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Abstract

When selecting a registration method for fingerprints, the choice is often between
a minutiae based or an orientation field based registration method. In selecting a
combination of both methods, instead of selecting one of the methods, we obtain
a one modality multi-expert registration system. If the combined methods are
based on different features in the fingerprint, e.g. the minutiae points respective
the orientation field, they are uncorrelated and a higher registration performance
can be expected compared to when only one of the methods are used. In this
paper two registration methods are discussed that do not use minutiae points,
and are therefore candidates to be combined with a minutiae based registration
method to build a multi-expert registration system for fingerprints with expected
high registration performance. Both methods use complex orientations fields but
produce uncorrelated results by construction. One method uses the position and
geometric orientation of symmetry points, i.e. the singular points (SPs) in the
fingerprint to estimate the translation respectively the rotation parameter in the
Euclidean transformation. The second method uses 1D projections of orientation
images to find the transformation parameters. Experimental results are reported.

1 Introduction

There are numerous techniques that use minutiae points in Automatic Finger-
print Identification Systems (AFIS) as well as low cost silicon sensor systems
that are geared toward minutiae based techniques. This is due to long history
of minutiae used in crime scene investigations. Consumer uses of biometrics in-
creasingly questions the limitation of identification features to minutiae. Even
more interestingly, by selecting a combination of features, instead of selecting
minutiae, we can obtain a one modality multi-expert registration system. The
two registration methods can be expected to be uncorrelated if they are based
on different features in the fingerprint, e.g. the minutiae pattern respective the
orientation field. By combining the output of uncorrelated methods a gain in the
registration performance can be achieved, compared to the use of only one of
the methods. This is because the methods complement each other in a positive
way. When one method fails the other may still have success in the registration.
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Fig. 1. Left: marked singular points, a core point is marked with a square and a delta
point with a cross. Middle: the estimated complex orientation field at level 3 for the
fingerprint to the left. Right: a fingerprint of type arch.

In the minutiae based registration methods the fingerprints are represented
by its minutiae points, i.e. the position and the orientation of their minutiae
are elements in their respective feature vector representation. Aligning the two
fingerprints is to find the transformation parameters that maximize the number
of matching minutiae pairs in the feature vectors [1, 2]. If the transformation
is the Euclidean transformation, the parameters are the rotation angle and the
translation vector [3] relating the template and the test fingerprint.

However in low quality fingerprints it is difficult to automatically extract
the minutia points in a robust way. This often means that genuine minutiae are
missed and that false minutiae are added [2]. Also, in cost sensitive applications,
because the price of the sensor depends on the sensor area, sensors with small ar-
eas are used and therefore fewer numbers of minutiae are present in the captured
fingerprint. For these two situations a high performance registration is difficult
to obtain if only the minutiae based registration method is used. A higher per-
formance can be expected if the minutiae based method can be combined with
an other technique which we suggest to be orientation field features.

In this paper two registration methods are suggested that use the global struc-
ture of the fingerprint, and therefore are more robust to low quality fingerprint
registration and more suitable to register fingerprints captured from small area
sensors. They are therefore candidates to be combined with a minutiae based
registration method to build a multi-expert registration system for fingerprints
as discussed above. One method uses the position and geometric orientation of
symmetry points, i.e. the singular points (SPs) in the fingerprint (see Figure 1)
to estimate the translation respectively the rotation parameter in the Euclidean
transformation [4]. The second method uses 1D projections of orientation images
[5] to find the transformation parameters intended for a situation when SPs are
poorly imaged. Both methods complement each other as well as minutiae and
used complex orientation fields (see Figure 1).



2 Registration by symmetry points

This method (called method 1) extracts automatically the position and the geo-
metric orientation of SPs, from the global structure using complex filters de-
signed to detect rotational symmetries. The translation is estimated from the
difference in position, and the rotation parameter from the difference in the geo-
metric orientation of SPs in the test and the template fingerprint. In [4] we have
shown that an unbiased alignment error with a standard deviation of approxi-
mately the size of the average wavelength (13 pixels) of a fingerprint is possible
to achieve using this method.

