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Abstract

Retinotopic sampling and the Gabor decomposition have a well established role in
computer vision in general as well as in face authentication. The concept of Retinal Vi-
sion we introduce aims at complementing these biologically inspired tools with models
of higher-order visual process, specifically the Human Saccadic System. We discuss the
Saccadic Search strategy, a general purpose attentional mechanism that identifies semanti-
cally meaningful structures in images by performing “jumps” (saccades) between relevant
locations. Saccade planning relies on a-priori knowledge encoded by SVM classifiers. The
raw visual input is analysed by means of a log-polar retinotopic sensor, whose receptive
fields consist in a vector of modified Gabor filters designed in the log-polar frequency
plane. Applicability to complex cognitive tasks is demonstrated by facial landmark detec-
tion and authentication experiments over the M2VTS and Extended M2VTS (XM2VTS)
databases.

Keywords: Facial Feature Detection, Face Authentication, Human Saccadic
System, Log-Polar Mapping, Support Vector Machine

1 Introduction

The spreading of Internet commerce, tele-banking and similar services which require priv-
ileged and possibly remote access to resources on the part of accredited users has put a
strong emphasis on the development of reliable biometrics for person authentication. A
wide choice of techniques has been proposed to meet this demand. Despite its intrinsic
complexity face based authentication, admittedly a “natural” choice, still remains of par-
ticular interest because it is perceived as psychologically and/or physically “non-invasive”
by users. Its failure modes (identical twins, scarce illumination, disguise, etc.) are further-
more essentially unrelated to the failure modes of other biometrics such as speech (acoustic
noise, professional imitators, etc.) or fingerprints (missing or damaged fingerprints, etc).
Therefore, face authentication can be advantageously included in multi-modal systems,
which get an edge in robustness through the fusion of several authentication modali-
ties (Bigun et al., 1998).

A variety of face authentication techniques has been developed in recent years. While
certain approaches such as Eigenfaces (Sirovich and Kirby, 1990; Turk and Pentland,
1991) and Fisherfaces (Belhumeur et al., 1997) are entirely statistic in nature, some of the
proposed methods support or are influenced by theories of human perception (Chellappa
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et al., 1995). Several algorithms rely on direct biological analogy by the use of Gabor
filters, which are known to model the responses of the so-called simple cells in the visual
cortex (Orban, 1984), and of retinotopic sampling (Takics and Wechsler, 1995; Tistarelli
and Grosso, 1998). The use of the Gabor decomposition for face recognition purposes
has been introduced by van der Malsburg in the context of elastic graph matching (Lades
et al., 1993). This technique has then been substantially developed in the framework of
face authentication (Bigun et al., 1998; Duc et al., 1999).

The intrinsic difficulty of the problem along with the demonstrated effectiveness of
multi-scale tools and nonlinear sampling make face authentication the ideal test-bed for
a new biologically inspired vision paradigm, which we call Retinal Vision. With it we
pursue the integration of low-level biologically inspired signal conditioning with models
of higher-order visual processes that constitute the interface to cognitive tasks in human
beings. The aim is implementing attentional mechanisms that would allow a cognitive task
to steer visual acquisition and processing. At an early stage of the chain that goes from
visual stimuli to symbolic representations we find the Human Saccadic System. Humans
and primates do not scan a visual scene in a raster-like fashion: they rather perform
large jumps, known as saccades (Yarbus, 1967), between the different points of interest
in the scene, on which the gaze is kept centred for a fraction of a second (fizations).
Saccades are known to play a role in the underlying cognitive processes (Pelz, 1995); the
saccadic pattern, as has been demonstrated by Yarbus already in the fifties, depends both
on the visual scene and on the task to be performed. The main regions of interest for
the face recognition/authentication task are, as is well known, the eyes and the mouth
of a subject (Keating and Keating, 1993). We therefore propose to locate such facial
landmarks using a Saccadic Search strategy built around a log-polar retina, which is used
to sample the Gabor decomposition of the image (Smeraldi et al., 1999a).

Computational models of saccades based on the responses of multi-scale orientation
selective filters such as derivatives of Gaussians (Bigun et al., 1991) have already been
proposed (Rao et al., 1997), although no explicit description of a target was used to drive
the saccades. Our Saccadic Search strategy makes use of a-priori knowledge in the form of
appearance-based models of the eyes and the mouth. The models, which are implemented
by means of Support Vector Machine (SVM) classifiers, describe the Gabor signature of
the target features.

