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Abstract

We propose an algorithm for detecting the mouth events
of opening and closing. Our method is translation and ro-
tation invariant, works at very fast speeds, and does not re-
quire segmented lips. The approach is based on a recently
developed optical flow algorithm that handles the motion of
linear structure in a stable and consistent way.

Furthermore, we provide a semi-automatic tool for gen-
erating groundtruth segmentation of video data, also based
on the optical flow algorithm used for tracking keypoints at
faster than 200 frames/second. We provide groundtruth for
50 sessions of speech of the XM2VTS database [16] avail-
able for download, and the means to segment further ses-
sions at a relatively small amount of user interaction.

We use the generated groundtruth to test the proposed al-
gorithm for detecting events, and show it to yield promising
result. The semi-automatic tool will be a useful resource for
researchers in need of groundtruth segmentation from video
for the XM2VTS database and others.

1. Introduction
We use optical flow for temporal detection of motion

events(opening and closing) without the need of segment-
ing the lips, nor apriori knowledge of their position in the
region of interest(ROI). The approaches are fast enough to
potentially be implemented in real-time on a smart-phone
app, and the translation and rotation invariant properties of
the method further implies this to be a promising future plat-
form.

Furthermore, we present a semi-automatic lip-
segmentation software for video, achieved by tracking
points at 200 frames/second. This interactive software
require regular user input for groundtruth in key-frames.
Few keyframes are needed, and the tracking inbetween
key-frames is done in a forward backward manner with
appropriate smoothness imposed. The user updates the
key-frames, or adds new ones on the fly, as manual inspec-
tion of the segmentation is judged. We test our proposed
algorithm towards groundtruth of 50 sessions, and show it

to provide accurate results on the XM2VTS database.
Our visual analysis in conjunction with voice recognition

can be used when performing speaker recognition, much
in line with the approach in [9]. Such application could
include both improving the verification/identification rates
as well as improved liveness detection.

In general, lip-events should correlate with auditory in-
formation, and if a video signal does not conform, per-
haps it is a user attempting to (unsuccesfully) articulate with
recorded audio. This also opens for the application of qual-
ity assesing dubbed video, even if the language is spoken in
a different language.

For the application of audio-visual speech recognition,
combining modalities of speech and audio improves recog-
nition results both in human perception [15], as well as in
advances towards digital systems [17].

Methods of visual speech dynamics description can be
broadly divided into three approaches: Parametric models,
regions of interest(ROI) and optical flow.

Parametric models are based on the assumption that the
shape (3D mesh or 2D contour/binary image) of the lips
can be extracted from the image sequence. The shapes of
the lips can then be efficiently represented by a coarse set
of parameters, e.g. splines [18] or Fourier descriptors[20]
for contours and surface shape index [13] for 3D meshes.

The main drawback of parametric models is the difficulty
in estimating them from the sequence, especially in condi-
tions where lips are partially occluded, as in the presence of
abundant facial hair. Humans, on the other hand, excel at
doing this, and can with high degree of accuracy determine
when a segmentation is wrong.

ROI approaches, on the other hand overcome some dif-
ficulties by only requiring that the lips are centralized in
the region. The entire set of image pixels is used as fea-
tures for a given time instant. Extensive systems are of-
ten constructed around this approach, using first reduction-
ist transformations, such as the discrete cosine transform
or wavelets expansion, and then combinations of linear
discriminant analysis, principal components analysis, vec-
tor quantization, and/or multidimensional scaling[17]. The
drawback of ROI methods is that pixel values are not qual-
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itatively suited for lip dynamics description, nor are their
derivative in time.

Optical flow based approaches are in theory well suited,
given an algorithm that outputs a consistent flow field for
analysis. Two main problems are: a) lip motion contains
a high-degree of line motions (aperture problem for optical
flow) and b) it is not clear how to process the flow field into
a smaller set of robust features. We will address these issues
by introducing an optical flow algorithm well suited for the
task, and provide the methods of producing robust features
efficiently. The importance of robust features and to deal
with the case of linear motions for lips, is underlined in the
work of [8]. A further problem in the case of lip motions lies
with prescence of multiple motions, or motion boundaries,
a topic we do not deal with in this work.

