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Abstract--In this paper we present a new multi-dimensional segmentation algorithm. We propose an 
orientation-adaptive boundary estimation process, embedded in a multiresolution pyramidal structure, that 
allows the use of different clustering procedures without spatial connectivity constraints. The presence of 
noise in the feature space, mainly produced by modeling errors, causes a class-overlap which can be reduced 
in a multiresolution pyramid. At the coarsest resolution level, the separation between the different classes 
is increased and the within-class variance reduced. Thus, at this level, the classes can be obtained with 
different multi-dimensional clustering algorithms without connectivity constraints. Small and scattered 
classes as well as isolated class labels are reassigned to their neighborhood by a process which guarantees 
the spatial connectivity. The resolution is then increased by projecting down the class labels. At each level, 
the borders are improved by reassigning the boundary pixels to their spatially closest class. However, the 
class-uncertainty astride the borders has first to be reduced, and we propose to do this by means of 
orientation-adaptive butterfly-shaped filters. This refinement process further eliminates spatially misclassified 
pixels produced by the unconstrained clustering. Experimental results show that similarly accurate boundaries 
are obtained with different clustering algorithms for various test images. 
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Multi-dimensional clustering 
Boundary refinement 

Texture segmentation 
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INTRODUCTION 

Image segmentation is an important  tool in image 
analysis, but its general applicability is still a problem, 
particularly in the case of multi-dimensional features. 
Progress in texture analysis has led to models which 
allow us to describe increasingly complex structures, 
thereby leading to high dimensional feature spaces. In 
this paper we address unsupervised image segmentation, 
where "unsupervised" means that no training of the 
classifier takes place. Below, we will simply assume 
that the features are given. Detailed examples of ap- 
plicable feature extraction methods related to co- 
occurrence matrices and texture energy masks can be 
found 1~-3) while examples of methods related to Gabor  
decomposit ion are given. (4-6) Examples for the use of 
multi-spectral imagery features in classification are 
discussed.(7,s) 

Rosenfeld et al.'s relaxation labeling, 19) is an iterative 
method for grouping together image points into a 
collection of classes. The classification is achieved by 
updating class membership probabilities with a com- 
patibility function which must be defined heuristically. 

* This work has been supported by Thomson-CSF, Rennes, 
France. 
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However, to choose a good stopping criterion as well 
as a suitable compatibility function, (1°,11) is not ob- 
vious in the segmentation problem we deal with. 

Clustering techniques without spatial connectivity 
constraints, e.g., (12-14) which have found successful 
applications in many scentific domains, cannot directly 
be used in image segmentation. The reason for this is 
that a feature space parti t ioning does not necessarily 
yield connected labels in the spatial domain. Thus, 
when applied to image segmentation, a connectivity 
constraint becomes necessary. (~ s, ~ 6) 

Nagy and Tolaba, (s) treated strips of scan lines as 
candidates of homogeneous regions. The scan lines are 
decomposed into sub-lines, (17) whereas the continuity 
of the sublines is preserved across the scan lines. 
Haralick and Dinstein, (t s) introduced a so called gra- 
dient image which reflects the in-homogeneity of the 
multi-dimensional features. The segmentation is ob- 
tained by a thresholding followed by cleaning up in 
this result. A disadvantage of these boundary based 
methods is the too many small regions in the seg- 
mentation result. In a bot tom-up procedure, Gupta  
and Wintz, (19) proposed to form spatial blobs by merg- 
ing together subregions with features passing variance 
and means criteria (F- and t-tests). The segmentation 
is obtained when the updating of the blobs has con- 
verged. However,  the growing directions of the blobs 
are scanning direction biased. 

695 



696 P. SCHROETER and J. BIGUN 

Another technique is to combine pyramidal image 
smoothing with clustering. Horowitz and Pavlidis' split- 
and-merge technique, ~2°) builds a quadtree feature 
pyramid. Starting from a certain resolution level, it 
ascends (merges) or descends (splits) at possible regions 
depending on whether the features of the children fulfil 
a homogeneity criterion or not. The segmentation is 
obtained when all encountered children and parents 
fulfil a homogeneity criterion. An inconvenience is 
that the class boundaries may have a blocky appear- 
ance. Another quadtree approach is proposed by 
Spann and WilsonJ 21) The segmentation is done by 
unconstrained clustering at a given resolution level. 
The classes are projected down while progressively 
refining the boundaries. The clustering is performed by 
successive transformations of the feature space which 
replace every point with its corresponding local feature 
space centroid. Due to the convergence instabilities at 
this stage, it may happen that no classes at all are 
detected. However, correct classes may be detected at 
another starting resolution or by using fewer dimen- 
sions in the same data. 

In the past few years, there has been increasing inter- 
est in the use of statistical techniques for texture model- 
ing and segmentation322 24) In such approaches, the 
textures and the regions are modeled by Markov Ran- 
dom Fields (MRF) and the segmentation is obtained by 
using a maximum a posteriori (MAP) criterion. In un- 
supervised segmentation, a parameter estimation scheme 
needs first to be applied to estimate the model par- 
ameters. The MAP parameters can then be found by 
means of simulated annealing. Good segmentation 
results were obtained on synthesized textures and on 
some natural textures that fit the models. However, the 
main restriction in such stochastic algorithms is the 
heavy (sometimes prohibitive) computational cost. 

In this paper we present a multi-dimensional image 
segmentation paradigm based on the framework (quad- 
tree, clustering and boundary estimation) suggested by 
Spann and Wilson3 TM We propose an orientation- 
adaptive boundary estimation process, embedded in a 
multiresolution structure, that allows the use of differ- 
ent clustering procedures without spatial connectivity 
constraints. The class separation at the coarsest resolu- 
tion level is significantly increased so as to make pos- 
sible the detection of the different classes and of their 
associated prototypes. A prototype is defined as the 
most representative feature-vector of a class. The 
classes and the prototypes are obtained by using a 
clustering technique which in general is allowed to be 
any clustering algorithm without spatial connectivity 
constraints. If the image size is too large even at the 
lowest resolution, the different classes can be found 
using a reduced data set obtained by random samp- 
ling. Small and scattered classes as well as isolated 
class labels are reassigned to their neighborhood by a 
process which guarantees the spatial connectivity. The 
resolution is gradually restored by projecting down the 
class labels. We use orientation-adaptive butterfly- 
shaped filters to reduce the class-uncertainty astride 

the borders. Then, at each level, the borders are im- 
proved by reassigning the boundary pixels to their 
spatially closest class. This refinement process further 
eliminates misclassified pixels produced by uncon- 
strained clustering. 