A common technique to extract SPs (core and delta points) in fingerprints
is to use the Poincaré index introduced by Kawagoe and Tojo [6]. It takes the
values 180◦, −180◦, and 0◦ for a core point, a delta point, and an ordinary point
respectively. It is obtained by summing the change in orientation following a
closed curve counterclockwise around a point [7]. This technique has been used
in the studies of Karu and Jain [7], and Bazen and Gerez [8] to define and extract
SPs.

Our method using complex filters compared to Poincaré index to identify
SPs has the advantage to extract not only the position of an SP but also its
spatial orientation. When two fingerprints are rotated and translated relative to
each other our method can estimate both translation and rotation parameters
simultaneously. In the work of Bazen and Gerez [8] the position extraction and
the orientation estimation of an SP is done in two sequential steps. The position
extraction is performed by using Poincaré index. The orientation estimation is
done by matching a reference model of the orientation field around an SP with
the orientation map of the extracted SP. The orientation maps were obtained
by using a technique introduced in [9].

2.1 Filters for rotational symmetry detection

Complex filters, of order m, for the detection of patterns with rotational symme-
tries are modeled by eimϕ [10, 11]. A polynomial approximation of these filters
in gaussian windows yields (x + iy)mg(x, y) where g is a gaussian defined as

g(x, y) = e−
x2+y2

2σ2 [12, 13].
It is worth to note that these filters are not applied to the original fingerprint

image but instead they are applied to the complex valued orientation field image
z(x, y) = (fx + ify)2. Here fx is the derivative of the original image in the x-
direction and fy is the derivative in the y-direction.

In our experiments we use filters of first order symmetry or parabolic sym-
metry i.e.
h1(x, y) = (x + iy)g(x, y) = reiϕg(x, y) and
h2(x, y) = (x − iy)g(x, y) = r e−iϕg(x, y) = h∗

1.
Patterns that have a local orientation description of z = eiϕ (m=1) and z = e−iϕ

(m=-1) are shown in Figure 2. As can be seen these patterns are similar to pat-
terns of a core respectively a delta point in a fingerprint and therefore suitable to
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Fig. 2. Patterns with a local orientation description of z = eiϕ (left) and z = e−iϕ

(right). Both in gray scale (patterns) and in z representation (complex filters).

use as SP-extractors. The SP-extractors are the z representation of the patterns,
i.e. the complex filter h1 and h2 respectively.

The complex filter response is c = µ eiα, where µ = |I20|
I11

is a certainty
measure of symmetry, and α = Arg(I20) is the ”member” of that symmetry
family, here representing the geometric orientation of the symmetric pattern.
The scalars I20 = 〈h1, z〉 for the core point extraction, I20 = 〈h2, z〉 for the delta
point extraction, and I11 = 〈|h1| , |z|〉 are obtained by use of the 2D complex
scalar product symbolized by 〈 〉 [12]. Representing the certainty measures by
µ1 and µ2 for core point respectively delta point symmetry, we can identify an
SP of type core if µ1 > T1 and of type delta if µ2 > T2, where T1 and T2 are
empirically determined thresholds.

2.2 Multi-scale filtering

Using a multi-resolution representation of the complex orientation field offers a
possibility to extract SPs more robustly and precisely compared to a represen-
tation at only one resolution level. The extraction of an SP starts at the lowest
resolution level (a smooth orientation field) and continues with refinement at
higher resolutions. The result at a low resolution guides the extraction at higher
resolution levels. This strategy can be taken because SPs have a global support
from the orientation field [14].

The complex orientation field z(x, y) is represented by a five level Gaussian
pyramid. Level 4 has the lowest, and level 0 has the highest resolution. The core
and the delta filtering is applied on each resolution. The complex filter response
is called cnk, where k=4, 3, 2, 1 and 0 are the resolution levels, and n=1, 2 are
the filter types (core and delta).