Groundtruth 2D countour is valuable for a database of
visual speech. It can be used to evaluate lipsegmentation al-
gorithms, as well as provide an upperbound for recognition
algorithms that make use of lip segmentation.

State of the art optical flow algorithms focus on the high-
est accuracy possible for the displacements of points of
topologically consistent (yet not necessarily rigid) bodies.
Typical variational methods such as Horn and Schunk[10],
penalize the discontinuities of the field. This is an expres-
sion of the assumption of topological constancy of the ob-
ject observed, and therefore such methods are limited in
their usefulness for lip dynamics. On the other hand, vari-
ational approaches hold the power to fill in the blanks of-
ten left by local flow estimation in areas of no structure,
or only linear structure (as is the case for the Lucas and
Kanade (LK) [14] method). While the variational approach
is general enough to overcome these difficulties, it does so
at increasingly higher computational costs and does not lend
itself well for parallel implementations. Because computa-
tional efficency and consistency of estimation are in focus
we choose to derive a local method. We focus on the first
order derivatives of the spatio-temporal volume, but note
that interesting complementary viewpoints may be found
by considering higher orders of spatial derivatives in a lokal
fashion[19].

Our approach for events detection is reminiscent of the
work in [5]. However, we use concepts of flow process-
ing, more in line with [12], and focus on optical flow dif-
ferential invariants for novel problems here. Our approach
can be interpreted as affine optical flow estimation[1], yet
we do not leave the realm of local methods, nor do we
need to deal with costly inversions of large matrices. We
use divergence of the field at a coarse scale, to estimate
the change in lip countour area(first temporal derivative of
area). We show how this estimate is reasonable, by compar-
ing with the manually generated groundtruth of 50 sessions
of unique subjects of the XM2VTS database (uttered digits
from 0-9).

2. Optical Flow Estimation
Optical flow is the apparent 2D motion in an image se-

quence, a R3 → R2 flow-field, ~u(~x, t) = {u, v}. Any
region Ω where flow is to be estimated with full degrees
of freedom, must contain linearly independent ∇I(~xi). A
region where gradients are linearly dependent is called lin-
early symmetric and it is impossible to estimate flow locally
except for one component: that of the aligned direction (the
so called aperture problem). The amount of linear symme-
try is given by the eigenvalues of the 2D structure tensor:

G(~x) =

(
m200 m110

m110 m020

)
The quantity α =

λ2D
2 −λ

2D
1

λ2D
2 +λ2D

1
∈ [0, 1] yields the amount of

linear symmetry, and thus 1 − α tells how well distributed
the spatial structure in the region is. Here we choose to
express the 2D structure tensor in 3D spectral moments,
similar to the investigation in [6]. These are calculated as
e.g m020 =

∑
wI2

y and m101 =
∑
wIxIt, where w is a

smooth window function covering the spatio-temporal re-
gion Ω.

Our approach to optical flow will be inspired by the 3D
structure tensor [4]:

G3D =

∫∫∫
Ω

∇3I∇T3 I =

 m200 m110 m101

m110 m020 m011

m101 m011 m002


(1)

where ∇3 indicates the 3D gradient. The 3D tensor can
be used to estimate optical flow directly [4] by considering
its eigen system: {~vi, λi} for λ1 ≤ λ2 ≤ λ3 (G3D and G
are positive semi-definite). We note that the mijk are scalar
products, efficiently calculated in parallel and easily imple-
mented on standard GPU architectures. As a local algorithm
for optical flow estimation, the structure tensor is advante-
gous because it readily differentiates between the 3 impor-
tant cases of motion of lines, motion of points(distributed
structure) and presence of higher order terms (higher order
motions and/or uncorrelated noise). The algorithm goes as
follows[2] (where vix is the x component of the ith eigen-
vector, and lthres ∈ [0, 1) is a threshold).
For every Ω of interest:

• if λ3−λ2

λ3+λ2
> lthres, then Ω contains line motion given

by:

~ul =
v3t

v2
3x + v2

3y

(
v3x

v3y

)
(2)

• else if λ2−λ1

λ2+λ1
> lthres then Ω contains point motion

given by:

~up =
1

v1t

(
v1x

v1y

)
(3)
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• else if
(

1− 2λ2

λ1+λ2
+ 2λ2

λ2+λ3

)
> lthres then Ω con-

tains higher order terms

• else Ω contains no structure (close to a constant gray-
value).

