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Abstract

A technique evaluating liveness in face image sequences is presented. To ensure the actual presence of a live face in contrast to a pho-
tograph (playback attack), is a significant problem in face authentication to the extent that anti-spoofing measures are highly desirable.
The purpose of the proposed system is to assist in a biometric authentication framework, by adding liveness awareness in a non-intrusive
manner. Analyzing the trajectories of certain parts of a live face reveals valuable information to discriminate it against a spoofed one.
The proposed system uses a lightweight novel optical flow, which is especially applicable in face motion estimation based on the structure
tensor and inputs of a few frames. For reliable face part detection, the system utilizes a model-based local Gabor decomposition and
SVM experts, where selected points from a retinotopic grid are used to form regional face models. Also the estimated optical flow is
exploited to detect a face part. The whole procedure, starting with three images as input and finishing in a liveness score, is executed
in near real-time without special purpose hardware. Experimental results on the proposed system are presented on both a public database
and spoofing attack simulations.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Liveness detection is a highly desirable, yet rather unex-
plored anti-spoofing measure in biometric identity authen-
tication [1,2]. Especially in face analysis only a few
approaches address this subject: in [3], a depth map is con-
structed by recovering 3D structure from motion, which is
in idea similar to our approach, since a live head and a
moved photograph generate different depth maps. To the
contrast, motion is estimated by a correlation based
method there, and no experimental results are given.
Another way is to analyze the frequency spectrum of a live
face [4], defining two descriptors to measure the high fre-
quency proportion and the temporal variance of all fre-
quencies. This method presupposes both a lack of quality
of a photograph (low-resolution) and the change of mimics
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and poses in a live face. It is commonly agreed on that a
single 2D face image acquired by a traditional camera is
not sufficient for reliable liveness detection.

In our approach, we combine face part detection and
optical flow estimation to determine a liveness score. The
typical trajectory of certain face parts in case of a live face
sequence is exploited to discriminate it against a spoofed
one. We use the optical flow of lines, [5], (OFL) which is
inspired by optical flow approaches capable to differ
between motion of points and motion of lines (e.g. Tensor
approach [6]). As the name suggests, it is specialized on
motion of lines only. Requiring only 2–3 images, the
OFL approach is a lightweight energy based OF method,
which can be realized by using 2D Gabor filters [5,7–9].
However, in this study we implement the OFL by employ-
ing 1D Gaussians and their derivatives. A review of optical
flow techniques is given in [10].

For face part detection we combine OF pattern match-
ing with a model-based technique employing Gabor fea-
tures on a log-polar grid [11,12] and SVM [13]. Gabor
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filters are a class of powerful face recognition features
[12,14,15] which have impulse responses resembling those
of simple cells in the visual cortex [16–18]. Jumping to
assumed points of interest, [19], instead of an exhaustive
search, is characteristic for biological vision systems by
which our retinotopic vision approach is inspired. Follow-
ing an economic strategy, only specific frequency and ori-
entation channels are used for modelling a facial region.
Also, recognition rates can be raised by reducing the
amount and adapting the range of frequencies for the
decomposition [13,20]. Since moving face parts are dealt
with, a significant speed up for face part detection can be
experienced by discarding unchanged areas.

This paper is structured as follows: in the next chapter,
the basic strategy and the application field of our liveness
detection will be introduced. Chapter 3 presents the OFL,
whereas chapter 4 outlines the face part detection. Chapter
5 describes the liveness detection system. Experimental
results are presented in chapter 6, whereas chapters 7 and
8 discuss and conclude the main findings of the paper,
respectively.
Fig. 2. Horizontal OFL (Gabor-based [5]) at the center frame of the image
sequence in Fig. 1. Rectangles indicate the focused regions when
comparing different face parts’ motion.
2. Basic strategy

Regardless of their authentication performance, all bio-
metric systems will suffer if they cannot distinguish between
a photograph and the live presence of a client. A poorly
investigated problem in face authentication studies is the
claim of someone else’s identity by using a high quality
photograph, whether in motion or not. Essentially three
possibilities to make such a system liveness aware can be
identified:

(1) Deploying a multi-modal system, [13,21–24], with
numerous sensors (e.g. several cameras including ste-
reo, heat sensitive cameras, etc).

(2) Interacting with the client (e.g. Automated Teller
Machine) demanding real-time responses (e.g. talk,
blink, etc).

(3) Exploiting the motion characteristics of a 3D face by
using an image sequence.

Being the least studied, we will dwell on the third alter-
native in this paper. Indeed, the first two approaches do
not compete with the third but complement it well. Our
method analyzes a face image sequence captured by one
Fig. 1. Example face image sequence: differently moving center
camera and delivers a probability, whether it detected a
face and whether it is live.

