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Abstract

In this paper we present a new multi-dimensional seg-
mentation algorithm for 2-D images. We propose an
orientation-adaptive boundary estimation process, em-
bedded in a multiresolution pyramidal structure, that
allows the use of different clustering procedures with-
out spatial connectivity constraints. The presence of
noise in the feature space causes a class-overlap which
can be reduced in a multiresolution pyramid. After
classification, the spatial connectivity is restored by a
deterministic relaxation labeling and the final segmen-
tation is obtained by the orientation-adaptive bound-
ary refinement process.

1 Introduction

In many cases, especially when dealing with tex-
tures, the segmentation of images is performed us-
ing a set of local features. Progress in texture anal-
vsis has led to models which allow to describe in-
creasingly complex structures, thereby leading to
high dimensional feature spaces. Therefore, we
need to develop segmentation algorithms capable
of handling such complicated data structures.

In this paper we address unsupervised image seg-
mentation, where “unsupervised” means that no
training of the classifier takes place. In that case,
both the prototypes (most representative feature-
vector of a class) and the segmentation have to
be determined. These two processes are high-
ly inter-dependent because well defined prototypes
are needed to find accurate boundaries, and accu-
rate boundaries are needed to compute the proto-
types (principle of uncertainty [1]). Here, we pro-
pose an orientation-adaptive boundary estimation
process, embedded in a multiresolution structure,
that allows the use of different clustering procedu-

5o fr mia
‘.//'( i «,r;/ -2 6/ T 4 Tyl iz
=
“rq(lﬂ o

{P. Schroeter and J. Bigun},

{1993},
{663--666},

Résumé

Dans cet article, on presente un nouvel algorithme de
segmentation multi-dimensionelle pour images 2-D. On
propose un processus d’estimation de frontiére basé sur
I’orientation locale de celles-ci. Ce processus, imbriqué
dans une structure pyramidal a plusieurs niveaux de
résolution, permet l'utilisation d’algorithmes de classi-
fications sans contraintes de connectivité spatiale. La
présence de brujt dans ’espace des attributs provoque
un recouvrement de classes et peut étre réduit par
I'utilisation de pyramides. Apres classification, la
connectivité spatiale est restaurée par une relaxation
déterministe et la segmentation finale est obtenue par
le processus de rafinage.

res without spatial connectivity constraints. The
class separation at the coarsest resolution level is
significantly increased so as to make possible the
detection of the different classes and of their asso-
ciated prototypes. We also reduce the problem of
an exact estimation of the class number by over-
estimating it and reassigning small and scattered
classes to their neighborhing classes by means of
a spatial restoration process. This process also re-
moves isolated labels produced by unconstrained
clustering. The oriention-adaptive boundary re-
finement process further eliminates spatially mis-
classified pixels. More Details can be found in [2].

2 Segmentation algorithm

The algorithm is embedded in a multiresolution fra-
mework using quadtrees [3, 4]. Multiple resolutions
are very useful in reducing the uncertainty because
at lower resolutions the class-prototypes are better
defined while higher resolutions are needed to ob-
tain accurate borders. The algorithm is explained
in the next four sections.
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2.1 Pyramid building

The noise reduction can be done by means of quad-
trees [4]. Lower resolution levels are obtained by
projecting the average of non-overlapping squares
of size 2x2 to the next coarsest level. Let I,(¢,7,1)
be the value of the p-th feature at location (1, j) and
level I of the pyramid. The value of a father node
is simply the mean of its four children value
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The different levels are computed using (1) in a
bottom-up manner starting from level [ =1 up to a
predefined level (I = l,,q;). The choice of the num-
ber of levels is important. If ., is too small the
uncertainty is not enough reduced, whereas if [ is
too high, small regions will disappear. Pyramids
also reduce the computational cost by progressively
reducing the number of feature vectors on which a
clustering algorithm will be applied.

