) function. Formally

ρ(R, φ) = |F (R, φ)|2 and due to hermitian symmetry |F (R, φ)| = |F (R, φ + π)|, i.e. ρ(R, φ)

is a periodic function with period π. The Fourier transform of a function with period π is a

discrete function with the sampling interval of two units. Inspecting Eq. (10) and (11) we

see that the interval between two samples are indeed two, and we can say that the entire

transform is contained in the CMPs. The CMPs are in effect the coefficients of a Fourier

series expansion of ρ(R, φ).

We denote with ξ(p):

ξ(p) =
[F−1 {ρ(R, φ)} ∣∣

(2p)

]
= lim

σ→0

I
(R)
2p,0

Cp

We now consider only one band of the Gabor spectrum that covers the circle with radius

R. We will denote the Gabor sampled function as ρ(R, k π
q
) (k ∈ Z) while remembering that

it is low pass filtered as well as sampled. The coefficients ξ(p) will be periodic with period

q and are the discrete fourier transform (DFT) of ρ(R, k π
q
):

ξ(p) =

q−1∑
k=0

ρ(R, k
π

q
) exp

(
jkπ2p

q

)
= lim

σ→0

I
(R)
2p,0

Cp
(12)
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If the amount of low pass that is performed by the Gabor filters is sufficient for the down-

sampling then no aliasing effects will be present, otherwise ξ(p) will be distorted and the

estimated symmetries of order n = 2p will be unreliable. This shows the importance of

having Gabor filters that are wide enough in the angular direction. On the other hand,

if the Gabor filters are too wide then the low pass filtering will be too intense resulting

in the values of ξ(p) for higher p (above some threshold pmax) to vanish and thereby their

descriptive power to diminish.

We have now reached the point where we can show the following theorem:

Theorem 1 If energy is concentrated only to a thin band of the global spectrum (thus also

for all the local spectra assuming appropriate window size), and local neighborhoods are

described by Gabor filter responses with q different orientations, then the maximum n-folded

symmetry that can be estimated in any local neighborhood is nmax = q − 1−mod(q + 1, 2).

All orders, n ≤ nmax, are possible to estimate whereas n > nmax are impossible to

estimate. nmax could be expressed as q − 1, with the understanding that nmax must be an

even number.

A. Proof of Theorem 1

We will work with p = n
2
. The estimates of n-folded symmetry is performed by the CMPs

according to Eq. 4 and 5. The relation between the Gabor filter responses and the CMPs

are given by a 1D discrete Fourier transform (Eq. 12).

The sampling frequency of the function ρ(R, k π
q
) is q

π
and the frequency components

are the CMPs (Eq. 12). The Nyquist-Shannon sampling theorem states that the sampling

frequency must be strictly greater than twice the highest frequency component, i.e.

2p < q ⇔ p ≤ q − 1

2
⇔ pmax =

⌊
q − 1

2

⌋

nmax = 2pmax = q − 1 − mod(q + 1, 2)

End of proof

To estimate 2-folded symmetry (n = 2, i.e. regular orientation estimation) in a neigh-

borhood a minimum of three filter orientations (q = 3) are required of the filter bank. For

4-folded (2 simultaneous orientations), 5 filter orientations are needed and so on.
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As the Gabor decomposition is made coarser higher order symmetries are removed from

the individual bands but not from the entire image. This has practical consequences which

we illustrate by the example of figure 2. The texture of figure 2 contains three orientations

(perfect six folded symmetry) when the full spectrum is considered. However when isolating

the relevant narrow bands as can be done by Eq. (8) and illustrated in figure 2, only one

orientation will result. The points of high energy are situated in different bands whereas no

band contains more than one direction.