The basic idea relies on the assumption that a 3D face
generates a special 2D motion which is higher at central
face parts (e.g. nose) compared to the outer face regions
(e.g. ears). Ideally, in terms of liveness detection, the outer
and the inner parts move additionally in opposite direc-
tions. This case is visualized in Figs. 1 and 2, respectively,
where a head slightly rotates to the left (from the person’s
view). Fig. 2 shows the horizontal OFL (optical flow esti-
mate in horizontal direction only) from the image sequence
displayed in Fig. 1. The rectangles indicate the focused face
parts and their motion (note the signs).

In other words, parts nearer to the camera move differ-
ently to parts which are further away in a live face. The
experimental results, we report below, support that a small
rotational movement of the head is natural and uninten-
tional human behavior. On the contrary, a translated pho-
tograph generates constant motion at various face regions.
In order to exploit these characteristics, we utilize optical
flow estimation and face part detection. For the latter we
employ a model-based Gabor decomposition [13], but we
also present an intuitive approach by OF pattern matching.
Knowing the face parts’ position and comparing how fast
they are moving relative to each other and into which
directions, enables us to discriminate a live face against a
photograph.
and side face parts suggest the ‘‘live’’ presence of a person.



Fig. 4. Normal velocity in 2D xt- and yt-images: the plane in Fig. 3 is
considered parallel to the y- and x-axis, respectively.
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3. Optical flow estimation

The subsequently presented optical flow of lines (OFL)
relies on some assumptions and simplifications. First, our
OFL method can only handle motion of lines, referred to
as normal motion. Second, it assumes lines to be either hor-
izontal or vertical when estimating the velocity compo-
nents. We motivate these simplifications by regarding
lines, and especially those horizontally and vertically ori-
ented, as the dominant structures in a face image of a
known scale range. We assume these features to be suffi-
ciently robust for spatiotemporal analysis. This allows, as
will be detailed below, to reduce a 3D-minimization prob-
lem to 2D. Furthermore, in contrast to other optical flow
methods, the OFL is computationally lightweight, which
is not only due to its normal velocity restriction but also
a consequence of requiring only 3 time frames.

3.1. Theoretical approach

In the general case of parallel lines undergoing a con-
stant motion, parallel planes are generated in the spatio-
temporal space, having a common normal unit vector
k̂ ¼ ðkx; ky ; ktÞ to describe them. The tilt of this normal vec-
tor with regard to the xy-plane corresponds to the absolute
velocity of the concerned lines in 2D, which is also stated in
the following equation (Fig. 3):

jvj ¼ tan a ¼ jktjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q : ð1Þ

In Figs. 3 and 4, the planes (gray) represent a single moving
line. Due to the aperture problem, we can only determine
the normal optical flow, which is in the spatial direction
of k̂. The horizontal and vertical velocity components are
denoted in the following equations:

vx ¼ cos b � ð� tan aÞ ¼ kxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q � �ktffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q ¼ � kx � kt

k2
x þ k2

y

ð2Þ

vy ¼ cos c � ð� tan aÞ ¼ kyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q � �ktffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q ¼ � ky � kt

k2
x þ k2

y

:

ð3Þ
Fig. 3. Normal velocity in the spatiotemporal space: the plane represents a
spatial linear symmetry tracked through time, i.e. moving straight edges as
compared to moving points.
As a consequence, we need to estimate k̂ in order to calcu-
late the normal velocity. It has been shown that orientation
estimation in 3D (and in higher dimensions) can be
achieved by fitting a line or a plane to the local Fourier
transform. This is further equivalent to an eigenvalue anal-
ysis of the multidimensional structure tensor, constructed
by the averaged auto outer product of the spatiotemporal
gradient. This allows the minimization process of fitting a
line or a plane to be carried out without actually Fourier
transforming [6]. Applied to optical flow estimation,
known as tensor method, the eigenvector belonging to
the solely large eigenvalue of the 3D structure tensor di-
rects into the direction of k̂, if normal motion is detected
(spectral energy is concentrated to a line). Though easy
to implement, the method requires many time frames and
is computationally exhaustive which has been our main
motivation to investigate a ‘‘light-weight’’ version of it.