Face authentication is achieved using three independent machine experts to process
the Gabor features extracted in the facial regions surrounding the eyes and the mouth.
Each expert, implemented as an SVM, outputs an authentication score. These are then
combined to achieve the final decision on the identity claim being processed.

We report experimental results on both the M2VTS and the Extended M2VTS (XM2-
VTS) databases, featuring images from 37 and 295 subjects respectively. Authentication
tests were performed according to the standard test protocols established by the European
M2VTS consortium, thus allowing direct comparison of our results with those published
by other research groups working on the same databases.

2 Image Representation

2.1 The retinotopic sampling grid

The Saccadic Search strategy and the face authentication algorithm are based on a sparse
retinotopic grid obtained by log-polar mapping (Schwartz, 1980; Bigun, 1993). The grid is
used to sample the Gabor decomposition of the image, each retinal point being associated
with a receptive field represented by the support of a set of Gabor filters. Such a sensor can
be viewed as a simple model of the ganglion cell lattice and the simple cells in V1 (Hubel,
1988; Takacs and Wechsler, 1995). In our experiments we used a grid consisting of 50
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Figure 1: Left: the retinotopic sampling grid (axes graded in pixels). The slight asymmetry
in the centre of the image is due to discretization (the radius of the inner circle is only 3
pixels). Right: a few receptive fields are represented as sets of concentric circles. For each
Gabor frequency channel, the circles show the pass—band of the corresponding filters.

points arranged in 5 concentric circles (Figure 1). We set the radius of the innermost
circle to 3 pixels and that of the outermost circle to 30 pixels, which is about the average
inter-eye distance in the images we used for testing.

Receptive fields are modelled by computing a vector of 30 Gabor filter responses at
each point of the retina. The filters are organised in 5 frequency channels and 6 equally
spaced orientation channels. Filter wavelengths span the range from 4 to 16 pixels in
half-octave intervals.

The same sensor is used both for facial landmark localisation and for person authenti-
cation. The sparse nature of the sensor and the relatively low number of fixations required
for the saccadic search to converge to the facial landmarks make the computation of Gabor
responses by direct filtering in the image domain feasible.

2.2 Log-polar mapping in the Fourier domain

The local power spectrum of the image is sampled at each retinal point by the vector of
Gabor filters that constitute the receptive field associated with that point. In order for
the filter responses to be descriptive of the image neighbourhood and to carry a maximal
information content, i.e. to be uncorrelated, the local frequency plane must be covered as
uniformly as possible.

Gabor filters are optimal in that they minimise the joint image and frequency plane
spread. When only a small number of frequency channels is employed, however, the Gaus-
sian spectrum of the filters results in an excessive overlap towards the (densely sampled)
origin of the frequency plane, while the high frequency regions are poorly covered. This is
due to the fact that each Gaussian weights high as well as low frequencies in its support
in a symmetric manner, whereas the decomposition itself is coarser at high frequencies.
In order to compensate for that, we employ a set of modified Gabor filters that are defined
as Gaussians in the log-polar frequency plane (Knutsson, 1982; Bigun, 1994). That is, for
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Figure 2: Modified Gabor filters in the Fourier domain. Left: level curves; right: radial cross-
sectional plot. On the right, two standard Gabor filters are superimposed as dashed lines.
Modified filters have a steeper cut-off on the low frequency side, which effectively reduces the
overlap between adjacent channels.

a filter tuned to orientation ¢¢ and angular frequency wo = exp(&):

— 2 _ 2
_(6=€0)" _ (¢—¢0)

Gep)=Ae i e (1)
where A is a normalisation constant and (&, ) are the log-polar frequency coordinates:

(& ) = (log(|@]), tan™" (wz, wy))- (2)

The new coordinate system has the property that translations along ¢ represent rotations
in the image domain, while translations along & correspond to scaling. A complete bank of
filters can then be designed by arranging a set of identical Gaussians in a rectangular lattice
in the log-polar frequency plane (Smeraldi, 2000). When seen in the standard Fourier
domain the filters reproduce the familiar “daisy” structure, but the overlap towards low
frequencies is significantly reduced (Figure 2). These filters have been previously used in
texture analysis, showing high discrimination power (Bigun, 1993).