Given that enough bands are partitioned, the texture of figure 2 requires thus only three

filter orientations. In multiscale, the texture contains only 2-folded symmetry, whereas the

entire image contains 6-folded symmetry. In the power spectrum of figure 2, we can gather a

maximum of six energy points (corresponding to totally n=6) in a single band when making

the bands wider. In general, it is clear that individual bands may contain lower order

symmetries than that of the whole image. However, it is also evident that individual bands

may never contain higher order symmetries than that of the whole image. Figure 2 shows

that when bands are considered together (not separately as in Theorem (1)) then fewer

filter orientations may be possible. For a reliable estimate, where any band may contain

the symmetry of the whole image, Theorem (1) provides the minimum number of filter

orientations.

4. Spatial Implementation and Power Spectrum Estimation

Our assumption for multiscale is that energy is concentrated to only narrow bands in the

spectrum. This can be done by Gabor decomposition of the texture and then considering

the bands of the Gabor spectrum by themselves. Another approach can be taken by im-

plementing a multiscale decomposition, e.g. using Mexican hat filters or separable gaussian

filters (both essentially a laplacian pyramid).

After the laplacian pyramid has been built the CMPs can be approximated by the spatial

operations of Eq. (6) and (7) which in turn are very fast to estimate using separable filtering.

Regardless of what filtering scheme chosen to construct the pyramid this spatial domain

method is faster, compared to extracting the full Gabor spectrum and applying Eq. (4) and

(5). Besides speed, another major benefit is that we bypass the angular partitioning of the

Gabor decomposition all together. Because the isotropic bands are intact in the pyramid, we

can extract any order of multiscale CMP on the levels of the pyramid, incrementally. That
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is, after estimating up to pth order CMP, if the (p+1)th order CMP is required, then the old

filtering results are still used. However, for the Gabor filters, if a filter bank of q orientations

has been applied and the need for q + 1 orientations arises, then a new filter bank must be

constructed and the response of the old one discarded. For example, in estimating the power

spectrum, it is in general not known how many orientations are needed or equivalently, how

many orders of CMPs are required. With both CMPs and Gabor filters, one could formulate

a measure of energy that could be used as an indicator of whether enough descriptors have

been extracted. However, with Gabor filters it would be required to iteratively extracting a

full decomposition, and then discarding it if the demand was not met.

When the bands are narrow the properties of Eq. (10) and (11) will hold and the Gabor

power spectrum and the multiscale CMPs converge to achieve the same goal, namely to

represent the band. However, they describe the band uniquely in different domains that

are Fourier transforms of each other. From this observation, we can formulate a scheme of

estimating the power spectrum directly from the multiscale CMPs:

1. For each level of a laplacian pyramid, apply the Eq. (6) and (7) to generate a sequence

of different order CMPs, I1,1 and I2p,0 for p ∈ [1, N ]. Form the sequence ξ(p) ={
I∗N,0

CN
; . . . ;

I∗2,0

C1
;

I1,1

C1
;

I2,0

C1
; . . . ;

I2N,0

CN

}
(∗ is complex conj.) for p ∈ [−N, N ].

2. A low pass and sampled version of the power spectrum band is given by ρ(R, k π
q
) =

F {ξ(p)}. The number of samples is q = 2N + 1 (compare Theorem (1))

5. Experimental Results

We present experimental results on texture segmentation, power spectrum estimation and

orientation estimation. The common goal with all three experiments is to show the descrip-

tive power of CMPs calculated in the spatial domain and compare CMPs with the Gabor

filter magnitudes.

A. Texture Segmentation

We present here the results of experiments on segmenting real textures with clear boundaries

where the classification is performed unsupervised. This segmentation is not performed in

a rotationally invariant manner, although the rotation can be easily factored out as outlined

in section 2 A, yielding truly rotation invariant features. We choose not to do so here,

as this would make the comparison with the unprocessed Gabor filters unreasonable. We
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experiment on the three images of figure 3, which have been used by several studies on

texture analysis14,15,16) allowing comparison. All three images are constructed by using 7

different textures positioned as patches in 16 different, equal sized areas. The patches have

been placed so as to maximize the combinations of borders and the textures have been

normalized to unit mean and variance. The textures of left and center images have been

taken from difficult real world aerial photographs and the right figure uses the textures from

the Brodatz database. All images are gray scale with 8 bit color depth (256 shades) and are

256 by 256 pixels in size.