If we have vertical and horizontal lines separately
throughout the image sequence (achieved by directional fil-
tering), we can formulate the normal optical flow in a spa-
tially separable manner. We are then looking for tilted
planes, which stay parallel to either of the spatial axes, y
or x. The determination of these tilts corresponds to a
2D orientation estimation around the parallel axis, which
is in xt- and yt-dimensions. Fig. 4 shows such images and
the 2D normal vectors k̂1 and k̂2. Fig. 3 is related to
Fig. 4 and the 2D directions by considering, respectively,
ky and kx zero, the equivalent of setting b and c to zero.
This is also valid for the horizontal and vertical velocity
components, which reduce to:

vx ¼ � tan a ¼ � kt

jkxj
ð4Þ

vy ¼ � tan a ¼ � kt

jky j
: ð5Þ

The optical flow estimation as stated in Eq. (6) is thus
determined by orientation in two dimensions for each
component.

v ¼
vx

vy

� �
¼
� kt
jkxj

� kt
jky j

" #
: ð6Þ
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In 2D orientation estimation can eigenvalue analysis of the
corresponding 2D structure tensor be replaced by averag-
ing both the square of a complex valued gradient image
and its absolute value [6]. If we denote fx and fy as the im-
age sequences containing extracted vertical and horizontal
lines, respectively, we can establish the relationships as in
the following equations.

k̂2
1 ¼ ðkx þ i � ktÞ2 ¼

Z Z
ofx
ox
þ i � ofx

ot

� �2

dxdt ¼ V x ð7Þ

k̂2
2 ¼ ðky þ i � ktÞ2 ¼

Z Z
ofy
oy
þ i � ofy

ot

� �2

dy dt ¼ V y : ð8Þ

This corresponds to linear symmetry detection in xt- and
yt-images, respectively. The complex numbers Vx and Vy

directly encode the optimal direction in double angle repre-
sentation, [25], and the error. In other words, arg(Vx) and
arg(Vy) equal 2a in Eqs. (4) and (5), respectively, yielding
the estimated velocity components stated in the following
equations:

vx ¼ � tan
1

2
argðV xÞ

� �
ð9Þ

vy ¼ � tan
1

2
argðV yÞ

� �
: ð10Þ
3.2. Implementation

In what follows are the input images referred to as Iml,
with l = 1,2,3. First, a region-of-interest image roi is
derived by setting a threshold to the intensity differences
between each of two subsequent images. A cube is cut
out of the space-time stack with its spatial dimensions
arranged to contain the relevant portion (motion) obtained
by simple analysis of roi. In the following, we show an
OFL implementation utilizing 1D Gaussians and their first
derivatives, essentially for orientation estimation [26]. As to
be seen, some advantages over the Gabor-based method
suggested in [5], can be experienced.

First, we summarize the calculation of, for example, vx.
The vertical lines are approximatively extracted in each Iml

by applying a Gaussian column and a derivative Gaussian
row filter sequentially. Then are xt-slices taken along the y-
axis, and for each one is Eq. (7) evaluated in two steps: first,
Æ(x + it) Æ g, jxtjæ = Æg(t), Æx Æ g(x),jxtj ææ +iÆg(x), Æt Æ g(t),jxtjææ,
Fig. 5. Center frames of two test sequences: the OFL is calculated employing b
sequences.
where g is denoting the Gaussian function with r1 is calcu-
lated. Second, the result is averaged using another, larger
Gaussian (r2 > r1) in x- and t-direction, respectively, to get
Vx, which is also indicated by the double integral in Eq.
(7). The value of vx is obtained by applying Eq. (9). In a fur-
ther step, two constraints are employed to assure that the
estimated velocity at site (x,y) is reliable: (i) the maximal
velocity is jvx(x,y)j < s1 and (ii) significant line structure
must be present, jÆg(y), Æx Æ g(x), Im2(x,y)ææj > s2, which can
be reused from the first step (extraction of line structure).
The calculation of vy is analogous, but the space-time stack
is rotated by 90 deg around the t-axis.

Due to a tiny dimension of three pixels in t-direction r1,
r2 need to be chosen small in order to avoid violating the
design rules. Furthermore, the filters are likely to become
anisotropic due to sampling errors. We suggest inserting
a blank frame, before and after Im2 into the space-time
stack to artificially stretch the t-dimension to five pixels.
After this modification, the results for vx are significantly
better, although we are introducing some aliasing due to
not interpolating the blank images. Note that interlacing
the space-time stack into t-dimension leads to a systematic
error in the velocity estimation, which we have to correct.
If the ‘‘interlaced’’ and the original orientation angle are
denoted by b and a, respectively, then their relationship
is given by 5

3
� tanðbÞ ¼ tanðaÞ using geometry. This means

that we have to take vx and vy as in Eq. (9) but amplify
it with 5/3 to correct the results. When using a bigger num-
ber of original images (e.g. 5) for the OFL, we do not need
to interlace.