In the next section, the feature extraction process is 
briefly explained. Section 4 states the problem of spa- 
tial uncertainty in image segmentation and Section 5 
gives a description of the segmentation algorithm. In 
the subsequent sections, the pyramid building (Section 
6), the clustering (Section 7), the spatial continuity 
restoration (Section 8) and the oriented-adaptive bound- 
ary refinement processes (Section 9) are explained in 
details. Experimental results are finally presented in 
Section 10. 

FEATURE EXTRACTION 

In order to judge the quality of the clustering and 
boundary refinement processes, we will use the same 
feature set throughout this paper. We have selected 
complex moments of the Gabor power spectrum as 
features because of their ability to discriminate tex- 
tures in real images. This method is briefly summarized 
below and more details as well as a review of different 
feature extraction techniques are given elsewhere. (26'27~ 

The complex moments 

[mn = ~ ~" ( x  + j y ) m ( x - j y ) " P ( x , y ) d x d y  

oc 2 rr 

= 5 J" r"+"eJ(" ")~'P(r, cp)rdrd(# (1) 
0 0 

effectively represent the symmetry properties of the 2D 
function P, where P(x, y) is the local power spectrum. 
Thus x and y as well as r and cp are frequency co- 
ordinates. We can discretize (1) by approximating the 
continuous spectrum P by means of a limited set of 
Gabor filters. The order of the complex moments is 
determined by m ÷ n whereas the measured symmetry 
order is given by m - n. For a linear symmetry m - n = 2 
and this corresponds to structures with one dominant 
orientation. Rectangular structures have a 4-folded 
symmetry, triangular and hexagonal structures a 6- 
folded symmetry, and so on. We use up to the 6th order 
complex moments applied to octave frequency bands, 
resulting in 15 real-valued features which represent the 
real and imaginary parts of I,.,. Note that complex 
moments of order zero are real. The feature set also 
comprises the DC-band. 

Although complex moments can code the power 
spectrum efficiently, the dimensionality of the feature 
space can be further reduced by decorrelating the 
features. The technique used [see (2s)] decomposes the 
multidimensional data set into its principal compo- 
nents by taking into account the spatial arrangement 
of the features. The transformed features are ordered 
according to their variances and only those with a 
variance less than a given threshold value are selected. 
This procedure results in six features, typically. 
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T H E  P R O B L E M  O F  U N C E R T A I N T Y  I N  
0.01 

I M A G E  S E G M E N T A T I O N  

The problem of uncertainty in image segmentation 0.008 
is analog to the principle of uncertainty in physics and 0.006 
signal processing which states that "a signal cannot 
be highly concentrated simultaneously in space and 0.004 
frequency". In unsupervised image segmentation, both 

0.002 
the prototypes and the class boundaries have to be 
determined. These two processes are highly inter- 0 
dependent because: 0 

• well defined prototypes are needed to find ac- 
curate boundaries, and 0.05 

• accurate boundaries are needed to compute the 
prototypes. 0.04 

Therefore the properties and the boundaries cannot be 0.03 
simultaneously well defined. ~29/If these two processes 
were independent, it would make no difference what is 0.02 
computed first, the prototype or the class boundaries. 0.01, 
In that case, edge-based and region-based segmenta- 
tion methods would give the same results. The pro- 0 

0 sence of noise in the feature space, mainly produced by 
modeling errors (inappropriate features), is another 
source of uncertainty which produces a class-overlap. 

;?)  

Ng~hest resolution 

r i 

100 200 

gray level value 

lowest resolution 
i 

100 200 

gray level value 

300 

300 

D E S C R I P T I O N  O F  T H E  S E G M E N T A T I O N  A L G O R I T H M  

The algorithm is embedded in a multiresolution 
framework using quadtrees/21'3°) Multiple resolu- 
tions are very useful in reducing the uncertainty be- 
cause at lower resolutions the class-prototypes are 
better defined while higher resolutions are needed to 
obtain accurate borders. A pyramid is built up to a 
predefined level in which each coarser level is ob- 
tainned by smoothing the preceding finer level. At the 
coarsest level the amount of noise in the feature space 
has decreased significantly allowing the prototypes to 
be determined, at the expense of the spatial resolution. 
This is illustrated in Fig. 1 [see~21/]. At the finest level 
the histogram is unimodal even if it is easy to see that 
two distinct classes are present. At a lower resolution 
the noise has been smoothed out significantly making 
possible the detection of the two classes (the histogram 
is bimodal). 

The next step is to find a partition of the feature 
space into c classes. This operation can be seen as 
finding c subsets of feature vectors gathered around 
their respective prototypes (or class centers). This 
partitioning is obtained by applying a clustering al- 
gorithm in the smoothed feature space (obtained at 
the coarsest level). As the noise has been reduced, algor- 
ithms without spatial connectivity constraints can be 
used. For most of these algorithms, the number of 
classes c has to be known a priori. Our experiments 
indicate that the choice of a clustering algorithm is not 
very critical and that similar segmentation results are 
obtained with different algorithms. Small and scat- 
tered classes as well as isolated labels are reassigned 

Fig. 1. Reduction of uncertainty using pyramids. We added 
Gaussian noise to the original image with standard deviation 

~= 50. 

to a class nearby using an 8-connected neighborhood 
assumption that guarantees the spatial connectivity. 