2.1. Lucas and Kanade

The other classical approach to local optical flow, was
suggested by Lucas and Kanade (LK) [14]. Originally,
they did not formulate an analysis of spatio-temporal vol-
umes, but rather considered template matching/registration
between two images. However, it is a straightforward im-
provement to replace the original elements of the LK for-
mulation, with that of spectral moments (as is done in [6]).
The derivation of the LK algorithm starts with the optical
flow constraint (first order approximation of the brightness
constancy):

It = −~uT∇I

which yields the following error to minimize:

ELK =

∫∫∫
Ω

(It(~x) + ~uT∇I(~x))2 (4)

For the case when distributed spatial structure exists
(α < 1), Eq. 4 is minimized by:

~uLK(~x) = G−1~b(~x) (5)

for
~b(~x) =

(
m101

m011

)
=

( ∑
wIxIt∑
wIyIt

)
This corresponds to the special case of point motion for

the structure tensor algorithm. This can be seen by rewriting
Eq. 4 as

ELK =

∫∫∫
Ω

(
~u
1

)T

∇3I
T∇3I

(
~u
1

)
=

(
~u
1

)T

G3D

(
~u
1

)
and recognizing that for a stable solution, the matrix

must have a unique minimum eigenvalue, and that Eq. 3
then yields an equivalent. However, this connection be-
tween the 3D structure tensor and the LK algorithm does
not mean that the two methods are equivalent. The struc-
ture tensor comes with additional information in terms of
confidence measures and estimates, not only for point mo-
tion, but for line motion and presence of higher order terms
as well. The LK algorithm requires regularization in order
to be stable outside of any region except that of point mo-
tion. A common approach is to apply a diagonal Tikhonov
regularization as is done in [7]. This adds the problem of

how to set the regularization parameter, a factor that penal-
izes the magnitude of the estimated flow-vectors.

However, two clear benefits of the LK algorithm are also
evident: firstly, it avoids making use of m002, which is
essentially the variance of the time derivative(an element
commonly suffering from noise), and secondly no eigensys-
tem analysis is required. While theoretically the two meth-
ods are identical within regions of well distributed struc-
ture, the LK algorithm is more practical (when factoring in
limited hardware, such as fixed point representation), and
usually faster to compute as well.

In what follows, we will combine both algorithms with
the aim of retaining beneficial properties of both.

2.2. Lucas and Kanade meets the Structure Tensor

For the case of linear symmetry (α ≈ 1),G becomes sin-
gular and ~uLK is undefined. For such cases, we wish to
estimate the motion of line patterns, but we do not wish to
resort to the full eigen-analysis of G3D. Instead, we note
that at a single point, the normal flow is given by

~pn =
∇I∇TI

∇TI∇I
~u = − ∇I

|∇I|2
It

Averaging the normal flow over a region yields the line
flow, iff the region is linearly symmetric. By using a smooth
window w we obtain the following expression:

~un(~x) =
∑

w~pn = −
~b(~x)

Tr(G(~x))
(6)

The two methods ~uLK and ~un, by Eq. 5 and 6 have dis-
tinct domains of good performance, determined by α. This
motivates the use of a weighting function w(α) ∈ [0, 1]:

~ul = w(α)~un (7)
~up = (1− w(α))~uLK (8)
~uw = ~ul + ~up

We call ~ul the line flow, and ~up the point flow. Normal
flow should not be confused with line flow. Normal flow is
defined for every pixel whereas line flow is the averaging of
normal flow iff the region is linearly symmetric.

Many possibilities are available for a weighting func-
tion. For example, using the brick wall thresholding func-
tion (w = α > lthres) will give near identical output to
the structure tensor, concerning the differentiation between
line and point flow. Other possibilities include a soft thresh-
olding, using some sigmoidal function as a fuzzy delimiter.
However, we have found promising results using the fol-
lowing weighting function:

w = α2 = 1− 4
|G(~x)|

Tr(G(~x))2
(9)
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This weighting function also provides for an especially ef-
fecient implementation, which we can see by substituting
Eqs 7 and 8 with Eq. 9 and get:

~ul = − (m200 −m020)2 + 4m2
110

(m200 +m020)
3

(
m011

m101

)
(10)

~up =
4

(m200 +m020)
2

(
m101m110 −m011m200

m011m110 −m101m020

)
(11)