We combine the horizontal and vertical component
velocities to a complex image OFim having vx in its real part
and vy in the imaginary part as described in the following
equation:

OFim
x;y2Im2

¼ vxðx; yÞ þ i � vyðx; yÞ: ð11Þ

The proposed implementation of the OFL together with
the one described in [5] (Gabor-based) are applied on two
test sequences, (a) a sinusoid image sequence undergoing
a diagonal top to bottom translation by 2 pixels/picture,
and, (b) a circle image sequence exposed to a vertical top
to bottom movement by 2 pixels/picture. The results for
the Gabor-based and Gauss-based method are shown on
the left- and right-hand side of Fig. 5, respectively. In all
images, the flow arrows taken from OFim are superimpos-
oth Gabor-based (left) [5] and Gauss-based (right) methods for each of the
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ing the center frame of the respective image sequence. As
can be observed, by considering the horizontal and vertical
portions of off-axis lines, the OFL is accurate at perfectly
horizontal and vertical lines and reasonably accurate at ob-
lique directions. The Gauss-based method is granted better
accuracy by inspection, which can be explained by its abil-
ity to measure orientation continuously, while the Gabor-
based method is essentially equipped with three selective
orientations and is only approximating orientations in be-
tween [27]. Computational load is another important point
concerning performance of the two implementation ap-
proaches. Given similar Gabor and Gaussian filter sizes
and the discussed space-time stack depth, the efforts for
calculating the component velocities at each pixel of the
center image are approximately the same for both methods.
This was also confirmed empirically and could be shown
simply by counting the operations but is omitted here. This
is, however, only possible due to the small filter sizes be-
cause the number of operations are fewer for larger filters
considering the separability of the Gaussian-based filters.
Also, it is subject to specific implementation and used hard-
ware: separable filtering is often optimized in common
computer architectures which will favor the Gauss-based
method again.
4. Face part detection

We wish to track the three facial regions eyes/nose, left
and right ear. To reliably detect these face parts we com-
bine optical flow pattern matching and a model-based
Gabor feature classification. The assumption of having a
moving face is exploited to speed up its parts’ detection
by taking the region-of-interest image roi into account.
4.1. Optical flow pattern matching

The face center can be approximated by reusing infor-
mation from the optical flow estimation, because the region
around the eyes and the nose shows a characteristic flow
pattern. A template containing the flow information of
an average face center is created offline. The face center’s
position and the directions it moves into, are retrieved by
matching this template in specific ways with the optical
flow image OFim (see Eq. (11)) of any sequence. An exam-
ple for such a template is visualized in Fig. 6. The first
image displays jvxj of a horizontal only movement whereas
Fig. 6. Example face center template for OF pattern matching: horizontal OFL
filtering used [5]).
the second one shows jvyj taken from a vertical only
motion, at the face center. The complete template OFtemp

used for the first matching is complex, combining vx and
vy (see also Eq. (12)). Its absolute value is displayed in
the third image of Fig. 6. We denote:

OFtemp
x;y2T

¼ vxðx; yÞ þ i � vyðx; yÞ ð12Þ

where T is the template, which has approximately 2–3% the
size of OFim. We start by calculating the absolute similarity
of OFtemp and OFim, at pixels where roi = 1, as in the fol-
lowing equation:

< jOFimj; jOFtempj >
kOFimk � kOFtempk

6 1 ð13Þ

resulting in a similarity matrix sim with values in [0, 1]. The
value max(sim) is stored in fcer and two further similarities
are calculated at that position:

�1 6
< RðOFimÞ;RðOFtempÞ >
kRðOFimÞk � kRðOFtempÞk

6 1 ð14aÞ

�1 6
< IðOFimÞ;IðOFtempÞ >
kIðOFimÞk � kIðOFtempÞk

6 1: ð14bÞ

Eqs. (14a) and (14b) give a scalar in [�1,1] referred to as
simh and simv, respectively. These similarity measures indi-
cate the directions (by their signs) in which the face center
moves and the relative velocities, e.g. whether the actual
movement is more a horizontal than a vertical one.

The procedure described in this section can effectively be
employed to detect the center facial region, whereas it is
less applicable to detect the boundary facial features. Fur-
thermore it is a quickly computed attention center for sub-
sequent analysis.

