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Abstract. We have implemented an algorithm for detection and segmentation 
of protein spots in 2-D gel electrophoresis images using symmetry derivative 
features computed using low level image processing operations. The 
implementation was compared with a previously published Watershed 
segmentation and a commercial software. Our algorithm was found to yield 
segmentation results that were either better than or comparable to the other 
solutions while having fewer free parameters and a low computational cost. 

1   Summary 

Two-dimensional gel electrophoresis (2-DE) is a major workhorse in proteomics. 2-
DE data comes as spot maps containing a vast number of proteins, requiring 
automatic image processing for efficient analysis. Quantification of individual 
proteins and tracing changes in expression between gels require accurate spot 
detection. Existing spot detection algorithms often require user intervention for setting 
free parameters and time consuming morphological post processing. We approach the 
problem by using a set of computationally cheap and robust symmetry derivative 
features and minimal post processing. A feed forward neural network is used to find 
decision boundaries in the feature space. The neural network is trained with features 
extracted from manually segmented 2-DE images. Classification performance is 
compared with the published non-commercial algorithm of Bettens [1] and one 
commercial 2DE image analysis program, ImageMaster™ 2D Platinum v5.0 (GE 
Healthcare, formerly Amersham Biosciences). The result, presented as ROC curves, 
show that we perform at least as well as both Bettens and Imagemaster in terms of 
spot detection and segmentation, while using fewer free parameters, and a limited 
amount of computational resources. 

1.1   Originality and Contribution 

We propose a set of symmetry derivative features [2, 3] to be used in automatic 
segmentation of 2DE gel images with minimal post-processing. Symmetry derivatives 
give immediate information on local shape that otherwise requires time consuming 
regional processing. In addition to achieving better segmentation performance, this 
moves the focus of the problem from post processing to basic signal processing. 
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1.2   Introduction to the Problem 

2-DE [4] is able to separate thousands of proteins in a sample, presented as image 
data. Spot detection and segmentation into spot regions is of central importance for 
the quantitative and differential analysis of proteomics experiments. The 
segmentation is complicated by the large range of protein concentration affecting spot 
geometry, overlapping spots, irregular spot shapes, and random noise.  

1.3   Alternative Spot Detection Techniques 

Most spot detection solutions are closed source, making fair comparison difficult. 
However many older image analysis packages [5, 6] applied model fitting for direct 
segmentation of the protein spots. The alternative approach is to use a crude initial 
segmentation followed by computation of morphological and grey level features of 
the initial regions for a final decision. The Laplacian of Gaussian (LoG) filter 
response is a weak feature that has been widely used in segmentation [7, 8, 9]. In 
recent years the unsupervised Watershed algorithm has also become a popular choice 
[1, 9] for initial 2DE image segmentation. The second step often consists of iterative 
model fitting within the regions [1, 8, 10] to closer determine spot properties. Fitting 
each segmented area to a model is often a computationally expensive step. 

1.3.1   Gaussian Fitting 
The 2-D Gaussian function is used for smoothing and noise removal in image 
processing, and is also the most common protein spot model:  
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As the function is separable smoothing can be done either with a 2-d convolution 
with the Gaussian kernel above or by convolution with two orthogonal 1d kernels. 
The reason the Gaussian is a popular in spot modeling is that the Gaussian function 
corresponds to diffusion from a single point. Most spots are formed under conditions 
similar to diffusion in the MR/PI directions, making the model appropriate for many 
spots. The main weaknesses are poor modeling of irregularly (ie non ellipsoid) shaped 
spots, and in fitting with saturated “flat top” spots. Bettens as well as Rogers [8] 
address the flat top spot problem by assuming diffusion from a central area rather than 
a point, representing the spot as a central disc or irregularly shaped region convolved 
with a Gaussian kernel. In spot detection the Gaussian is used either by iteratively 
optimizing the parameters around a peak [5] with respect to a residual, or by similar 
fitting to a segmented region that is expected to contain one spot only. 

1.3.2   Second Derivative 
The second derivative gives information on the curvature of the local surface. As 
protein spots appear as dark blobs on a white background they have convex curvature. 
This weak criterion is widely used in initial spot segmentation [7, 8, 9]. Since the 
second derivative amplifies noise a smoothing operation is often applied before the 
derivative is computed. In practice the computation of the second derivative of a gray 
scale image is often implemented by means of 2-d convolution with the LoG filter 
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which in the case of local concave curvature gives a positive value on a spot. 