2.2 Clustering

At the coarsest level of the pyramid, a clustering al-
gorithm is used to find the different classes and their
prototypes. We assume that objects with similar
properties belong to the same cluster. The prob-
lem is to find a partition of the feature space into
¢ homogeneous subsets. Different clustering crite-
ria will lead to different results depending on the
shape of the clusters. However, our method does
not critically depend on the choice of a clustering
technique. Experiments (section 3) show that simi-
lar segmentation results are obtained with different
algorithms.

We mainly used the fuzzy c-means clustering al-
gorithm proposed by Bezdek [5] which gives good
clustering results while being simple. It minimizes
the family of objective functions given by
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where U = [u;] is a fuzzy c-partition of the feature
space X = {X1,...,Xn}, ui € [0,1] is the degree of
belongingness of vector k to class i, v = {vi,...,v¢}
is the set of cluster centers, (di)? = ||xx — vil|* and
| - || is any inner product induced norm on IR?. m
1s the weighting exponent controlling the amount of
fuzziness, m € [1,00[, n is the number of feature-
vectors and ¢ is the number of classes. For compari-
son we will use the general agglomerative algorithm
proposed by Lance and Williams (see [6] for a de-

scription) with three clustering creteria: 1) sum of
squares, 2) centroid and 3) complete link.

2.3 Restoration of the spatial con-
nectivity

At the coarsest resolution level [,,,., we can define a
label image I, (7, , lmaz), result of the classification.
Some pixels are spatially misclassified because no
spatial connectivity constraints were present in the
clustering algorithm (see section 3). Let Ns(i,7) be
the neighborhood of a pixel at location (z,7) (see
figure 1). A pixel (7,5) is considered as spatially
misclassified if L,(z, 7, lmaz) 1s different from all the
labels in Ng(z,7). In that case, it is reassigned to
the most represented class in Ng(3,j).
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Figure 1: a) Ns(i,j) and b) extended neighborhood
Ne(i,7)

The next step is to reassign small and scattered
classes to their spatial neighborhood. A class in the
feature space is distributed in one or more subre-
gions in I,(%,J, lmez) and is considered as “signifi-
cant” only if its largest subregion contains a suffi-
cient number of connected pixels (9 in our experi-
ments).

Figure 2: Example of 3 classes that have to be reas-
signed (hatched regions).

Consider, for instance, the hatched regions in Figure
2. These classes can be reassigned using a simple
deterministic multi-pass relaxation. First, we reas-
sign the isolated classes like C,, represented by the
ne pixels of region (a). A set of candidate classes,
among the neighboring classes of C,, is determined
for each pixel (z,5) € C,. A new candidate class is
obtained for each label I, € N.(i,j) (see figure 1)
different from I,(z, j, luaz). Each pixel (z,7) € C, is
then reassigned to its closest candidate class.



Finally, the non-isolated classes are reassigned.
However, the reassignment order leads to differen-
t results and multi-passes are needed to avoid this
problem. This process can be illustrated by con-
sidering, for instance, the classes (b) and (c) in fig-
ure 2. In the first pass, both classes are temporar-
ily reassigned as if they were isolated classes. The
same initial state of I,(7,J,lmer) is used for both
classes. The maximum number of pixels n; mqq re-
assigned to the same candidate class is determined
for ¢ =(b),(c). Then a ratio r; between n; mq, and
the respective population n; of the classes is com-
puted, i.e. r; = Nimaz/ni, ¢ =(b),(c). A value of
r; = 1 means that the class ¢ tends to be reassigned
to a single candidate class. The reassignment of the
region with the largest ratio r; is validated. Then,
we check again for “insignificant classes” and repeat
the preceeding operations until all such classes are
reassigned.

2.4 Orientation-adaptive boundary
refinement

The last step of the algorithm is a boundary refine-
ment procedure that gradually improves the spatial
resolution of the label image I,(z, j, lmaz)-

First, at the coarsest level 4., the boundary pix-
els are determined. Each pixel (7,7) is considered
as a boundary pixel if at least one label in Ng(z,7)
is different from I,(7,J, lmaz). The children of the
boundary nodes define a boundary region at the
next higher resolution. The non-boundary nodes
at the children level are given the same labels and
properties as their parents.
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Figure 3: Dlustration of the oriented butterfly filters.