4.2. Model-based Gabor feature extraction

The second method presented for face part detection is
similar to [13]. Essentially, features are extracted at certain
points of a non-uniform ‘‘retinotopic’’ grid in order to
measure image properties of a face [12,28–30]. These fea-
tures constitute models, used for SVM classifiers [31] dur-
ing training and in the operational phase, when the
system automatically locates the face. In Fig. 7, two out
of the three employed facial models are displayed. Each
model uses specific points chosen out of the retinotopic
grid, which are marked by plus signs. The center model
(left); vertical OFL (middle); magnitude of combined OFL (right) (Gabor-



Fig. 7. Chosen points from a retinotopic grid to fit the center (left image) and side (right image) facial regions. Gabor features are applied at these points
for modelling.
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points (on the left-hand side) are denser, targeting also the
middle of the face, whereas the outer model points (on the
right-hand side) are chosen to be bent along the facial cur-
vature. At these points, features are extracted by means of
a Gabor filter bank, which in our case consists of five
(radial or isotropic) frequency and six orientation channels.
The filter bank is designed in the log-polar domain (a log-
arithmically scaled polar space), where the Gabor filters are
uniformly distributed Gaussian bells [9]. This ensures that
the designed Gabor filters evenly cover the Fourier
domain. Only specific frequency and orientation channels
are used (see Table 1) within the models, because the
approximate distance range of the faces was assumed to
be known. A further reason to pick out specific features
at only some points of the grid is to speed up the feature
extraction process. Like in the OFL approach, where we
concentrate on horizontal and vertical lines, we select the
Gabor filter orientations accordingly. The selected fre-
quency channels are tuned to the scale of the features we
are interested in. The outer models encode features taken
at low frequency channels in order to cover a large area.
The fine details of a face’s center (eyes and nose) are mod-
eled with high frequency channels. This adaption is done to
focus on few but important features. The classification per-
formance generally deteriorates when the number of fea-
tures increases, if no dimension reduction is done e.g. due
to the increased difficulties (i) to obtain sufficient data for
statistical models (curse of dimensions), and (ii) to imple-
ment real-time processing [13,20].

The feature vector~k for a point p of a specific model (a
point marked with the + in Fig. 7) consists of single scalar
products between the image and Gabor filters at the fre-
Table 1
Frequency and orientation channels used for face part models plus
achieved cross-validation results over the training set

Model Frequency
channel

Orientation
channel

Classification
rate

Center 4,5 1,4 0.96
Right-outer 3,4 1,2,5 0.98
Left-outer 3,4 1,2,5 0.99
quencies and orientations listed in Table 1. Accordingly,
we obtain:

kðn;gÞ ¼
XM�1

m¼0

XN�1

n¼0

Imðm;nÞfðm;n;n;gÞ

�����
����� ð15Þ

where a filter magnitude answer kn,g is formed by the abso-
lute value of the scalar product of an image patch Im with
size M · N and a complex Gabor filter f, of the same size.
The size of this image patch around p depends on the fre-
quency n, i.e. a higher frequency implies a smaller neigh-
borhood and vice-versa. A single Gabor filter, denoted as
fm,n,n,g is a 2D complex valued filter corresponding to a cer-
tain frequency n and orientation g. The resulting feature
vector ~k consists of the magnitude answers kn,g, which de-
scribe the neighborhood of the image at a point p. The
dimension of~k equals the product of the employed amount
of frequencies and orientations (see Table 1). The complete
feature vector~x contains the elements of~k of all grid points
within a certain model. Finally~x is classified by the corre-
sponding SVM expert to deliver a certainty measure, either
of gcer1–gcer3 (in short gcer1–3 for the list of certainties of
center, right and left face part expert).

To add face generalisation, the three experts (center,
right, left) are trained with the last 145 frontal face images
from the XM2VTS Database [32] and further 150 shots
from a different camera [33]. All images are downsized to
a resolution of 300 · 240 and 320 · 240, respectively, in
order to reduce the computation time. The three experts
are prepared for the training separately by manually mark-
ing positive and negative class examples (features) for the
models’ grid points in all training frames. Having these
labels, non-linear SVM classifiers employing an RBF ker-
nel are trained for each model. To achieve optimal classifi-
cation rates, each classifier’s kernel parameters are
determined by twofold cross validation. The according
classification rates can be found in Table 1.

If the optical flow pattern matching method described
previously is preceding the Gabor feature based method,
the critical search area for the latter can be reduced signif-
icantly. Additionally, like in the former method, only pixels
where roi = 1 are considered as candidate positions for face
parts, reducing the points at which to calculate ~k substan-
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tially. Without the optical flow matching step, this method
would not be restricted to detect only patterns in motion.

5. Liveness detection

In this section, the algorithm employed to detect liveness
in a face image sequence of three frames is presented. It
involves the concept described in the previous chapters.
The flow chart in Fig. 8 shows all components and their
interconnection. The enumeration in the following sum-
mary refers to the steps in Fig. 8:

(1) The OFL at the center image Im2 is calculated using
the algorithm described in Section 3.2. As an output
we obtain the optical flow image, OFim.

(2) The face center is detected by means of optical flow
pattern matching as described in Section 4.1. The out-
put of this step is the face center position (x1/y1)
including a certainty measure fcer. Additionally we
obtain the directions simh and simv describing the
central motion.