Figure 3 (upper row) shows the magnitude of the filter responses of filter h1

(called µ1k). The filter is applied to the orientation field of the fingerprint to the
left in Figure 1.

2.3 Multi-scale searching for SPs

The extraction of an SP starts at the lower resolution level, i.e. we search for
maximum in the certainty image µ1 and µ2 for a core and a delta point respec-
tively. In the found position of maximum (x, y)max

n4 we extract the complex filter



Fig. 3. Filter responses for the fingerprint to the left in Figure 1, core point. Row1:
µ1k, k=3, 2, and 1. Row2: enhanced µenh

1k , k=3, 2, and 1.

response cmax
n4 , for each type of SP, which is a vector pointing in the geometric

orientation of respective SP. The magnitude of this vector is put to one, we call
this vector SPor of which there is one per resolution level and SP type. The SPor

is then used to define the search window (for a core point only) and to increase
the signal-to-noise ratio in the certainty images µ1 and µ2 when searching for
maximum at the next higher resolution level. More precisely, the enhanced cer-
tainty image µenh

k−1 at level (k − 1) is obtained according to equation 1, where
ϕ is the difference in angle between a filter response vector ck−1 and the SPor

vector at previous lower resolution level k.

µenh
k−1 = µk−1 · cos(ϕ) (1)

The quantity µk−1 represents the certainty as described in section 2.1 and the
above equation is a vectorial projection of ck−1 on SPor. In this way we lower
the responses of those complex filter responses that are not coherent with the
orientation of the SPor at the previous lower resolution level. Figure 3 (lower
row) shows the enhanced certainty image for a core point for the fingerprint to
the left in Figure 1. This is repeated for each search of maximum between levels
in the Gaussian pyramid.

At each level k we extract in the complex filter response image cnk at the
position (x, y)max

nk found in the enhanced certainty image µenh
k . We call these

complex filter responses cmax
nk .



3 Registration by 1D projections of orientation images

One class of fingerprints, i.e. class arch (see Figure 1 to the right), lacks SPs [7].
In noisy fingerprints the complex filtering can give a too weak response to classify
the point as a core or a delta point. Also when the sensor area of the capturing
device is small the SPs are not always found within the captured fingerprint. In
these situations symmetry point extraction will fail and must be complemented
by an alternative method. We call this method ”Registration by 1D projections
of orientation images” which makes use of the global orientation field of the
fingerprint but does not need SPs for registration. The method is based on
a decomposition of the fingerprint into several images, where each image, Ok,
corresponds to a direction. Called Orientation images in what follows, they were
6 in number, representing 6 equally spaced directions in our experiments.

By a pair of Orientation images we mean two orientation images, one from
the template fingerprint and one from the test fingerprint, belonging to the same
orientation value. The difference in position of a pair of orientation images, is
used to estimate the translation between the template and the test fingerprint (it
is assumed that the rotation is negligible, or have been compensated for, between
the two fingerprints). From each of the orientation images several 1D projections
at different angles (radiograms) are computed [5]. We call the two radiograms
computed from a pair of orientation images at the same projection angle a pair
of radiograms. A correlation is computed between each pair of radiograms. From
the peak in the correlation measure we estimate a displacement for each such
pair of radiograms.

In the estimation of the translation parameter we make use of two displace-
ments computed from pair of radiograms which are perpendicular in projection
angle. The final estimate of the translation between the template and the test
fingerprint is computed from the total of nor ∗ npr

2 number of estimates, where
nor and npr are the number of orientation images and the number of projection
angles respectively.

3.1 Orientation radiograms

An orientation image is computed according to equation 2.

