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Abstract. A robust object/face detection technique processing every
frame in real-time (video-rate) is presented. A methodological novelty
are the suggested quantized angle features (“quangles”), being designed
for illumination invariance without the need for pre-processing, e.g. his-
togram equalization. This is achieved by using both the gradient direc-
tion and the double angle direction (the structure tensor angle), and by
ignoring the magnitude of the gradient. Boosting techniques are applied
in a quantized feature space. Separable filtering and the use of lookup
tables favor the detection speed. Furthermore, the gradient may then be
reused for other tasks as well. A side effect is that the training of effec-
tive cascaded classifiers is feasible in very short time, less than 1 hour
for data sets of order 104. We present favorable results on face detection,
for several public databases (e.g. 93% Detection Rate at 1 × 10−6 False
Positive Rate on the CMU-MIT frontal face test set).

Keywords: Object detection, Face Detection, Biometrics, Direction Field,
Orientation Tensor, Quantized Angles, Quangles, AdaBoost.

1 Introduction

When attempting to detect faces (or locate a single face) in a visual representa-
tion, image-based and landmark-based methods may be primarily distinguished
between [1,2]. This paper focuses on the detection of frontal faces in 2D images
and is assigned to the former category. Features here represent measurements
made by means of some basis functions in a multidimensional space which should
be contrasted to the term “facial features” sometimes used in the published stud-
ies to name subparts of a face, e.g. the eyes, mouth, etc., which we refer to as
“landmarks”. Challenges in face detection are generally comprised of varying
illumination, expression changes, (partial) occlusion, pose extremities [1] and
requirements on real-time computations.

The main characteristics of still image-based methods is that they process
faces in a holistic manner. Faces are learned by training on roughly aligned por-
traits as well as non-face-like images, and no parts of the face are intentionally
favored to be used for face detection. The specific statistical pattern recogni-
tion method employed characterizes published studies. A popular approach uses
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the so-called Eigenfaces [3], or the PCA (Principal Component Analysis) co-
ordinates, to quantify the “faceness” of an image (region). More recent face
detection systems employed neural networks [4, 5], or Support Vector Machines
(SVM) as [6] in [7] to classify image regions as face or non-face. Also, a naive
Bayes scheme was implemented in [8], and recently in [9], whereas an AdaBoost
procedure [10] was concurrently adapted in [11, 12]. In principle, these tech-
niques are not specific to detect faces in an image, but can be trained in an
analogous manner to detect other objects, e.g. cars. The AdaBoost based face
detection in [11,12] has been suggested as being real-time, and has been followed
up with other studies extending it to multi-poses, and reducing classifier com-
plexity, e.g. [13,14]. However, the employed features play a decisive role besides
the used classifiers. Of all the published methods, only a few use the gray values
directly for classification, but rather features. However, almost all approaches use
a preprocessing of the gray values (e.g. histogram equalization or normalization)
to minimize the effect of adverse light conditions, at the expense of computa-
tional processing. The methods suggested by [11, 13, 14] use Haar-like rectangle
features, translating into a high detection speed whereas [12, 9] employed edge
features with arguably lower execution speed. The recent method of [15] pro-
posed binary coded local histograms (LBF) as features. A novelty in this study
is the use of gradient angles only driven by the observation, that the gradient
angle as opposed to the magnitude is, simply put, naturally robust to illumi-
nation changes. Gray value preprocessing becomes redundant, and we extend
the illumination resilience by two contributions: First, the use of hierarchical
and adaptive quantization levels improves the detection performance. Second,
we do not only exploit the gradient angle, but also the structure tensor direc-
tion [16], encoding local orientation. Because we use quantized angle features,
we term the latter “quangles” for expediency. Furthermore, these quangles are
boosted in layers of a decision cascade as in [11], enabling also small classifiers.
We achieve scale invariance through signal theoretically correct downsampling in
a pyramidal scheme. The usefulness of our technique is shown in the context of
face detection. A methodological advantage of the suggested scheme is the read-
ily availability of some filtered signals for differential algorithms, for example,
optical flow estimation, exploited for immediate person “liveness” [17] assess-
ment. In comparison, the rectangle features suggested in [11], despite their value
in pure object detection in still images, have limited reusability when it comes
to other tasks. For a survey of landmark-based methods, which focus on a few
salient parts, landmarks, e.g. the single eyes, mouth, nose of the face, we refer
to [18, 1]. We present experimental results on several public databases, namely
the MIT-CMU [5] and the YALE [19] face test sets.