(3) All three face parts are detected in the center image
Im2 by model-based Gabor feature classification, out-
lined in Section 4.2. As the position of the face center
is already known from step 2, the feature extraction is
only employed in a small neighborhood of the size
10 · 10. The two outer models are extracted each in
the expected neighborhood to the right and left of
Fig. 8. Flow chart detailing the liveness detection.
the face center. As a result we obtain the face part
coordinates (x2/y2), (x3/y3) and the certainties gcer1–

3. The purpose is to confirm the face center position
detected rapidly in step 2 and to ensure the presence
of an actual face. If the center model expert’s answer
is below a certain threshold, the position x1/y1 is dis-
carded and a saccadic image search for the face center
is done by local Gabor decomposition. This involves
that the output of step 2 (fcer, simh and simv) have to
be recalculated at the new position as well. Though
possible, such a case occurs very rarely. It is worth
noting that the instantly derived roi is input to steps
1–3 and is used to speed up the procedure.

(4) In this step, the certainties fcer and gcer1–3 are verified
and updated if necessary. If one of them is below a
common threshold s, the sequence is regarded to be
unsuitable due to an insufficiently recognizable face
(non-face), yielding a liveness score of 0.

(5) A rectangular area around each face part’s (central)
position x1–3/y1–3 is cut out of OFim and stored as
image parts: OFpart1 (here 40 · 40) is situated around
the face center, whereas OFpart2 (here 20 · 40) and
OFpart3 (here 20 · 40) are located around the right-
and left-hand side face part position, respectively.
In Fig. 2, these three regions are indicated.

(6) Finally OFpart1–3 are compared to each other in order
to deliver the liveness score. Only the values of each
OFpart greater than half its maximum absolute value
are considered. This is to concentrate on high veloci-
ties only and to eliminate the negative impacts of still
regions. The remaining values are divided by their
total number in order to prepare for summation in
their mean value calculation. We decide to concen-
trate on the primary movement only. In step 2, we
retrieve the direction of the central motion simh and
simv. A mainly horizontal motion is indicated by
jsimhj being larger than jsimvj, otherwise suggesting
vertical motion. The ratios cr and cl, which contrib-
ute to the final liveness score are calculated as fol-
lows:if jsimhj > jsimvj

cr ¼
P

RðOFpart1ÞP
RðOFpart2Þ

; cl ¼
P

RðOFpart1ÞP
RðOFpart3Þ

else

cr ¼
P

IðOFpart1ÞP
IðOFpart2Þ

; cl ¼
P

IðOFpart1ÞP
IðOFpart3Þ

:

Depending on the primary movement, the ratios cr and cl
compare the real or the imaginary part of OFpart1 with OF-

part2 and OFpart3, respectively. A ratio between the center
and a side motion having an absolute value greater than
1, indicates liveness. In the ideal case, we expect the face
center part moving in an opposite direction compared to
the sides, which is indicated by negative ratios. By includ-
ing this observation, the liveness score is divided into a
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velocity dependent and a direction dependent part. The
final liveness score is then constructed as,

L ¼ 1

4
½ðjcrj > sÞ þ ðjclj > sÞ þ ð�cr < 0Þ þ ð�cl < 0Þ�

where §x means ‘‘sign of’’ x and takes either of the values
�1 or 1. Note, that s is equal to 1 according to the above
reasoning. However, we are allowed to set s to higher val-
ues, e.g. 1.5–2, to further decrease the probability of false
accepts if this does not affect the false rejection substan-
tially. The score is a value in [0,1], where 0 indicates no
liveness and 1 represents the maximum liveness.

6. Experiments

To evaluate the performance of our liveness detection
scheme, we use the ‘‘Head Rotation Shot’’-subset
(DVD002 media) of the XM2VTS database. Furthermore,
we perform ‘‘real’’ experimental spoofing by manually
playing through plausible attack scenarios (so-called play-
back attacks) involving a (different) camera at our labora-
tory [33]. In case of the database tests we employ the first
100 videos from the first session only. These are downsized
from 720 · 576 to 300 · 240 pixels. For experiments with
the laboratory camera a resolution of 320 · 240 pixels is
used.