1.3.3   The Watershed Transformation 
The watershed transformation (WST) is a powerful segmentation algorithm 
commonly used for segmentation of locally homogenous grey value images that has 
been implemented in linear time [11]. The transform finds the reliefs that separates 
catchment basins around local minima. In 2-DE the WST has been applied to a 
smoothed grey scale image [1] and to the gradient strength image [9]. The WST tends 
to over-segment spots when applied to the gradient strength image. Usually heuristics 
are applied to merge or discard regions in a computationally costly post processing 
step. 

2   Method 

2.1   Features and Feature Extraction 

For each pixel we generate a feature vector containing the local LoG transform of the 
original image and the local symmetry derivative response. The LoG captures the 
concavity of spot surfaces while symmetry derivatives capture spot shape. Symmetry 
derivatives are powerful textural features that have a wide range of applications in 
image processing [3, 12, 13]. The main strength of symmetry derivatives is an ability 
to represent local shape without initial segmentation of the raw image, a costly step in 
terms of computation. Symmetry Derivatives are differential operators that are  
based on  

Dx + iDy = ∂/∂x + i∂/∂y . (3) 

which yields a complex vector field when applied to images. Higher order symmetry 
derivatives of the n'th order, and their conjugates, are defined as  

(Dx + iDy)
n . (4) 

(Dx - iDy)
n . (5) 

respectively. Applying a differential operator to an image corresponds to convolution 
with a derivative kernel in the direction of the differential combined with a window 
function. We choose the discrete Gaussian function and its derivative as window 
function and derivative kernel respectively. In our application we first use derivative 
operators to compute the local orientation map of an image 

Z=(dxf+idyf)2 . (6) 

Further smoothing of Z (convolution with a 2-d window function such as the 
Gaussian kernel) of the local orientation map directly gives the local Complex 
moments I20 and I11. Complex moments of order m+n are defined as: 
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I20 can be computed as the local weighted sum of Z, while I11 is computed as the 
weighted sum of the absolute values of Z. The relationship between the magnitude of 
I20 and I11 represents how well the local power spectrum of the image f fits to a line, 
and is widely used for edge and corner detection. Working on the local orientation 
map in this manner corresponds to using the 0’th order symmetry derivative operator, 
or linear symmetry. If we instead choose further application of the Symmetry 
derivative operators before smoothing, then that corresponds to a coordinate 
transform followed by fitting to a line in the power spectrum. The coordinate 
transform and the following line fitting also corresponds to fitting certain symmetric 
shapes to the image in the Cartesian (x,y) coordinate system. We are using the first 
and second order conjugate symmetry derivatives which corresponds to parabolic and 
spiral (Circular Symmetry, CS) structures in Cartesian coordinates as shown in Fig 1. 
The choice is motivated by spot geometry. The Local orientation map of spot centers 
show strong similarity to the Local orientation map of ideal circular patterns, and the 
spot boundaries analogously have a parabolic structure. As Dx and Dy are 
implemented with separable 1-D Gaussian filters the computation is very fast. 
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Fig. 1. Phantom and 2-DE patterns in the Cartesian coordinate system and the corresponding 
argument of the moment I20 

We compute two types of moments for the circular and parabolic symmetry derivative 
responses. For each type we have I20 as the local sum of the complex response 
weighted by a complex filter, and I11 as the sum of the magnitudes of the complex 
responses weighted with the magnitudes of the complex filter. Parabolic symmetry 
requires 8 1-dimensional convolutions, circular symmetry another 4 (circular 
symmetry can be computed as applying symmetry derivative operators to parabolic 
symmetry). Computation of the moments I20 and I11 requires another 4 convolutions 
for each type, for a total of 20 1-D convolution operations. 

2.2   Classification of Pixels and Final Segmentation of the Gel 

We use a Feed forward Artificial Neural Network (ANN)  for initial classification of 
the pixels based upon our feature set. A two layer ANN with a non-linear transfer 
function is chosen as such a network can find an arbitrarily close approximation of 
any function or decision boundary [14]. We choose the hyperbolic tangent function as 
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transfer function in the hidden layer and a logistic sigmoid function as transfer 
function in the output layer. We use two output nodes representing the posterior 
probabilities of a pixel belonging to the background or a spot core, and let the 
experiments described in 3.2.1 determine the number of nodes in the hidden layer. 
Training is done by Resilient Backpropagation [16]. As the neural network ignores 
spatial continuity in the data the initial result can be expected to be undersegmented. 
We first split the segmented regions along the local minima of real(I20) for CS. The 
split segments are then kept if their size is above a certain threshold.  