2 Object Detection

2.1 The Quantized Angle Features (Quangles)

In this section we present the features for object detection, which we call “quan-
gles”, representing quantized angle features. The gradient of an image is given
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Fig. 1. Example of a set of quangle masks (angle displayed in polar form). The gray
shaded areas correspond to the partitions yielding value 1 in equation (2).

in equation 1,

∇f =
(

fx

fy

)
(1)

where fx and fy denote the derivatives in x and y direction respectively. Further-
more, |∇f | indicates the magnitude of the gradient and ∠∇f refers to its angle.
For the sake of object detection, we disregard the magnitude or intensity since
it is highly affected by undesired external influences like illumination variations.
The key instrument of our quangle features are the quangle masks, which are
denoted as follows:

Q(τ1, τ2, φ) =

{
1, if τ1 < φ < τ2,

0, otherwise
(2)

The thresholds τ1 and τ2 constitute the boundaries of a partition in [0, 2π].
The quangle mask yields 1 if an angle φ, is located within such a partition
and 0 otherwise. In order to produce a set of quangle masks, we divide the
full angle range [0, 2π] into an increasing number of quantizations (partitions),
which are additionally rotated. An example is depicted in figure 1. A set of
quangle masks {Q}maxQuant,numRot is fully determined by the maximum number
of quantizations maxQuant and rotations numRot. The parameter maxQuant
has to be interpreted cumulatively, meaning that all quangle masks with less
quantization steps are included in the set as well. The second parameter, numRot,
indicates the number of rotations included in addition to each basic quangle
mask. For example the final row in figure 1 corresponds to {Q}4,2, which consists
of 27 different quangle masks. In order to create such a set of quangle masks the
thresholds τ1 and τ2 of each partition need to be determined. This can be done
in a three step procedure:

1. First we define a sequence of threshold pairs α1 and α2 delimiting the de-
sired number of partitions nQuant in the interval [0, 2π], disregarding the
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rotational component, by α1 = 2π
nQuant ·quant and α2 = 2π

nQuant ·(quant + 1),
where quant ∈ {0, ...,nQuant − 1}.

2. In the second step we create the final threshold sequence for nQuant con-
taining the threshold pairs τ1 and τ2. For each partition quant we include
the number of rotations up to numRot, by τk = mod

(
αk − π

nQuant · rot , 2π
)
,

where rot ∈ {0, ...,numRot} and k ∈ {1, 2}.
3. Performing the first two steps corresponds to creating a single cell in figure

1. In order to produce a complete quangle set, the two steps above need to
be repeated for nQuant = {2, ...,maxQuant}.

To detect objects in a single scale we use a sliding window approach, where an
image is scanned by a so-called search or detection window. In order to look
for candidates, the quangle masks need to be assigned to positions (i, j) within
the detection window x. This defines at the same time our quangle features. We
furthermore distinguish between two different types: Equation (3a) describes
a quangle feature using the original gradient angle, whereas in equation (3b)
double angle representation is employed.

q1 (x, i, j, τ1, τ2) = Q (τ1, τ2, ∠∇x(i, j)) (3a)

q2 (x, i, j, τ1, τ2) = Q (τ1, τ2,mod (2 · ∠∇x(i, j), 2π)) (3b)

Both quangle feature types in the equations above take the detection window
x, the position (i, j) within x and a particular quangle mask out of {Q}. Us-
ing both, q1 and q2, the number of possible features is determined by the size
of the detection window and the number of employed quangle masks. We in-
clude both, single and double angle representation in our set of quangle features
since they are meaningful at different sites within the search window. The orig-
inal gradient is more informative within the object, e.g. between landmarks of
a face, because it distinguishes between dark-light and light-dark transitions.
The double angle representation maps φ to 2φ, and has been shown to repre-
sent the structure tensor eigenvector directions [16]. Thereby ∇f and −∇f are
equivalent and represent orientations of linear structures, e.g. lines. The double
angle representation is more resistant to illumination changes, especially helpful
at object boundaries (background changes). Accordingly, both single angle and
double angle features are complementary and meaningful features to represent
objects.

2.2 Classifier Building

A good classification (yielding low error rate) cannot be obtained with a sin-
gle quangle feature, but obviously, it is neither meaningful nor practical to
evaluate all of them within the detection window. In order to find the most
suitable quangles we employ AdaBoost [10]. In the process, a number of good
features (termed weak classifiers) are combined, yielding a so-called strong clas-
sifier. Following the discrete AdaBoost algorithm, we select the weak classifier
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Fig. 2. Example lookup tables (stripes) representing quangle masks in case of single
angle (left hand side) and double angle (right hand side) representation