Ok = |z| eα(cos2(θk−ϕ)−1) (2)

In this equation Θk is the pass orientation angle for an orientation image Ok

and ϕ is the orientation of the orientation field z in each point in the interval[
−π

2
π
2

]
. The constant α controls the sensitivity in the selection of orientation

angles close to the pass angle. Figure 4 shows orientation images for pass angles
−π

3 ,−π
6 , 0, π

6 , π
3 and π

2 at level 2 in the Gaussian pyramid when the input is the
fingerprint given in Figure 1 to the right.

The Radon transform is used to compute 1D projections of orientation images
in the direction of φ according to equations 3 and 4. Figure 4 shows radiograms



10 20 30 40 50 60

10

20

30

40

50

60

70

80

10 20 30 40 50 60

10

20

30

40

50

60

70

80

10 20 30 40 50 60

10

20

30

40

50

60

70

80

10 20 30 40 50 60

10

20

30

40

50

60

70

80

10 20 30 40 50 60

10

20

30

40

50

60

70

80

10 20 30 40 50 60

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120

0 20 40 60 80 100 120

0 20 40 60 80 100 120

0 20 40 60 80 100 120

0 20 40 60 80 100 120

0 20 40 60 80 100 120

Fig. 4. Left: Orientation images (level 2) for the fingerprint to the right in Figure 1.
With pass angles θk = −π

3
,−π

6
, 0 for the upper row from left to right, and θk = π

6
, π

3

and π
2

for the bottom row from left to right. Right: Radiograms computed from the
orientation image to the left in this figure with pass angle −π

6
. Projection angles from

top to bottom are −π
3
,−π

6
, 0, π

6
, π

3
and π

2
.

for the orientation image to the left with a pass angle of −π
6 . Radon transform

amounts to summing the pixel values along the direction φ.

Rφ (x′) =
∫

f (x′cosφ − y′sinφ, x′sinφ + y′cosφ) dy′ (3)[
x′

y′

]
=

[
cosφ sinφ
−sinφ cosφ

] [
x
y

]
(4)

3.2 Translation estimation

The relation between the displacement dx′ between a pair of orientation radi-
ograms and the translation dx and dy of its pair of orientation images is com-
puted according to equation 5.

dx′
φm

= cosφmdx + sinφmdy (5)

Where dx′ = x′
template − x′

test, dx = xtemplate − xtest, and dy = ytemplate − ytest.
The displacement dx′ is estimated from data of a certain projection angle

φm by finding the peak in the correlation signal of each pair of orientation radi-
ograms. By using two pairs of radiograms, which are perpendicular in projection
angle, we can estimate the translation dx and dy between the template finger-
print and the test fingerprint by equation 6.[

dx′
φm

dx′
φn

]
=

[
cosφm sinφm

−sinφm cosφm

] [
dx
dy

]
(6)



Where φm = −π
3 ,−π

6 , 0 and φn = φm + π
2 , i.e. π

6 , π
3 and π

2 . From each pair of
orientation images we get npr

2 number of estimates. Out of a total of nor ∗ npr

2
estimates we want to select, in a robust way, the final translation estimate dx, dy.
First we apply an outlier detection within an orientation image by disregarding
estimates (dx, dy)T that are most dissimilar to other estimates. Second we take
away orientation images that have a high variance in their estimates. Finally we
estimate the translation by taking the mean value of the estimates.

4 Experiments

The FVC2000 fingerprint database, db2 set A [15] is used in the experiments. A
total of 800 fingerprints (100 persons, 8 fingerprint/person) are captured using
a low cost capacitive sensor. The size of an image is 364 x 256 pixels, and
the resolution is 500 dpi. It is worth to note that FVC2000 is constructed for
the purpose of grading the performance of fingerprint recognition systems, and
contains many poor quality fingerprints.