We compared the multiscale CMPs with the Gabor power spectrum (used directly as

features) to show that they are closely related as seen in Eq. (4) and (5) (we expect the

results to be comparable between the two methods). To make the comparison on an equal

basis, care was taken in the construction of the Laplacian pyramid so that the same radial

partitioning was performed for both approaches.

The CMPs were calculated in the spatial domain, on the levels of the laplacian pyramid.

For the Gabor filter, the Log-Gabor scheme of Eq. (2) was used.

For all the results presented, we used an experimental setup of five levels of the pyramid,

with the corresponding radial partitioning for the Gabor filters. We varied the orders of the

CMPs that were extracted from each level. As features we selected the real and imaginary

parts of the CMPs. The largest of feature vectors corresponded to p ∈ {1, 2}. The features

were extracted from each level of the pyramid independently, resulting in a total of 25

features for p ∈ {1, 2} and 15 features for p = 1. For the Gabor filters, we varied the number

of filters that partition in the angular direction of each band. We used 3 and 5 directions

for two experiments, resulting in exactly the same amount of features as for the CMPs.

We reduced the dimensionality by Principal Component Analysis17 (PCA). For the Seg-

mentation, where each pixel was assigned a class label, an efficient boundary estimation

algorithm18 was implemented (which is related to an older approach19 based on a quadtree

decomposition). The algorithm requires an independent clustering technique at a low reso-

lution of the features. We used the fuzzy c-means clustering algorithm20.

Figures 4 and 5 display the results of segmentation using the CMPs and Gabor filter mag-

nitudes respectively(the results for p3 are near perfect and thus omitted). Table 1 shows

the percentage of correct pixels classified. As the number of features increase, the segmen-

tation improves for both methods. For both set of features, the class boundaries become
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more accurate, and classes are less likely to merge. Interestingly, CMPs perform noticeably

better on all 3 images, with the arguable exception p3 which is strongly homogenous and is

segmented quite easily by both approaches.

Inspecting p3 we notice that most of the textures contain higher order symmetry (only

two textures contain one dominant orientation, in the upper right corner and lower left

corner of the image). We know from Eq. (4) and (5) that the CMPs I1,1 and I2,0 contain the

amount and orientation of linear symmetry. How is it possible that these measures are able

to discriminate between all of the textures of the rightmost image when no such symmetry

exist in most of them? Similarly, we know from Theorem (1) that using fewer orientations

in the Gabor decomposition is equivalent to excluding higher orders of symmetries from

the bands, so how come the second experiment was successful for only 3 orientations in the

filter bank (which leaves only second order symmetry contents in the bands)? The answer

is given by the example in figure 2 from which we know that textures exist with higher

order symmetries globally, but with lower orders in the individual bands. The textures of

the rightmost image, while containing higher order symmetries viewed from the global scale,

have only second order contents in some of the partitioned bands. This result thus speaks

in favor of lower order symmetry descriptors combined with multiscale in applications. In

practice, the need for excessively high order CMPs can be circumvented by a finer radial

partitioning resulting in more levels for the pyramid, as figure 2 illustrates.

Also for the left and center images we note that the segmentation is performed quite well

using features corresponding to p = 1 which is partly accredited to the phenomenon of figure

2 and partly due to first order symmetry truly being present.

There are 3 major reasons for the results being different between the CMPs and Gabor

decomposition. Firstly, the widths of the bands are not infinitesimal. Although the same

radial partitioning is used, only when the bands are infinitesimally narrow will the two

methods be identical. Secondly, the filters for performing angular low-pass within the bands

differ between the methods. Thirdly, both encode the same information, yet one format may

be better suited for texture segmentation(direct versus fourier representation).