ht(x) = qkt(x, it, jt, τ1t , τ2t) which minimizes the error et = min i,j,τ1,τ2,k

∑
l wl ·

|qk(x, i, j, τ1, τ2) − yl| over the training set (indexed by l) in round t of the fea-
ture selection (y denotes the true class “1” or “0” and w weights the training
examples). Eventually, we obtain a strong classifier which is composed of T weak
classifiers, and each of the latter has a say in the final decision depending on
the individual error αt = log 1−et

et
. While generally improving the detection/false

positive rates, adding more and more weak classifiers unfortunately directly af-
fects the classification time. An alternative to a single strong classifier is the
so-called cascaded classifier scheme, a series of less complex strong classifiers,
which is computationally efficient [11]. A single negative decision at any level
of such a cascade leads to an immediate disregard of the concerned candidate
image region. When training a strong classifier and adding it to the cascade,
we apply a bootstrapping strategy. Previously rejected negative class examples
are replaced by new ones, which the current cascade would (wrongly) classify as
positive examples.

Another important factor for the training of such a cascade is time. Vi-
ola&Jones, for example, reported that the training time of their final classifier
was in the order of weeks on a single machine. This was due to the large amount
of rectangle features, necessary there, in combination with finding an eligible
threshold for each of them. Employing our features, the training of a compa-
rable cascade takes about an hour on an ordinary desktop computer, because
less features suffice (quangles build upon derivative features) and the expensive
calibration is skipped.

2.3 Implementation

Cascaded classifiers favor processing time in that only a few strong classifications
accrue per image site. Furthermore, we can reduce the number of operations
needed to calculate and classify a single feature. In this study, we employ so-
called lookup tables to speed up this process. Recalling the quangle features of
type q1 and particularly q2 in equations (3a) and (3b), lookup tables provide
an effective solution for both of them. Figure 2 depicts two exemplary lookup
tables for both q1 and q2. Each quangle mask is represented by a binary lookup
table, generated off-line. Gray shaded areas correspond to 1 and are defined by
the respective quangle mask. The original gradient angle is used as table index,
therefore we floor it to integer values in [0, 360[. However, the quangle features of
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Fig. 3. The proposed object detection process

type q2, need some further attention. As visualized, mod (2 · ∠∇, 2π) corresponds
to ∠∇, by means of “helper quangles” (displayed alleviated), only existing in
the form of lookup tables. To construct one such, we half the thresholds of
the original quangle mask. The resulting partition together with a 180◦ shifted
version define the lookup table for q2. As a consequence, 1 array access is needed
per weak classification for any quangle.

The whole detection process is illustrated in figure 3. The image to be analyzed
serves as a starting point at scale s = 0 and scale factor sf = 1. We approximate
the gradient (see equation (1)) of the whole image using separable Gaussians
and their derivatives and extract the angle information. After this, we scan the
image with the detection window to be classified using a trained cascade and
the lookup tables introduced above. Having the candidates of the first scale,
we successively reduce the image size by a factor of 1.25 and start over with
the gradient calculation and window scanning, repeating like this for 10 times.
The candidates from each scale are integrated. In order to eliminate multiple
detection, neighboring candidates in position and scale are grouped.

2.4 Face Detection

In this section we apply the object detection system introduced in sections 2.1
and 2.2 to face detection. The size of the search window for face detection is
22 × 24. Our system operates in real-time at a resolution of 640 × 480 using 11
scales on a standard desktop computer. We have been collecting approximately
2000 faces of varying quality from online newspapers for training purposes. All
face images were aligned and artificially rotated in the interval [−10◦, ..., +10◦]
for pose resilience. Some background is included in a typical positive (face) ex-
ample. On the other hand, the negative examples are chosen randomly from a
large amount of images, which do not contain any faces.

In order to strengthen the argument in section 2.1, where we suggest the use
of both single and double angle features, we train a strong classifier employing
both feature types. This will also help us to pre-confine the feature space, in
an attempt to prevent overtraining and to support feature selection a priori.
Empirical tests on a subset of positive examples (900) and 9000 negative exam-
ples revealed that {Q}8,5 is an eligible set of quangle masks for face detection.
The least number of quangle features to separate this 9900 examples errorfree
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Fig. 4. A strong classifier employing 36 both, single and double angle features, which
are displayed (projected lookup-tables) side by side