4.1 Symmetry point extraction

The filters used in the multi-scale filtering are of size 11 x 11 (a standard devi-
ation of the Gaussian of 1.6). From the multi-scale searching for maximum in
the enhanced certainty images µenh

nk , as described in section 2.3, the position of
maximum (x, y)max

nk is extracted for each level k and for each type n of SP (in the
lowest resolution level the search for maximum is done in the ordinary certainty
image µnk). In the position (x, y)max

nk the complex filter responses cmax
nk are ex-

tracted and saved for each level k and for each type n of SP. We compute new
filter responses R from the extracted complex filter responses cmax

nk according to
equations 7 and 8, i.e. we sum the complex filter responses cmax

nk in the levels
k (vector-sum) for respective type of SP. The final response is the mean of the
magnitude of the vector-sum.

Rcore =
1
4

∣∣∣∣∣
4∑

k=1

cmax
1k

∣∣∣∣∣ (7)

Rdelta =
1
3

∣∣∣∣∣
3∑

k=1

cmax
2k

∣∣∣∣∣ (8)

To test the performance of the symmetry point extraction (method 1) the true
position (x, y)true

n of the SPs have been manually extracted for the fingerprints
in the database. Those fingerprints that are lacking SPs are marked manually
for being so. An SP is ”correct in position” if the Euclidean distance d between
the true position and the extracted position at resolution level 1 (x, y)max

n1 , by
method 1, is ≤ 15 pixels 1, and the filter responses Rcore respectively Rdelta are
1 approximately 1.5 wavelength of the fingerprint pattern
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Fig. 5. Distributions of Rcore (left) and Rdelta (right). Left: core points that are ”correct
in position” (top), and core points that are ”not correct in position” (bottom). Right:
delta points that are ”correct in position” (top), and delta points that are ”not correct
in position” (bottom).

high, i.e. higher than a threshold. Figure 5 shows the distribution of the filter
response Rcore for ”correct in position” extracted core points (left/top) and for
core points ”not correct in position” (left/bottom) and the distribution of the
filter response Rdelta for ”correct in position” extracted delta points (right/top)
and for delta points ”not correct in position” (right/bottom). From these dis-
tributions we can estimate the performance for method 1 for different values of
thresholds.

If we put the threshold for core point acceptance thcore = 0.63 we get an
EER of 4 % and for the delta points we get an EER of 3 % when the threshold
for acceptance for a delta point thdelta = 0.73. In 665 fingerprints out of 800 we
find a core point, or a delta point, or both ”correct”. By correct we mean both
close in distance to the true position (closer than 15 pixels) and a high response
from the symmetry filter, i.e. Rcore > thcore respective Rdelta > thdelta.

In figure 6 the histograms of the error in distance for the ”correctly” estimated
SPs are shown. The mean value of the error in distance is approximately 5 ± 3
pixels.

4.2 Orientation radiograms

We apply method 1 to obtain SPs. For those fingerprints which does not contain
sufficiently strong SPs we apply the alternative method discussed in section 3.
Method 1 finds a symmetry point, in 665 fingerprints out of 800. The method
2 is tested on the remaining 135 fingerprints. We call these 135 fingerprints the
SP-free set. We use a jack-knife strategy to measure the performance of method
2, using the rotation principle because we rotate the test data with the template
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pixels for both type of SPs. To the right the histogram of the error for the ”correctly”
estimated translation parameters. The mean error is approximately 6 ± 3 pixels.

data to obtain the maximum available trials. This is motivated by that method
1 leaves too few samples for method 2 to work on despite the fact that the size
of the FVC database is appreciably large. For each fingerprint in the SP-free set
(the test fingerprint) we estimate the translation parameters by using the rest
of the fingerprints for that person as template fingerprints. The templates may
or may not have been found by method 1. In this way we obtain 7 estimates for
each test fingerprint, that is a total of 7 ∗ 135 = 945 translation estimates.

In the experiments we have used 6 orientation images nor with pass angles
−π

3 ,−π
6 , 0, π

6 , π
3 and π

2 and 6 projection angels npr equal in value to the pass
angles. This gives 3 estimates for each orientation pair, and a total of 18 trans-
lation estimates. The orientation images Ok are computed using the orientation
field z at level 1 in the Gaussian pyramid, the parameter α found empirically is
put to 8.6 in equation 2.