The last step is a boundary estimation procedure 
that gradually improves the class-boundaries. First, at 
the level where the clustering is performed, the bound- 
aries are identified. The children of the boundary 
nodes define a boundary region at the next higher 
resolution. The non-boundary nodes at the children 
level are given the same labels and properties as their 
parents. The class-uncertainty within the boundary 
region is high and has to be reduced before reassign- 
ment of the boundary vectors. We propose to do this 
by means of orientation-adaptive filters. For each do- 
minant local orientation, a butterfiy-like filter (see Sec- 
tion 9) is defined. Butterfly-like shape reduces the influ- 
ence of feature-vectors along the boundary. Then, for 
each boundary pixel, the filter corresponding to the 
local orientation is applied (see Fig. 2). The two halves 
of the filter (applied separately) produce two responses. 
The distances between these two vectors and the two 
prototypes, associated to the classes defining the bound- 
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B u t t e r f l y ' ~  Orientation 

filter ~ , ~ , ,  

" ' - .  Boundary 
region 

Fig. 2. Illustration of the oriented butterfly filters. 

ary, are computed. Then, each boundary vector is 
reassigned to the closest class. 

The algorithm can be summarized as follows: 

(1) build up a multiresolution pyramid. The noise in 
the feature space is reduced, increasing the separation 
between the classes at the expense of the spatial resolu- 
tion. 

(2) Cluster the data in the smoothed feature space 
by using algorithms without spatial connectivity con- 
straints. Reassign isolated pixels as well as small and 
scattered classes using an 8-connected neighborhood 
assumption. 

(3) Gradually improve the spatial resolution by 
projecting down the labels and refine the boundaries 
using orientation-adaptive filters. 

PYRAMID B U I L D I N G  

The noise reduction can be done by means of quad- 
trees/3°) Lower resolution levels are obtained by pro- 
jecting the average of non-overlapping squares of size 
2 x 2 to the next coarser level. Let Ip(i,j, l) be the value 
of the p-th feature at location (i,j) and level l of the 
pyramid. The value of a father node is simply the mean 
of its four children value. 

Ip(i,j,l)~ ~m=o ,=oIp(2i + m, 2j + n,l--1) (2) 

The different levels are computed using (2) in a bottom- 
up manner starting from level 1 = 1 up to a predefined 
level ( l=  lm,0. The height and width of the image 
decrease with a factor of 2 ~- 1 at level 1. A pyramid is 
constructed for each feature separately. Therefore, the 
data structure can be seen as a set of pyramids or as a 
single one composed of vectors of size p. The choice 
of the number of levels is important. If/max is tOO small 
the uncertainty is not enough reduced, whereas if l is 
too high, small regions will disappear. Pyramids also 
reduce the computational cost by progressively redu- 
cing the number of feature vectors on which a cluster- 
ing algorithm will be applied. Consider for instance p 
feature images of size 256 x 256. If the number of levels 
is set to five then the number of pixels is reduced from 
65536 x p to 256 x p. lm~ x Should be chosen as a 
function of the noise rather than a function of the size. 
If the number of feature vectors even at the lowest 
resolution becomes prohibitive for a clustering algor- 
ithm, it still can be reduced by a random sampling of 
the image sites. 

A drawback, related to the simple structure of the 
quadtree, is its incapacity to keep track of small re- 
gions while building up the pyramid. A tradeoff be- 
tween the size of the smallest detectable region and 
the amount of noise reduction has to be found. An 
attempt to eliminate this problem using more complex 
hierarchical structures~such as a linked pyramid <3a) is 
proposed by Spann and Horne./32) In a linked pyr- 
amid, regions of all sizes can be segmented at the 
expense of a higher complexity of the structure. The 
method gives good segmentation results on gray level 
and color images. However, practical experience learned 
that it often has problems with multi-dimensional fea- 
ture spaces (other than color-feature spaces). 

CLUSTERING 

At the coarsest level of the pyramid, a clustering 
algorithm is used to find the different classes and their 
prototypes. We assume that objects with similar pro- 
perties belong to the same cluster, i.e. are gathered 
around the same prototype. The problem is to find a 
partition of the feature space into c homogeneous 
subsets. In order to solve this problem, a suitable 
clustering criterion and a similarity (or dissimilarity) 
measure have to be defined. It can be noticed in the 
literature that different criteria will lead to different 
results depending on the shape of the clusters. It is clear 
that no clustering criterion or measure of dissimilarity 
is universally applicable. For instance, the single link 
method which was introduced by Florek et al. (33) is 
more suitable for elongated clusters while WGSS 
(Whithin Group Sum of Squares) criterion gives good 
results for ball-shaped structuresJ 14) However, our 
method does not critically depend on the choice of a 
clustering technique. Experiments (Section 10) show 
that similar segmentation results are obtained with 
different algorithms. An overview of classical cluster- 
ing techniques can be found in. (14'34) 

The choice of the number of classes c, required by 
most of the clustering algorithms, is considered to be 
one of the most fundamental problems in cluster ana- 
lysisJ 12) Usually this information is not known and 
partitions of the feature space for different values of c 
are computed. The partition giving the best separation 
of the classes for a given clustering criterion is chosen. 
However, this approach can be very expensive in com- 
putation time and works mainly in cases where the 
data set forms compact and well-separated clusters. An 
overview of cluster validity and studies of this non- 
trivial problem can be found elsewhere. 135) Hierarchi- 
cal clustering techniques do not require the number of 
classes to be known, u4'36) New clusters are formed by 
reallocation of membership of only one object (or one 
cluster) at a time, based on some measure of similarity. 
The result can be seen as a hierarchy of nested clusters 
represented by a tree called dendogram. Sectioning the 
tree diagram produces a partition of the data set into 



Hierarchical image segmentation by multi-dimensional clustering and orientation-adaptive boundary refinement 699 

disjoint clusters. However, the formulation of the pro- 
blem has only changed from knowing the number  of 
classes to estimating an appropriate thresholding of 
the tree. In  the following, we will consider clustering 
algorithms in which the number  of classes c (or its 
equivalent for hierarchical clustering techniques) has 
to be given. We will reduce the problem of an exact 
estimation of the class number  by over-estimating c 
and reassigning small and scattered classes to their 
neighborhood (see Section 8). In our experiments, we 
observed that similar segmentations can be obtained 
with different initial values of c (see Section 10). Below 
we will shortly present the fuzzy c-means clustering 
algorithm proposed by Bezdek ~35~ which gives good 
clustering results while being simple. For  comparison 
we will use other multidimensional clustering algo- 
rithms as described in references (14, 34) (see Section 10). 