B. Orientation Estimation

Figure 6 shows a frequency modulated test (FM-test) image. The direction of the wave

changes angularly and the frequency depends on the radius (measured from the center).

The FM-test image will be used for comparing orientation estimated in two different ways:
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a) from the Gabor spectra, and b) the spatial approach outlined in section 4.

A single frequency band in the spectrum will be equivalent to a band also in the spatial

domain of the FM-test image. We will study ∠I2,0 encoding the first order direction angle, on

one such band. To use the Gabor power spectrum to estimate ∠I2,0, we apply Eq. 12, which

directly relates the square magnitudes of the Gabor responses to I2,0. For these experiments

we chose the parameter of the Gabor filters to be σφ = π
2q

.

Figure 7 shows the result of this experiment. The x-axis of figure 7 indicates a position in

the ring of figure 6. The correct direction is given by the dotted line and the estimated by the

full line. We note that the spatial method yields better estimate than the Gabor spectrum

approach, as no oscillatory behavior is present in the right figure. This phenomenon is due to

the angular sampling of the Gabor spectrum. For the spatial method, while we still partition

bands radially in spectrum, no angular sampling is performed. The oscillatory behavior is

due to the non-ideal low-pass filtering by the Gabor filters; the spatially estimated CMPs

do not suffer from this drawback.

C. Power Spectrum Estimation

The approach outlined in section 4 was implemented. A band pass filter first partition one

narrow band of the spectrum, corresponding to σ = 1
40

and R = π
2

of Eq. (8) (the frequency

domain is limited to [−π, π]). CMPs for orders up to and including p = 11 are extracted on

the band pass filtered image (corresponding to one level of a laplacian pyramid) and used

to estimate the power spectrum band along 21 sample points.

For the Gabor filters, the frequency band partitioning is selected to be similar to the

band-pass described above. 21 filter orientations are present on the single band in the filter

bank. The Gabor filtering is done completely in the Fourier domain. To estimate the power

spectrum, the response of each filter is taken square magnitude and averaged, yielding 21

sample points describing the power spectrum along the band.

We used the left image of figure 3, which was also used for the texture segmentation

experiment. The results are shown in figure 8, where we see that the CMPs and the Gabor

filters describe approximately the same band. The difference in representation is mainly

due the difference in the low pass performed. While the Gabor filters are Gaussian in the

angular direction, the CMPs perform a brick-wall filtering in the frequency domain (this

due to the finite number of CMPs used). We can make the CMPs converge better to the

Gabor filters by dampening the higher order ones, but doing so will undermine the clear
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orientation interpretation of Eq. (4).

6. Summary and Conclusions

We have shown that multiscale CMPs have useful properties for applications. By investi-

gating the CMPs in a multiscale context, we have found them to i) approximate the 1D

fourier transform of the band in question and ii) that the sequence of I2p,0 together with

I1,1 uniquely determines the entire band. The < I2p,0 determines the rotation of the band,

and should therefore be omitted for applications where rotational invariance is desirable.

The multiscale CMPs can be calculated solely in the spatial domain, if a laplacian pyramid

is constructed first, partitioning the spectrum into narrow bands. This in turn leads us to an

alternative way of estimating the power spectrum, by using the CMPs without any Gabor

filters. Being the Fourier transform of the Gabor power spectrum, CMPs are the frequency

components of the band. By omitting some CMPs, we achieve low pass filtering in the

angular direction.

These observations have enabled a novel interpretation of the Gabor Decomposition, in

terms of orientation information. A relationship between the number of orientations in the

Gabor filter bank and reliable orientation estimation (Theorem (1)) has been found.

We have shown experimental results that support the theory into power spectrum esti-

mation, orientation estimation and texture segmentation. The results provide evidence of

the multiscale CMPs strong descriptive power.