3 Eyes and Mouth Detection
3.1 Modelling the Facial Landmarks

The Saccadic Search strategy requires the use of two levels of modelling for each of the
targets (Smeraldi et al., 1999b). The coarser, or local, model is obtained for each facial
landmark from the vector of Gabor responses extracted at the location of that landmark
in the images of the training set. The finer, or extended model is obtained by placing the
whole retina at the location of the facial landmark on the training images (Figure 3) and
collecting the set of Gabor filter responses from all of the retinal points. These Gabor
features are then arranged into a single vector.

In both cases, the example vectors for each facial landmark are normalised for con-
trast invariance, complemented with negative examples and used to train an SVM clas-
sifier (Cortes and Vapnik, 1995; Vapnik, 1995). This choice is motivated by the non—
parametric nature of SVMs, which frees us from the need of modelling the highly non—
trivial distributions of feature vectors that describe the facial landmarks. A training set



Figure 3: The extended model of a facial landmark is obtained by centring the retina on that
landmark in the images of the training set.

of 202 frontal images of 13 subjects has been extracted from the M2VTS database (see
section 5). This provides 202 positive examples for each landmark. Negative examples are
collected by extracting Gabor vectors at 10 random locations in each image. Also, right
eyes and mouths have been included as negative examples in the models of the left eye,
and so on. The SVM engine employed was developed following the ideas in (Joachims,
1998) and (Osuna et al., 1997).

3.2 Selecting the Kernel Function

SVM classifiers are characterised by a decision surface that can be written as a hyper-plane
in a high dimensional space H. The mapping between the input space and H is handled
implicitly by means of a kernel function K, which is a (generally nonlinear) symmetric
scalar function of two input vectors. The decision function can then be written as

F@) =) ajy; K (5,7 +b20, 3)

where ¢ is the input to be classified. The support vectors §; constitute a subset of the
training data which is determined through an optimisation process. The optimisation
also defines the weight o;; the y; are constant and have a value +1 for the support
vectors of the “accept” class, —1 for those of the “reject” class. Finally, b is fixed so that
the hyper-plane in H cuts exactly halfway between the closest training examples of the
two antagonistic classes. This choice is optimal provided that the training set is equally
descriptive of both populations. In the case that one class is poorly represented in the
training set, we might want to compensate for that by shifting the hyper-plane further
away from its support vectors.

In order to determine the most appropriate kernel function for the local and extended
models, we used the 349 images from the remaining 24 subjects in the M2VTS database
as a probe set. Probe images were used to feed the classifiers with the appropriate set
of Gabor responses extracted at the location of the facial landmark they were supposed
to model, together with a set of negative examples they were supposed to reject. The
negative examples included, for each SVM, the remaining two facial landmarks plus ten
random points per image.

Since the optimisation process depends on K, training had to be performed anew for
each choice of the kernel. In order to speed up the procedure, the Gabor response set



EER (1)

Kernel type

Local Model Linear Poly deg. 2 Poly deg. 3 | Poly deg. 4
Left eye 11% (—5.0) 11% (—2.0) 11% (—2.0) 10% (—1.9)
Right eye 13% (-7.0) 11% (—2.3) 11% (—2.0) 11% (-1.9)
Mouth 6% (—3.5) 8% (—1.8) 8% (—1.7) 7% (—1.6)

Extended Model Linear Poly deg. 2 Poly deg. 3 | Poly deg. 4
Left eye 0.5% (—0.30) | 0.3% (—0.15) | 0.3% (—0.05) | 0.3% (—0.03)
Right eye 0.8% (—0.43) | 0.5% (—0.30) | 0.4% (—0.25) | 0.3% (—0.22)
Mouth 2.0% (-0.90) | 1.8% (—0.82) | 1.7% (—0.80) | 0.3% (—0.25)

Table 1: EER and corresponding value of 7 for various kernel types. Notice how especially
the extended mouth model benefits from a higher order kernel. Differences between the two
eye models are due to asymmetric reflections on eyeglasses.

for the extended models was “pruned” by eliminating the high frequency channels at the
periphery of the retina and the low frequency channels in the foveal region.