Fuzzy c-means clusterin9 algorithm 

Let X = {Xl, . . . ,x ,}  be a finite set of vectors and 
c an integer (2 _< c < n) representing the number  of 
classes. The c-partition of the feature-space is repre- 
sented by the c x n matrix U = [Uik ] where U~k is the 
membership of object k to the class i, k = 1 . . . . .  n and 
i =  1 . . . . .  c. In  the hard (or crisp) case, the degree of 
belongingness of object x k to a class is either 1 or 0, i.e. 

{ :  Xk~classi 
Uik = otherwise (3) 

In the fuzzy case, U~g gives the "strength" of the mem- 
bership of object k to class i(uik ~ [0, 1]). The degree of 
belongingness U~k can be intuitively seen as a distance 
from object k to the class i normalized by the sum of 
distances to the c class centers. This representation is 
in many cases closer to the physical reality in the sense 
that objects almost never fully belong to one class. The 
two following condit ions have to be respected 

c 

~, Ulk= l, Vk (4) 
i - 1  

O< i uu: <n, Vi (5) 
k = l  

In the crisp case, equation (4) simply means that object 
k belongs to one and only one class. The second condi- 
tion (5) means that no class is empty and no class is all 
of X. 

The fuzzy c-means algorithm belongs to the class of 
objective function methods. Such methods minimize a 
clustering criterion which is in that case, the total 
within-group sum of squared error (WGSS). The fuzzy 
c-means is the fuzzy extension of the hard c-mean 
[basic ISODATA(37~]. It minimizes the family of ob- 
jective functions given by 

n c 

J , . (U,v)=  ~ ~ (Uik)"(di,) 2 (6) 
k - l i - 1  

where U = [uik], uikE [0, 1] is a fuzzy c-partition of X, 

¥ = {Vl,  ¥2 . . . . .  r e}  i s  t h e  set o f  c l u s t e r  c e n t e r s ,  (dik) 2 = 

I l x k  - v~ll 2 and I1"11 is any inner product induced norm 
on Nv. m is the weighting exponent controlling the 
amount  of fuzziness, m e [ 1, oo [. Restated, our problem 
is to find the best pair (U,v) which minimizes jm. 
Bezdek ~3s) showed that Jm may be globally minimal 
for (U, v) only if 

di k 2 / (m-  1) - 1 

Ulk=Ij=~(~kjk) ] (7) 

n / n U m 
v i=  ~ (U~k)~Xk ~ ( i k ) ,  f o r l _ < i < c  (8) 

k = l  / k = l  

The fuzzy c-means algorithm which approximates a 
solution of the minimization problem can be stated as 
follows: 

Fuzzy c-means: 

(1) Fix c, choose any inner product norm metric for 
~P and fix m, 1 < m _< ~ then initialize U(°k 

(2) Calculate the c fuzzy cluster centers {vi} with 
equation (8) and U. 

(3) Update  U using equation (7) and {vl}. 
(4) If II U (z + 1)_ U(t) l] -< ~ then stop: otherwise goto 

2. 

As m-~ 1, the fuzzy c-means converges to a "gen- 
eralized" hard c-means solution (ISO-DATA). Bezdek 
demonstrated that this algorithm always reaches (in 
theory) a strict local min imum for different initializa- 
tions of U. 

R E S T O R A T I O N  O F  T H E  S P A T I A L  C O N T I N U I T Y  

At the end of the clustering process, each vector 
belonging to the same class receives the same label ?i 
(1 < i < c). Thus, at the coarsest resolution level 1 . . . .  
we can define a label image Ir(i,j,/max) in which each 
pixel receives the label of the corresponding vector in 
the feature space. At this level, rough boundaries can 
be observed between the different classes. It will also 
be noticed (see Section 10) that some pixels are spati- 
ally misclassified because no spatial connectivity con- 
straints were present in the clustering algorithm. Let 
Ns(i,j) be the neighborhood o fa  pixel at location (i,j) 
composed of the 8 closest neighbors, i.e. Ns(i,j)= 
{(i + u,j + v)}, - 1 < u, v < 1 and (u, v) +~ (0, 0). A pixel 
(i,j) is considered as spatially misclassified if L/(i,j, 
/max) is different from all the labels in Ns(i,j). In that 
case, it is reassigned to the most represented class in 
Ns(i,j). 

Small and scattered classes ("insignificant classes") 
are reassigned to their neighborhood. A class in the 
feature space is distributed in one or more subregions 
in I.~(i,j,/max) and is considered as "significant" only if 
its largest subregion contains a sufficient number  of 
connected pixels (nine in our experiments). Thus, a 
preference is given to classes that are spatially dis- 
tributed in larger and more compact subregions. It is 
clear that the meaning of "insignificant classes" is 
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.... i ..... . . . . .  . . . . .  

Fig. 3. Example of three classes that have to be reassigned 
(hatched regions). 

closely re!ated to the height of the pyramid, i.e. for a 
low value of 1 . . . .  the actual size of an insignificant c!ass 
is smaller than for higher values of 1,,~x. 

Consider, for instance, the hatched regions in Fig. 3. 
These classes fail our test of "significance" and have to 
be reassigned to either one of the surrounding classes 
or, in case of (b) and (c), between themselves. The 
reassignment procedure can be seen as a relaxation 
problem. In our case we will use a simple deterministic 
multi-passes approach. We define an isolated class as 
an "insignificant class" which does not  share common 
boundaries with other "insignificant classes". Such 
classes can be reassigned in one pass whereas multi- 
passes are needed if the insignificant classes are touch- 
ing each other. First, we reassign the isolated classes 
like Ca, represented by the na pixe!s of region (a) (Fig. 3). 
A set of candidate classes, among the neighboring 
classes of Ca is determined for each pixel (i , j)sC~. If 
a label I ~ ( i + u , j + v ,  lma~)~Ns(i,j) is different from 
i : , ( i , j , l~ )  then a new candidate class is obtained. 
Otherwise, the neighborhood is extended and I..(i,j, 
/max) is compared to the next label ly(i + 2u, j + 2v, lm~x) 
in the same direction. These operaIions are repeated 
for the eight possible directions, - 1 _< u, v < 1. For  
each pixel (i,j)~C~, the Euclidean distances between 
the feature-vector corresponding to (i, j) and the proto- 
types of the different candidate classes are computed. 
Each pixel is reassigned to the closest candidate class. 
It is important  to extend the neighborhood in which 
the candidate classes are determined. This can be seen 
by inspection of Fig. 3. The central pixel of (a) near 
the border of the image or the pixei of (b) and (c) at 
the center of the common boundary lack neighbors 
belonging to significant classes. For  these pixels, an 
extended neighborhood is necessary for obtaining re- 
levant candidate classes. 