The combination of line and point flow using the weight-
ing function of Eq. 9, can be seen as a local regularization
of the LK method. Eq. 5 is ill-posed for the case of lin-
ear symmetry (the top left pane of Fig. 1 illustrates this).
A common local approach is to apply a diagonal Tikhonov
regularization, which in our case means adding a small pos-
itive value to the elements m200 and m020. This will give
more stable results (lower left pane of Fig. 1), which was
noted in the work of [7] but still leaves the problem of sep-
arating the point flow from the line flow and causes the new
problem of how to set the regularizing parameter(we manu-
ally adjusted for best result in Fig. 1. A fundamental prob-
lem with Tikhonov regularization is that it introduces a bias
for smaller solutions, by changing the error minimized. Fig.
1 also shows the output of the classical 3D structure tensor
(upper right pane), where line motions and point motions
are differentiated automatically. Our suggested algorithm is
illustrated in the lower right.

A problem comes about for large displacements in the
sequence. This can be solved by processing images in a
multi-scale pyramid. Coarser scales are then investigated
first, and if motion is detected beyond the tolerance of lower
levels, then one uses the coarser estimate (contending with
a lower resolution). Better results can be achieved by local
warping methods, but this requires an iterative procedure
that does not lend itself well to parallel implementations.
For the results of this paper, however, we found that a pyra-
mid was not necessary. That is, for our data, one scale of
interest was sufficient, as our algorithm provides good sta-
bility over the limited scale variability.

All algorithms visualized in Fig. 1 are local in nature,
and require no iterative procedures, they all easily run in
real-time in our Matlab implementation for resolutions up
to 256 by 256 pixels (optimized implementations involving
the GPU will greatly improve this). For the results that fol-
low in this paper, it is done with our Matlab implementation
on regions of interest of 128x128 size images, yielding a
41x41 size flow field at 200 frames/second on a laptop with
Intel dual-core 1 GHz processor, 8 GB of RAM (roughly
the same as the Tikhonov regularized LK version). The
implementation is not dependent on any specialized hard-
ware(the GPU is not used), although c code was constructed
as a mex-module for fast calculation of the gradient fields.

Figure 1. Estimated optical flow overlayed on a test sequences of
two circular regions on the move. True motion is uniform trans-
lation in -40 degrees. Top left: the Lucas and Kanade(LK) al-
gorithm with no regularization. Bottom left: LK with Tikhonov
regularization(manually adjusted parameter). Top right: classi-
cal 3D structure tensor algorithm, with differentiated line(red) and
point(green) motions. Bottom right: our suggested algorithm, with
differentiated line and point motions.

3. Divergence as a Low-level lip-dynamics fea-
ture

In this paper, we investigate local features and take
an approach that is inspired by classical shape from mo-
tion methodology from Koenderink and van Doorn [12],
and investigate the 3 invariants: divergence(div), curl and
deformation(def ), that are by construction invariant to
translation and static rotation. Locally, the flow is described
by (~u = {u, v}):(

u
v

)
=

(
u0

v0

)
+

(
ux uy
vx vy

)(
x
y

)
where u0 and v0 is the translation. We can then write:(
ux uy
vx vy

)
=

div

2

(
1 0
0 1

)
+
curl

2

(
0 −1
1 0

)
+
def

2

(
cos 2φ sin 2φ
sin 2φ − cos 2φ

)
for:

div = ux + vy

curl = uy − vx

def =

√
(ux − vy)

2
+ (uy + vx)

2

The approach of affine optical flow[1] estimates the dif-
ferential invariants of the flow directly in a single minimiza-
tion(essentially regression) procedure. This approach leads
to a 6 by 6 matrices at every image position and is the basis
of more costly iterative algorithms. We instead take the ap-
proach of estimating the invariants using derivatives of the
underlying (non-affine) flow field.

Static rotation is described by φ, and could also be called
a constant roll angle offset of the camera or face, whereas
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Figure 2. Regions of pure divergence(left), pure curl(center) and
pure deformation(right). Size is 4 by 4.

dynamic rotation is the change in the roll during measure-
ment by some angular speed of rotation(e.g. head wob-
bling). In our case, the static rotation is done away with
by descriptors that do not depend on (φ), which is true for
div, curl and def . For dynamic rotation, its effect will vary,
depending on how far away from the center of rotation we
are taking measurements. If we take measurements over the
center of the dynamic rotation, then it will affect only curl,
otherwise it will affect a combination of translation and curl
coefficients. We therefore contend to use only div and def
as our local invariants.