The low pass filtering of the Gabor filters make the orientation estimation less reliable,

prone to oscillatory behavior. We showed that the spatial method is fast and accurate due

to it leaving the bands intact when partitioning the spectrum. Furthermore, with CMPs

the detail can be increased incrementally in contrast to the Gabor decomposition, where the

results of previous coarser filter banks can not be used when the need for more orientations

in the filter bank arise.

While the CMPs have many attractive properties, compared to using Gabor filters directly

(especially in texture segmentation) it is in place to stress that the Gabor filter responses

contain the phase information and not only the power spectrum. The CMPs do not have

this capability because, by construction, they model the power spectrum. For applications

where the phase matters, Gabor decomposition is still needed.
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Table 1. Segmentation performance in percentage correctly classified pixels.

CMP features Gabor features

Config. p1 p2 p3

15 feats. 70 78 98

25 feats. 94 90 98

Config. p1 p2 p3

15 feats. 65 60 98

25 feats. 80 81 98

List of Figure Captions

Fig. 1. Example of rosette like partitioning of Gabor filters in the Fourier Domain. Center

of Graph is the DC component. The position and relative scope of the filters are illustrated

by the ellipses.

Fig. 2. Example of texture with 6-folded symmetry. a) texture in spatial domain,

b) power spectrum, black indicates high energy, c) Same spectrum magnified with one

circular band explicitly illustrated within gray, dashed lines (as partitioned e.g. by Eq. 8).

showLinearGood.eps

Fig. 3. The test images used in the experiments.

Fig.4. segmentation results for multiscale CMPs, top row: p = 1, bottom row: p ∈ {1, 2}.
Fig. 5. segmentation results for Gabor power spectrum, top row: 3 orientations, bottom

row: 5 orientations.

Fig. 6. Left, a frequency modulated test image, the axes of which are marked with

fractions of π representing the spatial frequency. Right, the same image, but band pass

filtered corresponding to one level of a laplacian pyramid. Note that only one circular band

remains of the original.

Fig. 7. The graphs represent the estimated (arg(I
(R)
2,0 )) (full lines) as well as the accurate

direction angle(dotted lines) on a ring in the FM-test image. Left, estimated with Gabor

spectrum of 6 orientations, right estimated by spatial approach.

Fig. 8. The estimated power spectrum along one narrow band using Gabor filters (dotted)

and CMPs (full line). Image used to estimate is the ”p1” image of figure 3.

16



Fig. 1. Example of rosette like partitioning of Gabor filters in the Fourier Domain. Center

of Graph is the DC component. The position and relative scope of the filters are illustrated

by the ellipses. GaborExample.eps

Fig. 2. Example of texture with 6-folded symmetry. a) texture in spatial domain, b) power

spectrum, black indicates high energy, c) Same spectrum magnified with one circular band

explicitly illustrated within gray, dashed lines (as partitioned e.g. by Eq. 8). showLinear-

Good.eps

Fig. 3. The test images used in the experiments. px.eps
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Fig. 4. segmentation results for multiscale CMPs, top row: p = 1 (15 features), bottom row:

p ∈ {1, 2} (25 features). finalRes.eps

Fig. 5. segmentation results for Gabor power spectrum, top row: 3 orientations (15 features),

bottom row: 5 orientations (25 features). finalGab.eps
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Fig. 6. Left, a frequency modulated test image, the frequency is decreasing with distance

from center. Right, the same image, but band pass filtered corresponding to one level of a

laplacian pyramid. Note that only one circular band remains of the original. fmtest.eps

Fig. 7. The graphs represent the estimated (arg(I
(R)
2,0 )) (full lines) as well as the accurate

direction angle(dotted lines) on a upper ring in the FM-test image. Left: estimated with

Gabor spectrum of 6 orientations. Right: estimated by spatial approach. fmtestEstimate.eps
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Fig. 8. The estimated power spectrum along one narrow band using Gabor filters (dotted)

and CMPs (full line). Image used to estimate is the ”p1” image of figure 3. p1testGab.eps
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