Finally, the non-isolated classes are reassigned. 
However, the reassignment order leads to different 
results and multi-passes are needed to avoid this pro- 
blem. This process can be illustrated by considering, 
for instance, the classes (b) and (c). In the first pass, 
these two classes are temporarily reassigned as if they 
were isolated classes. The same initial state of I..(i,j, 
/max) iS used for both classes. The maximum number of 
pixels n~ . . . .  reassigned to the same candidate class is 
determined for i = (b), (c). Then a ratio r~ between n i . . . .  
and the respective populat ion n~ of the classes is c o r n -  

puted, i.e. ri = n~ . . . .  /ni, i =  (b), (c). A value of ri = 1 
means that the class i tends to be reassigned to a single 
candidate class. The reassignment of the region with 
the largest ratio r~ is then validated. Suppose that (b) 
is reassigned first. Before reassigning (c) in a second 
pass, we need to check if (c) is still considered as an 
"insignificant class". It might be the case that pixels of 
(b) were reassigned to (c) making it become a signif- 
icant class. If this is not the case, (c) is reassigned using 
the procedure described for isolated classes. The same 
procedure can be applied for more than 2 non-isolated 
classes. It only takes more passes until all "insignificant 
classes" are reassigned. 

We could have also used stochastic relaxation and 
Markov Random Fields {MRF) (22) to restore the spa- 
tial connectivity. The principle of such technique is 
similar to the technique proposed in the preceding 
paragraphs in the sense that, M R F  approaches consist 
in minimizing an energy function accounting for mu- 
tual adjacent sites !abeling. At the coarsest resolution 
level, the image size is smaller making the computa-  
tional cost acceptable. However,  the proposed deter- 
ministic approach converges rapidly toward a solu- 
tion while being simple and works and the results are 
satisfactory. Moreover,  M R F  approaches would be 
very heavy in computational  time for low values of 1,~ax 
and for high values of the number of ciasses (c > 4). 

BOUNDARY REFINEMENT 

The last step of the algorithm is a boundary refine- 
ment procedure that gradually improves the spatial 
resolution of the label image I~.(i,j, lmax). AS stated by 
the spatial principle of uncertainty, (29~ accurate proto- 
types can be obtained only at the expense of the spatial 
resolution. Therefore, at the coarsest level, the un- 

cer ta in ty  astride the boundaries is high. We propose 
to reduce it by means of orientation-adaptive filters. (3 s) 
Another method for edge enhancements that uses non- 
isotropic filters can be found in reference (39). 

The spatial resolution is gradually restored by pro- 
jecting down the class labels, smoothing around the 
boundaries and reassigning the boundary pixels to 
their closest neighboring class. We also assume that 
the prototypes have constant values across the differ- 
ent levels of the pyramid. 

First, at the coarsest level I . . . .  the boundary pixels 
are determined. Each pixel (i,j) is considered as a 
boundary pixel if at least one label is Ns(i , j )  is different 
from I:.(i,j,/max)" I~(i,j,/max - -  1) is obtained by project- 
ing down the label of each non-boundary father node 
to its 4 respective children nodes, i.e. I(i, j, l) = I(i/2, j/2, 
1 + 1), where / is the integer division. The children of the 
boundary nodes define a boundary region fi (see Fig. 4) 
in which the oriented smoothing will be performed. 
For  smoothing we need an estimate of local boundary 
orientations. For  its simplicity we use the linear 
symmetry algorithm (4) which defines the dominant  
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father nodes 
Boundary 

1 ~ / B o u n d a r y  region 

Fig. 4. Boundary region defined by the children nodes corre- 
sponding to the boundary father nodes. 
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Fig. 5. Butterfly-like filter of size 3 x 3 and 5 x 5 defined for 
a local orientation of ® = 0. 

o r ien ta t ion  in the least squares  sense. The  or ien ta t ion  
is de termined  by the complex n u m b e r  

Z l = (VI.~)2*m (9) 

where I v is the image of labels, VI~ the complex image 
(~?ISOx) + i (OI /@)  and *m the convolu t ion  with an  
averaging filter. The a rgument  of zt ob ta ined  at every 
pixel locat ion represents 

arg(zl) = 2 arg(kmin) (10) 

where kmi . is the complex n u m b e r  whose a rgument  is 
the dominan t  orientation.  In our  case, the magni tude  of 
the gradient  of I v is 1 at  the t rans i t ion  between two 
classes, or 0 within a class. The smooth ing  funct ion m 
is a Gauss ian  of size s x s given by 

( m = e x p  2~ 2 / (11) 

where - s / 2  <_ u, v <_ s/2. ~ is de termined  assuming 
tha t  e x p ( - 3 ) %  0 and  is ob ta ined  using the re la t ion 
(s/2 + 1) 2 = &r 2. In our  experiments,  we used a filter 
size ofs  = 7. The or ientat ion is computed  for the bound-  
ary pixels at  the parent  nodes level and  is p ropaga ted  
to the chi ldren level. 