6.1. Live and non-live sequences

For the ‘‘live sequences’’, which are expected to obtain a
high liveness score, four sequences (of either three or five
frames)1 containing partial rotation are cut from each
video in case of the database experiments. The possible
movements (to the left, to the right, up, down) are evenly
present in the sequences. On the other hand, ‘‘non-live
sequences’’ have to be manufactured because a database
for playback attacks using photographs is not available:
for each person from the database one frame is taken out
of a respective live sequence, and translated each horizon-
tally and vertically to produce sequences of three or five
frames. This yields four non-live sequences per person, imi-
tating high resolution photographs in motion. Two live
sequences on top of their non-live counterparts are dis-
played in Fig. 9. The first two rows contain a horizontal
movement, whereas it is a vertical one in the last two rows.
Note that the motion in the bottom live sequence is hardly
noticeable by the human eye. Furthermore, four different
playback attack scenarios are constructed (see Section
6.3). Here, ‘‘non-live sequences’’ consist of three images
(consecutive frames) captured by the laboratory camera.
For the first three spoofing trials we use high quality print-
outs which are moved in different manner in front of the
camera. In order to show the limits of the proposed liveness
detection we include a portable video device in the final
1 We also wanted to study the effects of using more than three frames.
spoofing trial. For the discussed reason, s was set to 1.5
when calculating the liveness scores.

6.2. Database test results

A total of 400 live- and 400 non-live sequences were
analyzed by the liveness detection system described in
the previous chapter. The liveness score achieved by each
sequence was stored as primary result. In addition to that,
the progression of the face part detection was monitored
for each sequence. The system performance is visualized
as DET (detection error tradeoff) curves in Fig. 10, in
case of using three and five frames for the OFL, on the
left- and right-hand side, respectively. Also, the impact
of s is shown for three discrete values. What we can
immediately observe, looking at Fig. 10 is, that the
EER (equal error rate) is 0.5% in case of using three
frames, whereas it is P0.5% when using five frames.
Inspecting the scores more closely reveals that most of
the non-live sequences scored 0, whereas most of the live
sequences achieved a liveness score of 0.75. Only 1 non-
live sequence got a score of 0.5, to be discussed further
below. This single sequence is also responsible for the
FA (false acceptance) plateau at 0.5%. As expected, scores
are pushed downwards if s increases, resulting in higher
FR (false rejection) but also lowering FA (false accep-
tance) rates. In the case of using five frames, scores are
distributed from 0.75 towards 0.5 and 1, and even 0.25.
It is to be concluded that while the motion estimation is
in favor of the five frames, particularly for non-live
sequences, non-uniform head motion is not, and the use
of three frames is recommended. Fig. 11 shows the single
non-live sequence for which the method failed, i.e. the
sequence was given a liveness score of 0.5. Note, that
we actually display the first (leftmost) and last frame
(rightmost) of the sequence while the center frame (mid-
dle) is replaced by the OFL in a direction, here vertical
as the sequence contains a top–down translation. Addi-
tionally the focused face parts (center, right, left) which
are automatically detected in the center frame are indi-
cated by rectangles in the OFL image. As can be
observed, no horizontal line structure is available in the
observed side areas of the face, leading to non-measurable
(vertical) velocities. On the contrary, Fig. 12 shows a typ-
ical live sequence (L = 1) with some horizontal motion (of
vertical lines) in it. Inspecting the outcomes, we also
found that eyeglasses can lower the liveness score of live
sequences, as they are near the camera even at the sides.

The success rate of the alternative face center detection
(by OF patterns) was further encouraging, as it was 92%
in isolation. The main reasons for false localization were
eyeglasses and moustaches, which could generate distract-
ing flow patterns. Wrongly located face centers were how-
ever autonomously rejected by the model-based method,
which could successfully assist to locate the face center in
the remaining 8% of the sequences. All side-regions were
located sufficiently correctly.



Fig. 9. Rows 1 and 3 show example live sequences, rows 2 and 4 display the according non-live sequences (playback attack).

Fig. 10. DET curves for the liveness detection, using (i) three frames and (ii) five frames for the optical flow estimation. The EER is to be read off at the
intersection point of a curve with the diagonal line.
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6.3. Applied spoofing results

In our first spoofing trial we moved a high quality printout
horizontally in front of the laboratory camera, which basi-
cally amounts to the foregoing experiments, verifying their
practical value. The analogous images are displayed
Fig. 13. Looking at the OFL image in Fig. 13 we can observe
that the face undergoes constant motion, which is against



Fig. 11. A non-live sequence that posed difficulties for the system: frame 1/3 (left); vertical OFL (middle); frame 3/3 (right).

Fig. 12. Typical live sequence: frame 1/3 (left); horizontal OFL (middle); frame 3/3 (right).