Fig. 2 shows the appearance of the three patterns that the
invariants are tuned to. Divergence is a measure correlating
to the opening(positive) or closing(negative) of the mouth,
and the deformation its asymmetry. The curl pattern on the
other hand, dominates in the case of camera/facial rolling.

Interestingly, the invariants and the theory of the gen-
eralized structure tensor[3] are fundamentally connected.
To see this we encode the flow field as a complex num-
ber, û = u + iv. On this we apply complex filters called
symmetry derivatives:

Γ{p}(~x) = (Dx + iDy)
p 1

2πσ2
e−

|~x|2

2σ2 (12)

where p and σ are the order and the scale of the filter respec-
tively. For filters of order p = 1 and p = −1 (symmetry
derivatives (Dx + iDy) and (Dx − iDy) respectively) we
have:

div = Re Γ{−1} ∗ û
curl = Im Γ{−1} ∗ û
def = |Γ{1} ∗ û|

φ = 2∠
(

Γ{1} ∗ û
)

where ∗ indicates convolution. Illustration of how these two
filters look like in practice are found in Fig 3. To our knowl-
edge, no such application of symmetry derivatives has been
used in local shape from motion. Two fundamental benefits
come to light using the symmetry derivatives:

Firstly, it offers a way of generalizing to higher orders,
by considering other values for p (although in our applica-
tion, we have found these less descriptive).

Secondly, by inspecting the complex filters as magnitude
and angle, instead of as coarse scale partial derivatives, we
see a possibility for tuning. It is the angle of the filters that

Figure 3. Left pane: a frame (128 by 128 pixels) of a manually
extracted ROI, of user ’002’ of the XM2VTS database. The ac-
tual resolution used for experiments where 64 by 64 pixels. White
arrows are the estimated optical flow (21 by 21 vectors). The
annulus region delimited by the two white circles indicates the
shape and size of the symmetry derivative filters used (p = 1
and p = −1 have the same size). The position of the filter is
determined automatically by the maximum of divergence and de-
formation (~xobj(t)). Right pane, top line: illustrates the actual
size of the p = −1 filter as magnitude(left) and full complex val-
ues(right).Right pane, bottom line: same as top line for p = 1.

pick up on the relevant structure, and the annulus shaped
magnitude indicates an area of interest(i.e. the support of
the features). In our application, we found the best results
for the actual derivatives of Gaussians (yielding the rota-
tionally symmetric annulus of Fig 3). However, if one aban-
dons the demand for rotation invariance, design of asym-
metric magnitude filters could be produced that are more
tuned to the average shape of lips.

We use div and def in our scheme to both find and de-
scribe a position of interest:

~xobj(t) = arg max
x

{|div(~u(~x, t))|+ def(~u(~x, t))}

One such position is illustrated in the left pane of Fig 3.
This is not a conventional mouth tracking algorithm. Only
when visual speech is occurring does ~xobj(t) give an esti-
mate on the position of the lips.

This reasoning is similar to that of [5] where optical
flow events are analyzed by trained spatio-temporal pat-
terns. Our approach is intended to be more expressive as
we use true invariants for ‘spatio-temporal patterns’, that
are by construction orthogonal and measure physical quan-
tities rather than trained on a limited set of data.

Of the two invariants selected, we have clearly noted that
the divergence is the more important one, and we will ex-
plore using it for estimating the change in lip shape, and
show it to offer a robust method for detecting opening and
closing events of visual speech and semi-automatic lip seg-
mentation.
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4. Application of flow divergence
We denote with A(t) the area of the outer lip contour,

and expect Ȧ ∝ div(~xobj , t). Thus,

A(t) = a+ b

∫ t

0

div(~xobj , τ) d τ

for some initial condition a, and constant of proportionality
b. For practical estimation of A, we can use an accumulator
variable that is updated at each time instant. For stability,
one can introduce an equilibrium area (Aeq), and ensure that
the estimate has a tendency to converge to equilibrium in
the absence of divergence. Additionally, one should also
enforce A ≥ Amin ≥ 0. This motivates the use of the
following algorithm:

Adiv(0) = a

for each t > 0 :

accum = Adiv(t− 1) + b div(~xobj , t)

Adiv(t) = max (accum+ c(Aeq − accum), Amin)

where c ∈ [0, 1) is a constant determining the speed of
convergence to equilibrium. Fig. 6 illustrates typical results
using this algorithm on speakers in the XM2VTS database
[16].