For  each dominan t  local or ientat ion,  a butterfly-like 
filter is defined. Butterfly-like shape reduces the influ- 
ence of vectors a long the boundar ies  which have high 
uncertainty.  The shape and  the weights of a 3 x 3 and  
5 x 5 filter for the hor izonta l  o r ien ta t ion  (® = 0) are 
given in Fig. 5, where r is a funct ion of the dissimilarity 
between the two classes tha t  define the b o u n d a r y  and  
rr = (1 - r)/n with n being the n u m b e r  of weights differ- 

r I i 

2 d 
Fig. 6. r As a function of the dissimilarity d between two 

classes. 

ent from 0 or r. The dissimilarity d is given by 

d = I#1 - #21 
{12) 

where # and  cr 2 are the mean  and  the variance of the 
two classes on b o t h  sides of the  boundary .  Then  
r = fct(d) is ob ta ined  by the funct ion of Fig. 6 which 
was experimental ly found in reference 21. If the dis- 
similarity d is large then r = 1 and  no smooth ing  is 
applied whereas a s t ronger  smooth ing  is performed 
(r = rr) for low values of d. 

We still need to define the filters for different orienta-  
t ions ®. This is done by ro ta t ing  the mask defined for 
the hor izonta l  o r ien ta t ion  ® = 0 and  redis t r ibut ing the 
weights for ma tch ing  the grid of an  image. New co- 
ordinates  of the mask are ob ta ined  by 

Y' L - s i n ®  c o s ®  

The weights are then redis t r ibuted to the four pixels 
cor responding  to the combina t ion  of the lower and  
upper  integer values of x '  and  y'. Consider  the follow- 
ing no ta t ion  

x~ = [ x ' l  xc = [ x ' ]  w= = x c -  x 
(14) 

y~ = Ly'] yc = Fy ' ]  w ,  = y ~ -  y 

where [.]  is the "floor funct ion" tha t  gives the t run-  
cated par t  of a real n u m b e r  and  [.]  = [ .]  + 1 is the 
"ceiling function".  The redis t r ibut ion of a uni t  weight  
is repor ted in table 1. The new filter is then defined by 
ro ta t ing  and  summing  the  c o n t r i b u t i o n  of all the 
weights of value rr (the value of the central  weight 
remains  r). 

The filters are computed  for a fixed n u m b e r  of 
or ienta t ions  (eight in our  case) and  are s tored in a look- 
up table. In our  experiments,  we not iced tha t  similar 
segmenta t ion  results are ob ta ined  with different num-  

Table 1. Coordinates and their associated 
percentage of a unit weight 

Coordinates Weight 

(x I, y~) w=w~ 
(x f, Yc) w~(1 -- wy) 
(x¢,yf) (l w~)wy 
(xc, yc) (1 - w=)(1 - w,) 
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bers of orientations (6, 7 or 8). Starting from the coars- 
est level l =  I . . . .  the boundary refinement procedure 
can be enumerated as follows: 

(1) Project down the labels, i.e.l.~(i,j, l - 1) = I . . ( i /2 ,  
j / 2 ,  l) and define the boundary region 13 at level l -  l. 
Compute  the mean #i and variance a{ for all classes, 
2 < i < c .  

(2) For  each boundary pixel at level l compute the 
dominant  orientation ® using equations (9), (10) and 
(11), determine the two classes cl and c2 on both sides 
of the boundary and compute the weights of the filters 
using equation (12), r = fct(d) and r r  = (1 - r ) /n .  Then, 
propagate the orientations to the corresponding pixels 
at level 1 - 1. 

(3) For  each pixel (i,j)EI3, apply the filter corre- 
sponding to the current local orientation to each fea- 
ture image l p ( i , j , l -  1). If a feature-vector is not an 
element of the boundary region i.e. it already belongs 
to one class, take the value of its cor responding  
prototype. The left and right halves of the filters are 
applied separately eliminating the problem of smooth- 
ing across the boundaries. Two responses are ob- 
tained, r l ( i ,  j ,  l - 1) and r2( i ,  j ,  l - 1). This smoothing is 
repeated a certain number of times (four in our case) 
using a small filter size (3 × 3). This is similar than 
using a larger filter size in one iteration, but it is 
computationally faster. 

(4) For  each pixel (i,j)~B, compute the four dis- 
tances between the two filter responses r u ( i , j ,  l 1) and 
the prototypes g~ corresponding to the classes c 1 and 
c2, i.e. #~  - r u ( i , j ,  l - 1)[[, 1 < u v _< 2. Each boundary 
pixel receives the label of the class that gives the mini- 
mum distance. 

(5) Decrease the value of I by one and repeat from 
step 1, until the bot tom of the pyramid is reached. 

EXPERIMENTAL RESULTS 

We used two different" "patch" images of size 256 x 
256 (see Fig. 7). The first image, pl ,  is composed of 

regions taken from aerial images. Seven different tex- 
tures were selected, consisting of fields, forests and a 
residential area. Furthermore,  each texture was nor- 
malized with respect to the mean and variance. The 
second image, p2, is composed of patches of different 
shapes and sizes. The constituent textures are Oriental 
rattan (D65), wood grain (D68), raffia (D84), calf lea- 
ther (D24), straw screening (D49) and pressed cork 
(D4) and can be found in Brodatz. ~4°) The complex 
moments of the Gabor  power spectrum were com- 
puted on these two images resulting in 30 features. The 
six features with the lowest variance were selected, 
defining a 6-D feature space. Two of the features com- 
puted on pl  are given in Fig. 8. It can be first noted 
that the different patches are corrupted by a significant 
amount  of noise making the discrimination between 
the classes difficult. This noise is mainly due to model- 
ing errors and is progressively reduced in the pyramid. 
Experiments showed that a number of levels of 5 is 
a compromise between the noise reduction and the size 
of the smallest detectable region (see below). At the 
coarsest level, the number of vectors is therefore re- 
duced from 256 x 256 to 16 × 16 and the clustering 
algorithm can rapidly partit ion the feature space. We 
used the fuzzy c-means algorithm with c = 9 and m = 
1.6. We will consider m = 1.6 as a constant because 
good clustering results were obtained in all experi- 
ments with this value. The only two parameters that 
need to be specified are the number of levels /max and 
the number of classes c. The result of the clustering 
operation is shown in Fig. (9a) where each class is 
represented by a different gray level. For  convenience, 
a pixel at the coarsest level is represented by a square 
of size 16 x 16. It can be seen that some isolated pixels 
and insignificant classes have to be reassigned to a 
spatially neighboring class. However,  already at this 
stage, the shape of the different regions defined by the 
labels corresponds roughly to the shape of the actual 
regions. The result of the spatial restoration is shown 
in Fig. (9b). Isolated pixels are removed and insignifi- 

Fig. 7. Two test images. "'pl'" (left) is an image composed of patches taken from aerial images where each 
texture is normalized on mean and variance. "p2" (right) is composed of textured-patches of different shapes 

and sizes with Brodatz textures. 
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Fig. 8. Two features of "pl" computed by using the complex moments of the Gabor power spectrum. 