3   Data Set and Experimental Design 

3.1   Data Set 

Training and validation data were obtained from 8-bit tif images of eight silver 
stained gels (four human and four E-coli) with varying signal to noise ratio and 
background intensity. We keep two E-coli gel images as test data. In addition we used 
an artificially generated gel [16] with known spot positions (available for download at 
http://www.isbe.man.ac.uk/~mdr/content.php?f=electrophoresis). The continuous 
regions of the smoothed real gel images whose second derivative is above zero were 
split along the watershed lines of the Laplacian strength image. The resulting regions 
were manually inspected and if necessary merged with their neighbours. Finally the 
resulting regions were eroded by two pixels to eliminate the smallest spots and to 
separate spot cores from boundaries. 

The following features were computed from the 8 bit grey value images: 
 
x1= real(I20) for CS   x2= imag(I20) for CS  x3=I11-|I20| for CS x4=|I20|/I11 for CS 
x5= real(I20) for PS   x6= imag(I20) for PS x7= |I20|/I11 for PS x8= LoG 
 
Pixels for training of the neural network were selected as follows: For the spot core 

class all pixels belonging to the identified spot regions in the training set were chosen. 
For the background class we chose all the pixels within a cityblock distance of two 
pixels from the spot core, and a number of pixels equal to that of the spot core class 
were randomly chosen from the remaining pixels. 

3.2   Experiments 

3.2.1   Selection of Features and Parameters for ANN 
Parameter selection is carried out using the Backward Elimination technique. The 
method consists of two steps. First we set the number of nodes by changing the 
number of nodes in the hidden layer between 1 to 15 and performing five-fold cross-
validation for each configuration. In the second step we use the number of nodes that 
gave the lowest number of misclassified pixels in a leave one feature out experiments. 
The feature with the smallest effect on the total error was then removed, and the two 
steps repeated with the reduced feature set. The result is presented as error bars for the 
best number of nodes for each number of features. 
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Table 1. Test parameters 

Algorithm Parameter Values 

Symmetry derivative Minimum Core size 0 to 19 
ImageMaster™ 2D 

Platinum v5.01 Saliency 1, 2, 5, 10, 20 

Bettens Watershed2 Minimum watershed size 
10 to 160 in increments of 

10 
1Imagemaster also has the parameters Smooth and Min Area which were held constant at 2 and 5 
respectively as experiments showed that they have little effect on the performance on our data set. 

2Bettens algorithm has one more parameter, Maximum Grey value in Watershed, that we after 
experiments decided to hold constant at 238 for the real images and 250 for the artificial images.  

3.2.2   Evaluation of Segmentation Performance 
In the final segmentation experiments we feed the neural network with a reduced 
feature set for an initial classification. Post processing is done by splitting the regions 
at local minima of the feature x1,, followed by discarding regions of a size smaller 
than a certain threshold.Using a segment of a real silver stained image containing 215 
manually identified spots and an artificial silver stained image with 924 spots we 
compute precision and recall with respect to spots found. A spot is considered valid if 
the centre of the segmented region is within the identified core of a real gel, or within 
20% of the standard deviation plus three pixels distance of the centre of the artificial 
spots. As the watershed segmentation only gives target regions for later gaussian 
fitting we provide an alternative segmentation performance measure as well. For these 
we consider all segmented regions that overlap precisely one spot center to be valid, 
giving a measure of the potential improvement from post processing. Precision and 
recall is computed for our algorithm as well as the Watershed of Bettens and 
Imagemaster 2D Platinum. The result is presented as ROC curves with respect to 
different parameters of the algorithms (Table 1).  

3.2.3   Comparison of Execution Time 
As Image Master is a closed source package we choose measure execution time in 
order to estimate the comparative computational complexity. Cropped versions of a 
real image with sides 128, 181, 256, 362, 512, 724, and 1024 pixels were used for the 
experiment. The Symmetry derivative and Watershed based approaches were 
implemented in Matlab 7.0. For the testing of Image Master we used a downloadable 
trial version (available at http://www1.amershambiosciences.com/). Execution times 
for the Matlab implementations were measured using Matlab’s internal timer 
functions, while the execution times for Image Master were measured manually with 
a stopwatch. All experiments were performed under Windows XP Professional on a 
AMD Athlon XP2400+ with 1Gb RAM. The results are presented as a log-log plot of 
execution time vs the number of pixels. 