The parameters a, b and c can be estimated empirically
from the data set by a simple procedure. The parameter
a = Adiv(0) is the initial state of the mouth opening. As-
suming that the user is initially not speaking, with relaxed
closed lips in the beginning, we set a to equal the Aeq ,
which can be estimated from the groundtruth data as the
average lip area at rest. Too high value of c will introduce
premature mouth closings, whereas too low allows for drift
in the signal. One can measure the drift as a slow varying
change in the mean of the signal. One can set c as small
as possible to avoid such drift. Finally, after setting a and
c, the parameter b is a scalar for multiplying the entire se-
quence, and can be set from the training data by a regular
least squares fitting.

4.1. Semi-automatic Lip segmentation

We used this application to manually segment 50 sub-
jects lip contours from the XM2VTS database [16]. One
session per user, out of their total of 8 sessions available seg-
mented. With the XM2VTS database the output of an au-
tomatic lip segmentation software is provided based on the
work in[18]. For the majority of the subjects in the database
this algorithm performs quite well as seen by visual inspec-
tion. On certain subjects however, such as ’002’ illustrated
in fig. 5, the segmentation is done less well. Also, there
is a noticable lack of temporal smoothness in the segmen-
tation so that even if the square error is low per image, the

Figure 4. The standard point notation with color coding used in the
software, slightly different from MPEG-4 as more detail is pro-
vided by lower lip points.

temporal derivatives of the keypoint position display irreg-
ularity (this especially effects the usability of such segmen-
tation for the case of our algorithm for lip events detection,
that is based on the derivate of shape over time). With our
semi-automatic segmenter it is usually enough with 2 or 3
provided keyframes of groundtruth to segment the full se-
quence near perfect as seen by visual inspection. This is
made even more efficient by the function to initiate the soft-
ware with output of the segmentation of [18], which can
then be easily adjusted. A simple user interface was de-
veloped where control points of the curve can be dragged
around manually in a click and drag interface. The control
points confirm to the MPEG 4 standard of facial parame-
ter description for the outer lip[11] (point set 8 of the stan-
dard) except that two points are used to replace the lowest
point of the lower lip (thus points 8.2l and 8.2r are posi-
tioned left and right of MPEG standard point 8.2) as was
done in [18]. A color coding has been selected in the soft-
ware to distinguish the points from maximally different pure
saturation colors in HSV color space, except for points 8.3
and 8.4(right and left corners of outer lip contour) who are
coded as black and white respectively. Fig 4 illustrates the
convention used.

When points are modified, they are then tracked for-
ward and backward in the sequence using our optical flow
algorithm as the basic input, determining the time depen-
dent curve. Interpolation occurrs only inbetween the new
keyframe, and the neighouring keyframes. In addition
to simply tracking the keypoints using the flow vectors,
we implemented 3 optional sources of tracking informa-
tion/constraints (available as tick boxes in the software, al-
though affecting the timeliness of the software drastically):

• Static feature based where correlation between local
2D image features of the nearest keyframe provide in-
formation, (Option of Gabor and HOG type of features
can be used).

• MPEG 4 key-point constraints where the nature of
the different key-points are factored in (this option
should be turned off for non-mouth region segmen-
tation). The right and left corners of the contour re-
main unconstrained, but the others gain a constraint of
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Figure 5. Screen shots of the software for semi-automatic lipseg-
mentation application. Left: the result of automatic lipsegmen-
taion provided from the XM2VTS homepage (average results are
better than this user). Center frame: 150 frames later in the same
sequence, after the frame in the left pane was manually segmented
(tracking by flow only). Blue line on the red search bar indicates
the key-frame where the user provided groundtruth. Right frame:
close to the end of the session, the tracking has diverged from true
segmentation, and user should provide a new key-frame.

slowly varying distance ratio between points (length of
edges to nearest keypoints), and

• Global Area Constraint where the divergence mea-
sure of a filter centered over the polygon is used to
estimate the area change, and this area change is used
to uniformly scale all the estimates.