Fig. 9. (a) Results of the fuzzy c-means clustering algorithm applied at the coarsest resolution level 1 - 5: 
each class is represented by a different label value. (b) Results of the spatial restoration: isolated pixels and 

insignificant classes are reassigned. 

Fig. 10. Segmentation results o f"p l"  superimposed on the original image (a) and the corresponding class 
assignments (b). 

cant  classes reassigned, reducing the n u m b e r  of classes 
from 9 to 7. The b o u n d a r y  ref inement  procedure  is 
then performed and  the final segmenta t ion  can be seen 
in Fig. 10. All seven classes are found and  the borders  
cor respond  well to those tha t  can  be seen by a h u m a n  
observer.  The same opera t ions  with unchanged  para-  

meters  are applied to p2 and  the segmenta t ion  result 
is given in Fig. 11. Again, all six classes are correctly 
found and  the borders  cor respond  well to the "reality". 

Figure 12 shows the segmenta t ion  results for differ- 
ent initial n u m b e r  of classes c. In all cases, the bound-  
aries are very similar and  the final n u m b e r  of classes 
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y~rT~ 

Fig. 11. Segmentation results of "p2" superimposed on the original image (a) and the corresponding class 
assignments (b). 

Fig. 12. Segmentation results obtained with an initial value of c of 6, 7 and 10 classes. The first column 
shows the results of the fuzzy c-means algorithm with m = 1.6 and the second, the results of the spatial 
restoration. In the last column is presented the segmentation superimposed on the original image• Six classes 

and similar boundaries are obtained in the three cases. 
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~:i!i ~i;~ii~ii,i~i,i,,il;i!il ~ i ~  

Fig. 13. (a) Spatial distribution of the labels computed on "p2" at level l,,,x = 6 (one pixel at that level is 
represented by a square of size 16 x 16). (b) Levels of the pyramid of labels obtained by the boundary 

refinement procedure. 

has been reduced to the true number, six. Even if c is 
set to 10, the restoration of the spatial connectivity 
produces a spatial distribution of labels very close to 
the one obtained with c = 6. Small changes can be 
observed and are further eliminated by the boundary 
refinement. Consider, for instance, the raffia textured 
region with the U-shape (c = 10). The spatial restora- 
tion procedure leaves part of the pixels misclassified 
and almost one half of the U is missing. However, at 
the end of the boundary refinement procedure, the 
correct segmentation is obtained and the missing half 
of the U is recovered. It is also worth noting that 
small misclassified subregions of two or three pixels 
disappear during the boundary refinement process. 
Figure 13 shows the labeling at the top of the pyramid 
( / m a x  = 6) and the different levels obtained by the boun- 
dary refinement procedure. It is interesting to see how 
this procedure is able to recover the actual shapes of 
the regions even starting from a very rough description 
of the regions. 

As already mentioned, the choice of the number of 
levels is important. Figure 14 shows the segmentation 
results for different values of Imax. AS one could expect, 
the noise at level lm, x = 3 is not enough reduced and 
too many subregions are detected. As the number of 
pyramid levels increases, these extra subregions pro- 
gressively disappear and the expected segmentation is 
obtained for/max = 5 and 6. For higher values (l .... > 6), 
the classes merge together because the sizes of the 
regions are too small. The same behavior can be ob- 
served on "pl". 

Similar segmentation results can be obtained with a 
large variety of clustering algorithms as long as the 
clustering criterion matches correctly the shape of the 

clusters in the feature space. The best segmentation 
results were obtained by using the fuzzy c-means. For 
comparison, we tried three different agglomerative 
algorithms described in Gordon. (14) Agglomerative 
algorithms belong to hierarchical methods. They start 
when all objects are apart (the clusters contain a single 
pixel) and at each step, the two clusters with the small- 
est dissimilarity measure are merged. These algorithms 
are thus step-wise optimal and the clusters are hier- 
archically nested and can be represented by a dendo- 
gram. There exists many agglomerative algorithms, 
which only differ in the definition of the between- 
cluster dissimilarity. We have selected the general 
algorithm proposed by Lance and Williams (41.42) with 
the following criteria: (1) sum of squares, (2) centroid 
and (3) complete link (farthest neighbor). At each step 
of the algorithm, the two "closest" clusters i ,j  are 
merged and the dissimilarities between the newly 
formed (i,j) and and the k others are updated using the 
following recursive relation 

dk(i,j) = o:idki -}- ~ )dk j  q- f ldi j  -}- ",~ldki - -  dkjl (15) 

where ~i, ~j, fl and 7 are parameters specifying the 
particular strategy employed (see Table 2), and dj~ is 
the squared Euclidean distance between the ith andjth 
cluster. 

The sum of squares criterion minimizes the within- 
group variance, i.e. minimizes equation (6) with uijs 
{0, 1} (crisp case). The centroid algorithm amalga- 
mates at each stage a pair of groups whose centroids 
are closest and the complete link method merges two 
clusters with the smallest dissimilarity, where the dis- 
similarity is defined as the largest distance between 
objects of these two clusters. In Fig.15, the segmenta- 
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Fig. 14. Segmentation results obtained on "p2" for different number of pyramid levels Imax. We used the 
fuzzy c-means algorithm with c = 6. (a) lm~ x -- 3, (b) / m a x  - -  4, (c)/max = 5, (d) l m a  x - -  6. 