As stated by the spatial principle of uncertain-
ty [1], accurate prototypes can be obtained only at
the expense of the spatial resolution. Therefore, at
coarser resolutions, the uncertainty on both sides of
the boundaries is high. We propose to reduce it by
means of orientation-adaptive filters. The principle
is illustrated in figure 3. The dominant local ori-
entations of the boundaries can be simply obtained
by the linear symmetry algorithm [7] which defines

the orientation in the least squares sense. For each
dominant local orientation, a butterfly-like filter is
defined. Butterfly-like shape reduces the influence
of feature-vectors along the boundary. The coeffi-
cients of the filters are function of a dissimilarity
measure d = |u1' — pa|/y/o? + 02, where p and o2
are the mean and the variance of the two classes on
both sides of the boundary. A stronger smoothing is
performed for small values of d. For each boundary
pixel, the filter corresponding to the local orienta-
tion is applied. The two halves of the filter (applied
separately) produce two responses. The distances
between these two vectors and the two prototype-
s, 'associated to the classes defining the boundary,
are computed. Then, each boundary vector is reas-
signed to the closest class. All these operations are
applied in a top-down manner, level by level, until
the bottom of the pyramid is reached.

3 Experimental results

In our experiments, we used two different “patch”
images of size 256x256. The first image, pl. is com-
posed of 7 natural textures taken from aerial images
where each texture was normalized with respect to
the mean and variance. The second image, p2, is
composed of textures that can be found in Brodatz
album.

Figure 4: a) Results of the fuzzy c-means clustering
algorithm applied at the coarsest resolution level I = 5.
b) Results of the spatial restoration

The complex moments of the Gabor power spec-
trum were computed on these two images [8] re-
sulgin in 6 features. The noise in this space is
mainly due to modeling errors and is progressive-
ly reduced in the pyramid. Experiments showed
that a number of levels of 5 is the optimum com-
promise between the noise reduction and the size of
the smallest detectable region. We used the fuzzy
c-means algorithm with ¢ = 10 and m = 1.6. The
result of the clustering operation applied on *p2" is
shown in Figure 4 a) where each class is represented
by a different gray level. For convenience. a pixcl



at the coarsest level is represented by a square of
size 16x16. The result of the spatial restoration 1s
shown in Figure 4 b). Isolated pixels are removed
and insignificant classes are reassigned, reducing the
number of classes from 10 to 7. The boundary re-
finement procedure is then performed and the final
segmentation can be seen in Figure 5. All classes
are found and the borders correspond well to those
that can be seen by a human observer.

Figure 5: Segmentation results of “p1” and “p2” super-
imposed on the original image, and the corresponding
class assignments.

Similar segmentation results can be obtained with
alarge variety of clustering algorithms as long as the
clustering criterion does not excessively missmatch
the shape of the clusters in the feature space. The
boundaries are very similar when using the fuzzy
c-means or the general agglomerative algorithm of
Lance and Williams. However, the detected number
of classes changes. With the fuzzy c-means and cen-
troid algorithms all 7 classes are found, while one
class (resp. two) is missed by the sum of squares
criterion (resp. complete link). We also tested our
algorithim on 1-D features, being the gray levels of
the original images. Very good segmentation results
were obtained in that case too.

4 Conclusions

Detecting image boundaries often requires multi-
dimensional segmentation algorithms. In this pa-
per we have presented a new algorithm that gives
good segmentation results on various images such
as texured or grey level images. It accepts differ-
ent kinds of features and is robust with respect to

noise. A spatial restoration process combined with
an orientation-adaptive boundary refinement allow
the use of different clustering algorithm without s-
patial connectivity constraints.
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