As a further option in the segmentation application is a
gamma correction term, which scales the magnitude of the
flow vectors as a pre-processing step, and or the option to
make use of a two-level pyramid for handling faster mo-
tions.

We tested point trackers in the professional softwares of
Adobe After Effects, Nuke by The Foundry, and imagineer
systems Mocha PRO. Even though Mocha PRO is a pla-
nar tracker not specifically designed for this type of prob-
lem, it performed best both in speed and performance for
our task (out of the three commercial systems). In all sub-
jects tried, our algorithm provided a better segmentation (by
visual inspection) than Mocha PRO, with fewer keyframes
provided by the user, and with faster tracking results when
the three options mentioned above were turned off. Consid-
ering that our software is fully implemented in matlab, we
consider this to be very promising result. However, these
are qualitative rather than quantitative results on the perfo-
mance. Quantifying these findings are difficult to do as we
are dealing with a semi-automatic task. Factors for the task
is not only the finished fit of the curve, (including temporal
consistency), but the number of times the user gave input,
and the amount of input the user gave each time. Because
our segmenter finishes the task of updating the segmenta-
tion faster than Mocha, those who have used our system
tends to provide more keyframes, because the cost in terms
of personal inconvenience is lower for doing so.

Figure 6. Results on estimating the lip-contour area of user ’002’,
session 1 of the XM2VTS DB. Dotted line: estimated area. Solid
line: Ground-truth area from manual mouth segmentation.

4.2. Lip Events Detection

In Fig. 6 we can clearly observe visual events, in par-
ticular the exact occurence of mouth opening and closing.
They are defined by the dominant extrema. Both opening
and closing have Ȧ = div(~xobj) = 0, but opening has
Ä = ḋiv(~xobj) < 0 while closing has Ä = ḋiv(~xobj) > 0.

A threshold value ε1 is used for detection of the tempo-
ral positions of the events by |div(~xobj)| < ε1. A simple
two point derivative filter is then applied on the divergence
estimation where a second test is performed to make sure
it is not a local plateu point by |ḋiv(~xobj)| > ε2. Assum-
ing both tests are passed, the point is classified as the event
given by the sign of ḋiv(~xobj). The short segments of the
signal where detection is positive, are replaced by their tem-
poral averages (centroids) as the output of the detection and
compared with groundtruth.

Given that ε1 and ε2 are set in a reasonable range, our
algorithm finds all events as given in the groundtruth data,
with an average deviation of about 40 ms in temporal align-
ment. In real life situations, a correct ε value depends both
on the speed of speaking, as well as the size of the user
mouth region/and or distance to the camera. For a given
stretch of signal of div and def , the epsilon can be given as
proportional to the energy in the signal, assuming the user
mode of speech varies more slowly than the variation within
shorter durations of visemes.

5. Discussion and Conclusion
Our approach to optical flow estimation has been shown

to be useful for the tasks of semi-automatic lip segmenta-
tion of the XM2VTS database, and has potential to be a
useful tool for researchers in vision sciences for generating
groundtruth segmentations from video. It has been shown
to perform considerably better and faster than commercial
software, while still being implemented in the matlab envi-
ronment.

The software can be made to perform even better by
further optimizing its implementations of three optional
sources of tracking information listed in section 2, espe-
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cially the tracking of static 2D based features. A natural
step to increase the speed would be to port it into a more
suitable setting, such as openCV. However, a Matlab im-
plementation holds value initself, as it is still widely used
throughout the wider vision community, especially where
highly optimized software is less needed over reliability and
ease of use (as is often the case in perceptional studies).

The suggested application of lip based articulatory
events detection has been shown to perform well on the
XM2VTS database for the cases of mouth opening and clos-
ing events, as defined by the first and second order time
derivative of outer lip contour area. Also the area itself can
be estimated, but with less accuracy and with the open ques-
tion of how to set the three parameters of the algorithm in
an optimal way.

In general, the robustness and speed of computation, to-
gether with invariance properties of the features, opens up
the possibility of implementations on smart phones with
GPU architectures with applications ranging from audio-
visual speech and speaker recognition and real-time avatar
lip-synchronization.
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