Fig. 15. Segmentation results o f " p l "  obtained with different clustering algorithms. (a) fuzzy c-means, (b~ 
sum of squares, (c) centroid and (d) complete link (farthest neighbor)i 
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Table 2. Some clustering strategies obtainable from Lance and Williams' general agglomerative algorithm 

Name cq fl 

(1) Complete link 1/2 0 1/2 
(2) Centroid nj(n~ + n~) _ n ln j (n  i + g/j)2 0 
(3) Sum of squares (nl + nO/(nl + ni + nk) n j ( n  i 4- nj 4- nk) 0 

n~ Denotes the number of objects in the ith group. 

Table 3. Cpu time (s) for "p l "  (c = 10, /max = 5) and "p2" (c = 6, lma x = 3) on a Sparc 10 and Silicon Graphics Power Series 
machines 

Image Machine Pyramid Clustering Restoration Refinement Total 

"p l "  Sparc 10 1.7 44.0 0.2 37.8 83.7 
"p2" 1.5 19.7 0.5 67.4 89.1 
"p l"  Silicon Graphics 1.6 39.8 0.5 31.9 73.8 
"p2" Power series 1.5 14.8 0.6 61.5 78.4 

Fig. 16. Segmentation of images based on the gray level information. The segmentation and the class 
assignments are shown for (a) the vintage cars race and (b) a piece of bark. In the first case, we used the fuzzy 

c-means algorithm with c = 4 and m - 1.6 and in the second case with c = 3 and m - 1.6. 

t ion results ob ta ined  wi th  the  different c luster ing algor-  
i thms  can  be visually compared .  The  bounda r i e s  are 
very similar. However ,  the  de tec ted  n u m b e r  of  classes 
changes.  W i t h  the fuzzy c -means  and  cen t ro id  algor-  
i t hms  all seven classes are  found ,  whi le  one  class (resp. 
two) is miss ing  w h e n  us ing the  s u m  of  squares  c r i te r ion  
(resp. c o m p l e t e  link). W e  also tes ted ou r  a l g o r i t h m  on  
1D features, be ing the  gray levels of  the  original  images. 
T w o  examples  are  given in Fig. 16. The  first image  
r ep resen t s  a v in tage  cars  race  a n d  the  second ,  a piece 

of  bark .  M o s t l y  accura te  bo rde r s  are  o b t a i n e d  a n d  
even fine detai ls  a re  p rese rved  (the n u m b e r  "364" for 
example) .  Howeve r ,  we can not ice  a few false con tours .  
They  can  be due  to  a c r o s s - b o u n d a r y  s m o o t h i n g  while 
bu i ld ing  the  p y r a m i d  or  to low var ia t ions  of  the  gray-  
level gradient .  

We  can  finally m e n t i o n  the  cpu t ime (in seconds)  for 
the  s e g m e n t a t i o n  of  " p l "  (c = 10, l . . . .  = 5) and  "p2"  
(c = 6,/max = 3). This  t ime d e p e n d s  ma in ly  on  the  n u m -  
ber  of  classes c, on  the  n u m b e r  of  p y r a m i d  levels and  
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on the image size at the highest resolution level. In 
general, it will take longer for higher values of c and 
lower values of/max (because the image size at level lm,x 
is larger and there are more boundaries). We used the 
fuzzy c-means as clustering algorithm and tested our 
segmentation algorithm on images of size 256 x 256. 
For  lower values of I . . . .  a reduced set of feature vectors 
is chosen by means of random sampling. The different 
times are given in Table 3. 

CONCLUSIONS 

Detecting image boundaries often requires multi- 
dimensional segmentation algorithms. The presence of 
noise in the feature space causes a class-overlap and 
this can be reduced in a multidimensional pyramid. At 
the coarsest resolution level, the classes are obtained 
by means of a clustering algorithm. We proposed an 
or ienta t ion-adapt ive  boundary  refinement process 
along with a relaxation labeling that allows the use of 
different clustering procedures without spatial con- 
nectivity constraints. Experiments  on real images 
showed that accurate boundaries can be obtained. 

Although the problem of knowing a priori the exact 
number  of classes is not solved, it has been reduced by 
over-estimating the number of initial classes and re- 
assigning small and scattered classes. A multi-passes 
deterministic relaxation algorithm is proposed to reas- 
sign the insignificant classes. Experiments showed that 
similar classifications are obtained for different initial 
number  of classes c. Small differences in the spatial 
distribution of the labels are further eliminated by the 
boundary refinement procedure. The way of selecting 
a clustering criterion is always a problem because the 
shape of the clusters is usually unknown. Our para- 
digm is relatively insensitive to this problem and 
experiments showed that similar segmentation results 
can be obtained with different clustering algorithms. It 
seems also that the paradigm, is not  sensible to different 
within-class variances at the level where the clustering 
algorithm is applied. 

In our approach we separated the clustering and the 
spatial restoration processes into two steps. These two 
processes could be merged into one step by using the 
clustering algorithms with spatial connectivity con- 
straints. At the coarsest level of the pyramid, it could 
be interesting to try, for instance, the M R F  k-means 
segmentation algorithm described by Pappas ~431 or 
some other algorithms using M R F  and stochastic re- 
laxation. (22) Due to the small image size at this level, 
it would take acceptable computat ional  cost. How- 
ever, we showed that good segmentation results can 
also be obtained with unconstrained clustering algor- 
ithms that are widely addressed in the literature. 

A drawback of this algorithm, related to the simple 
structure of the quadtrees, is its incapacity of keeping 
track of small regions while building up the pyramid. 
A tradeoff between the size of the smallest detectable 
region and the amount  of noise reduction has to be 
found. F rom the experiments we can define a lower 

and upper bound for/max" Under  the lower bound, the 
noise is not  enough reduced and some extra subregions 
can be observed. Above the upper bound the classes 
merge together. In between (/m,x = 5 and 6), the ex- 
pected segmentation is obtained. Therefore, it seems 
that the choice of the number of levels has a certain 
degree of freedom as more than one possibility pro- 
duces good segmentation results. Thus, it would be 
interesting to find a way to compute the "optimal" 
number of levels. However,  the proposed algorithm 
does not solve the problem of images with regions of 
all sizes and more complicated data structures such as 
the linked pyramid (31) should be used. 
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