Fig. 13. Translated photograph: frame 1/3 (left); horizontal OFL (middle); frame 3/3 (right).
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our definition of liveness and leads to a liveness score of 0.
One might argue that it would be natural to fool the system
by bending the surface of the printout with the aim of imitat-
ing a 3D face. To address this point, we proceeded in two
ways. In Fig. 14, the first spoofing attempt is visualized. As
can be observed, the focused motion is still fairly constant
although the image surface is bent. In case of a translated
photo, it is actually natural that the face boundaries repre-
sent significant edges, which are likely to generate strong
motion. In order to better mimic a live face, we wrapped a
photograph around a cone and rotated it in horizontal direc-
tion. For the particular sequence displayed in Fig. 15, even
less motion was measured in the face center compared to
Fig. 14. Bent photograph in motion: frame 1/3 (lef
the outer face parts (L = 0), which should not be taken as a
general statement though. A photo wrapped around a cylin-
der (Fig. 15) is different from a real head, since it is not as
peaked, and the sides (ears) will not move into opposite
directions compared to the face center (thus not yielding live-
ness scores above 0.5). The motion may be higher in the cen-
ter, which we can react upon by setting s to a higher value
(e.g. 2), and also, the face detection will fail if a face (photo)
looks too distorted.

However, for the purpose of showing system limitations
we recorded a video of a person with the laboratory cam-
era. Then the video was replayed on a portable video
player equipped with a high quality display positioned in
t); horizontal OFL (middle); frame 3/3 (right).



Fig. 16. Video playback: frame 1/3 (left); horizontal OFL (middle); frame 3/3 (right).

Fig. 15. Photograph wrapped around a cone and rotated: frame 1/3 (left); horizontal OFL (middle); frame 3/3 (right).
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ideal distance. The outcome of such a playback attack is
shown in Fig. 16. Here, a liveness score of 0.75 was calcu-
lated, which is no surprise since the video contains exactly
the liveness indicators our method relies on. An analysis of
the image quality of such a sequence could expose further
useful features for liveness detection. Also, any rectangles
or constant moving background seem suspicious and
should be considered in future work. Another possible
spoofing method we can think of able to fool the proposed
scheme is wearing a mask. However, it is then mainly task
of the face part detection (face recognition) stage to reject
such a claim, since also a human expert could be deceived.
We do not give further quantitative results in this second
experimental part, since many issues are highly speculative
and subjective. A quantification of the success for these
new spoofing techniques is difficult to measure as they
assume a successful chain of extremely difficult and rare
outcomes to cooperate. For example, the impostor must
find out the focal length of the camera (which is not public
information) to place the video display at the perfect dis-
tance and without first showing anything else than the
video display content.
7. Discussion

The explanation for non-live sequences achieving a score
greater than 0 lies in up/down-movement, in case there is
less horizontal line structure to observe at the side parts
of a face, compared to the face center. If there are no or
few lines present inside a checked side-region, the velocity
at the face center may be measured to be higher. It is worth
noting that the system would have been error-free on the
test set if only sequences containing horizontal movement
had been considered, with a big margin. Although our
results support the general case, we suggest to focus on
horizontal movements only in liveness detection systems
of the proposed kind, e.g. demanding jsimhj � jsimvj
before evaluating the score.

Furthermore, it is worth mentioning that the last sce-
nario was especially difficult to construct since the camera
had to zoom in and focus the screen of the portable video
player perfectly, meaning that the experimental conditions
had to be changed, otherwise not making the spoofing pos-
sible in the first place. Disabling the zoom would force any-
one to bring along a big (1:1) video display to achieve such
a liveness score. Also, the device had to be kept absolutely
still to not affect the recorded motion.

Background or illumination changes can affect the suc-
cess of the proposed scheme in that the face part detection
could fail. Given a less controlled environment, the face
part experts would have to be retrained. Despite the results,
a more continuous extraction of the OFL could have been
advantageous, too. For this reason we plan to investigate
alternative face detection techniques in the future. An
advantage of the proposed liveness detection scheme is its
non-intrusiveness, i.e. it does not require any user interac-
tion. To avert video spoofs we recommend to demand and
examine user reactions, e.g. analyzing the lip movement in
a text prompted scenario where a user must utter some-
thing which is randomly presented to him.
8. Conclusion

Evaluating the trajectory of several face parts using the
optical flow of lines is the main novelty of the proposed
system. The liveness detection is successful in separating
live face sequences from still photographs in motion, with
an equal error rate of 0.5% on the test data. Further inves-
tigation into practical application confirmed the robustness
of the scheme. Although restricted to line velocity estima-
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tion, the suggested OFL is able to deliver robust measure-
ments for face liveness assessment. The Gauss-based imple-
mentation is both efficient and effective. With regard to
face localization, a quick method utilizing optical flow pat-
terns was shown feasible as well. Additionally, the face part
detection by model-based Gabor feature classification is
robust to typical sources of errors like glasses and facial
hair, and it effectively monitors and complements the pre-
vious method. We were also able to reduce the model com-
plexity by adaptation of the features in frequency and
orientation, which translated into a speed-up. The scheme
was evaluated on the XM2VTS database having scale vari-
ations up to 10%.
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