served as a criterion, besides economic parameters for the set {Q}. By doing
so, we also advanced to reduce the complexity of strong classifiers. A number of
36 quangle features (28 of type q1 and 8 of type q2) were selected in the case
of using {Q}8,5. Figure 4 visualizes the selected features in separate detection
windows. In both cases the black arrows indicate ∠∇ of the underlying aver-
age training face. The white partitions show the range, the respective angle is
supposed to be in. The hourglass-shaped partitions in the second image indi-
cate double angle features, where the gradient could also have pointed in the
opposite direction (gray arrows). The radii are modulated by αt, the weight of
the corresponding weak classifiers. It can be observed that single angle features
frequently occur in the inner facial regions, whereas features of the second type
are situated in the bounding regions. In a further step, we trained two strong
classifiers using the same training setup, yet employing either features of type
q1 or q2. Error-free separation of the training data involved 49 single angle or 83
double angle features, thus clearly favoring the combined setup. Other studies
have suggested schemes for reducing classifier complexity [13, 14], which we did
not investigate yet, because our features resulted in small classifiers. In a related
study, [9], using a naive Bayes classifier, the single gradient angle was quantized
into 7 partitions without a further study of flexible and lower quantization levels.
In [12], no quantization but integer conversion was done and only the doubled
gradient angle was used. Furthermore, the weak classifiers were different there,
involving significantly more operations. We show an example of face (and mouth)
detection by our method in figure 5.

3 Experiments

For the experiments, the face detector was configured as follows: The size chosen
for the detection window was 22 × 24 and the employed quangle masks were in
{Q}8,5. A cascaded classifier, comprising 22 levels, was trained on 2000 faces and
4000 non-faces (refilled). The total number of weak classifiers in the cascade was
700. Such a classifier complexity is very small compared to a couple of thousands
as reported in [11,20]. In operation, the first two levels of the cascade, comprising
only 3 and 5 quangle features, respectively, are already able to reject 75% of all
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Fig. 5. A (cropped) example image from the CMU-MIT face test set, with faces and
mouths detected by the proposed method

Fig. 6. Two images from the YALE face test set, illustrating ”severe” illumination
changes, managed by the proposed method though

non-faces. Furthermore, we used s = 0 (original resolution) as the starting scale
and sf = 1.1 as the factor for downsizing.

The performance of the face detection system detailed above is benchmarked
on two publicly available databases, namely the YALE [19] and the CMU-MIT
[5] face test sets. Extreme illumination and expression changes are the main
challenge of the former test set, which consists of 165 frontal face images of 15
subjects. Table 1 shows the detection rates and the number of false positives of
our method together with the ones for the face detection algorithm proposed
in [9], on the YALE face test set. The results on the YALE test set confirm

Table 1. Detection rates and the number of false positives on the YALE face test set

Method Detection Rate False Positives
Nguyen [9] 86,6% 0
Proposed method 100% 0

that our face detection method is resistant to substantial illumination changes
without performing any (histogram related) preprocessing. Note, that the latter
is actually done in all methods we compare our results to. In figure 6, two “YALE
faces” are shown, with indicated detections by the proposed method. Note the
severity of the illumination conditions.

The CMU-MIT frontal face test set is among the most commonly used data
sets for performance assessment of face detection systems. It is composed of 130
images, containing 507 frontal faces in total. The quality of the images, as well
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as the scale of faces (compare figure 5) vary substantially here. In addition to
the detection rate, this set also permits to give representative numbers for the
false positives, because of many high resolution images. In table 2, the results
of our technique on the CMU-MIT frontal test set are related to those of two
prominent face detectors [11,5], by adjusting the false positive rate to a common
level. Also, the detection rate achieved by our method for 1 false detection per
million evaluated windows is given, constituting our best result.

Table 2. Detection and false positive rates on the CMU-MIT frontal face test set

Method Detection Rate False Positive Rate
Rowley [5] 89,2% 1, 27 × 10−6

Viola&Jones [11] 92,9% 1, 27 × 10−6

Proposed method 94,2% 1, 25 × 10−6

Proposed method 93% 1 × 10−6

4 Conclusion

In this study, we presented a novel real-time method for face detection. How-
ever, the technique is possible to be used as a general image-object detector, as
current experiments indicate. The introduced quantized angle (“quangle”) fea-
tures were studied experimentally and we presented evidence for their richness
of information measured by their discriminative properties and their resilience
to the impacts of severe illumination changes. They need no preprocessing, e.g.
histogram equalization, histogram normalization, adding to their computational
advantage. This is achieved by considering both the gradient direction and ori-
entation, yet ignoring the magnitude. A quantization scheme is presented to
reduce the feature space prior to boosting, i.e. it enables fast evaluation (1 array
access). Scale invariance was implemented through an image pyramid. The train-
ing excels in rapidness, which enables the use of our object detector for changing
environments and application needs. The practicability of the proposed methods
and ideas was corroborated by satisfying experimental results for face detection
(e.g. 93% Detection Rate at 1 × 10−6 False Positive Rate on the CMU-MIT
frontal face test set).
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