4   Results and Interpretation 

4.1   Feature Selection and ANN Parameter Selection 

Figure 2 shows the crossvalidation error and standard deviation after removing 
features. Four features can be removed without hurting performance. The redundant  
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Fig. 2. Crossvalidation error and standard deviation of the average error after successive 
removal of features. The features were removed in the order listed from left to right. 

features represent direction of parabolic symmetry, lack of CS, and swirly spiral 
patterns. With the exception of the lack of CS this is unsurprising. However one of the 
remaining features represents relative strength of CS, a property that is related to lack 
of circular symmetry accordingly. We choose to keep features 1, 3, 7, and 8. 

4.2   Segmentation Performance 

Fig. 3 shows ROC curves for the experiments. The Symmetry based approach  
consistently yields a higher recall compared to the most sensitive setting of Image 
Master, but also finds a higher number of false positives. A large subset of the false 
positives found by our algorithm are caused by splitting of actual spots. Such false 
positives are less of a problem than false negatives when the output of a spot detection 
algorithm is used to find targets for MS analysis, as the goal often is to find low 
abundance novel proteins. Image Master achieves the highest precision, but never 
manages to achieve an equal error rate even on the artificial gel. The comparison with 
the Watershed algorithm shows that we achieve comparable initial segmentation 
performance except for in the case of the artificial gel. The artificial gel used in the 
test has an unrealistically low noise level and thus lack the non-spot catchment basins 
that otherwise cause the Watershed algorithm to oversegment an image. The 
difference between the segmentation and detection curves shows the potential 
improvement of the algorithms by further post processing. One low cost improvement 
could be to compute the spot center using a method that takes pixel values into 
account rather than computing the center of gravity of the regions only, as done in this 
paper. Our segmentation approach returns smaller regions, corresponding to spot 
cores, compared to Watershed and Imagemaster, which would result in 
computationally cheaper post processing. The results closest to an equal error rate for 
each algorithm are show in Table 2. The results for Image Master are from detection 
at the most sensitive settings. 

4.3   Computational Complexity and Execution Time 

Fig 4 shows a log-log plot of execution time vs the number of pixels in the image. A 
realistic image of size 1024*1024 pixels is segmented in 10s by Image Master, 31s by 
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Fig. 3. ROC curves for spot segmentation and detection on real and artificial gels 

Table 2. Best performance 

Symmetry Derivatives Watershed Imagemaster

Detection Precision Recall Precision Recall Precision Recall

Real gels 73% 74% 39% 39% 87% 70%

Virtual gel 85% 85% 51% 43% 96% 80%

Segmentation Precision Recall Precision Recall Precision Recall

Real gels 79% 81% 79% 79% 88% 73%

Virtual gel 84% 85% 93% 88% 97% 82%  

the Symmetry Derivative based method, and 560s by the Watershed based method. 
The execution time for the Symmetry derivative approach and Image Master is linear, 
while our implementation of the Watershed segmentation has much worse 
performance. The poor performance of the Watershed based segmentation stems from 
the post processing that is dependent on the number of watersheds as well as their 
size. Our implementation also uses loops which are very inefficiently implemented in 
Matlab, further adding to the execution time. Execution times for the Symmetry based 
approach were on average 3.2 times longer than for Image Master. This difference is 
remarkably small as Image Master is a compiled, optimised software, while the  
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Fig. 4. Execution time vs number of pixels in the image. Image Master had execution times 
lower than 1 second for images with fewer than 131044 pixels. 

Symmetry Derivative based segmentation was implemented in an interpreting 
language using an inefficient double precision representation of all data. 

4   Conclusions 

In this paper we have presented a novel 2-DE image segmentation algorithm based 
upon Symmetry Derivatives and compared it with the widely used Watershed 
segmentation technique and a commercial software package. We achieve a better 
equal error rate and a better performance on the recall measure compared to 
Imagemaster, and comparable or results to a Watershed segmentation approach that 
relies on significant post processing. The comparison shows that we achieve 
equivalent or better spot detection compared to the other approaches, using only the 
basic signal processing operation of one-dimensional convolution and a size criterion. 
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