In the processing of the 18 estimates of (dx, dy)T we obtain new estimates
stemming from within and between orientation images. First, within an orienta-
tion image, we take away one estimate out of 3. The one which is most dissimilar
to the other two is disregarded. Second we keep 3, i.e. the 3 orientation images
which have minimum variance in their estimates. Third we keep the two ori-
entation images that are closest in the mean of their estimates. Now we have
two orientation images, and two estimates of translation for each object. Fourth
we take as the final estimate the mean of the two estimates belonging to the
orientation image that shows minimum variance.

Figure 7 shows the result. The distance metric is the Euclidean distance
between the true translation and the estimated translation. If we assume that
the error in the translation estimate is acceptable if the euclidean distance d ≤ 15
pixels (we name this ”correct” estimation) the above method finds the true
translation in 588 trials out of 935 possible trials. In figure 6 the histogram of
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the error for the ”correctly” estimated translation parameters is shown. The
mean value of the error is approximately 6 ± 3 pixels.

For each test fingerprint (a total of 135 tests, 7 estimates in each test) the
possible outcomes that are ”correct”, i.e. d ≤ 15, is in the range [0 7]. To the
right in Figure 7 is the histogram for this test. The mean value is 4.3 which means
that in the mean approximately 4 estimates out of 7 are ”correct” for each test
fingerprint by using method 2 in isolation on fingerprints that are rejected by
method 1.

4.3 Registration using the combined methods

Using method 1 we detect the position of an SP (core or delta, or both) in 665
fingerprints out of 800 with an acceptable error in distance of 5 ± 3 pixels. In
[4] we have shown that using SP-registration in isolation an unbiased alignment
error with a standard deviation of 13 pixels (which approximately is the average
wavelength in the fingerprint) can be achieved. We also present a performance
measure of the estimation of the geometric orientation of an SP to be unbiased
with a standard deviation of less than 4◦. Using SP-registration with the 665
correctly extracted SPs, and assuming the same alignment error as in [4], we
achieve a registration performance of 83% for SP-registration in isolation.

The alternative method (method 2) running on the 135 fingerprints missed
by method 1 estimates correctly 588 trials out of 945 possible trials (62%) with
a mean error of 6 ± 3 pixels. With this performance for method 2, we esti-
mate the translation parameter in an acceptable way for 84 fingerprints of 135,
missed by method 1. The 135 fingerprints were not compensated for orientation
differences. However, for the 84 fingerprints in which a ”correct” translation es-
timate was found, the orientation difference is small (because of how the trans-
lation estimation was implemented) and therefore also the rotation difference is
small. Accordingly, it can be concluded that a registration performance of 62%
is achieved with this method in isolation with an alignment error of similar order
as for method 1.



To conclude, by using method 1 and method 2 jointly we estimate the trans-
lation parameter ”correctly” for 749 (665 + 84) fingerprints out of total 800,
yielding an identification performance of 94%. This is done without use of minu-
tiae, and without rotation compensation for method 2.

5 Conclusion and Future work

In this paper a multi-expert registration system is built using non-minutiae fea-
tures which makes the suggested method fully complementary to minutiae based
methods.

The registration performance for the method registration by symmetry points
was 83% when running in isolation. Combined with the method registration by
1D projections of orientation images the registration performance was increased
to 94%. This shows that a combination of registration methods, i.e to use a
one modality multi-expert registration system, instead of using one registration
method in isolation increase the system registration performance. The achieved
uncertainty (one standard deviation) of 13 pixels in the alignment error is ap-
proximately of the same size as other studies used, e.g. [16].

The 94% performance in the estimation of the translation parameter was
achieved when the fingerprints for method 2 were not compensated for rotation
differences. Before estimating the translation we can compensate for the rotation
differences between the test and the template orientation images by a rough
orientation estimation technique, such as orientation histogram correlation. This
should increase the performance of registration for method 2.
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