Due to the wider availability of negative examples during the training process, all
SVMs showed a higher tendency towards making errors when classifying a positive probe
(False Rejection, FR) rather than a negative probe (False Acceptance, FA). In order to
compensate for that, we modified the decision function (3) with the introduction of a
threshold 7: f(¥) = 7. We adjusted the value of 7 in order to obtain an Equal Error
Rate (EER) on the probe set; we also recorded the corresponding value of the threshold
and the value of 7 at which the FR goes to zero. The dependence of these quantities on
the kernel type is displayed in tables 1 and 2 for low-order polynomial kernels of the form
K (7,%) = (1+7-w)? (higher-order kernels were not considered because of the somewhat
longer time required for computation). Since our algorithm employs a competition scheme
rather than a fixed decision surface (see section 3.3), the behaviour of the classifiers as
the decision surface is shifted by varying 7 is of interest to us. A small value of 7 both at
the EER and at the point where FR = 0 indicates that the outputs of the SVM classifier
are “appropriately grouped”. Also, it is convenient that the classifiers trained on the
three facial landmarks have approximately the same behaviour. As evidenced by tables 1
and 2, these requirements are best met by SVMs based on a fourth order polynomial
kernel. We therefore decided to employ this kernel function in both the local and the
extended models. We can here observe that the local models are much cruder than the
extended ones, that turn out to be approximately 30 times more accurate. This is in
line with our expectations, since local models describe a facial landmark based only on a
neighbourhood of a single point (a receptive field), whereas each extended model employs
the entire set of receptive fields that make up the retina.

3.3 The Saccadic Search strategy

The facial landmark detection procedure consists in a saccadic exploration, starting with
the retinotopic sensor placed at random on the image. Search is initially aimed a randomly
chosen facial landmark. Gabor response vectors are computed at all retinal points; vector
Uey extracted at point 7y on circle ¢ is rated by the local model of the selected landmark
according to the output of the corresponding SVM, fioc(¥cy). The retina is subsequently
centred at the position of its sampling point s., that maximises fi,.. This procedure is
iterated until the sensor is centred on a local maximum.

Note that one advantage of this search strategy is that the search automatically be-
comes finer as a local maximum is approached, since the artificial retina is denser at the



‘ Tat FR=0 | Kernel type |

Local Model Linear | Poly deg. 2 | Poly deg. 3 | Poly deg. 4
Left eye —14.0 —5.5 -5.0 -5.0
Right eye —19.0 —8.0 —7.0 —6.5
Mouth —8.0 -9.0 —8.0 -6.0
Extended Model | Linear | Poly deg. 2 | Poly deg. 3 | Poly deg. 4
Left eye —-0.5 —0.2 -0.1 -0.2
Right eye -0.7 —0.6 -0.5 -0.5
Mouth -1.4 —-1.3 -1.2 -0.4

Table 2: Maximum value of 7 for which FR = 0 for various kernel types. Although this
measure is sensitive to the presence of outliers, its marked tendency to increase with kernel
order indicates that fluctuations in the SVM outputs become smaller with a higher order
kernel.

centre (fovea) than at the periphery. As a consequence of this and of our experimental
results we think that the acuity gradient existing between the peripheral and the foveal
vision in the topology of the human retina plays a role in achieving fast convergence
(homing) of the saccades.

After saccades have converged to a maximum, the retinotopic grid is displaced in a
pixel-by-pixel fashion to maximise the output f.,; of the more accurate extended model
for the detected facial landmark. Matches that score less than the support vectors of the
reject class (fezt < —1) are discarded at this stage; the others are pushed onto a stack
along with their score.

Once a match for a facial landmark has been found, a saccade to the assumed location
of one of the others is performed based on a simple probabilistic model. An attempt at
detection is made directly with the corresponding extended model. If this fails, the search
is restarted at random to look for the feature for which the fewest candidates have been
detected.

The probabilistic model describes the relative position of each facial landmark with
respect to the next (in a cyclic order) by means of a Gaussian distribution, the parameters
of which are estimated from the training data. The correlation between the resulting three
vector distances has been neglected for simplicity; a more detailed model which exploits
such correlation to compute better estimates of the position of the missing landmarks can
be found in (Leung et al., 1995).

A global matching score is computed based exclusively on the quality of the best
matches detected; this procedure has a linear cost with respect to the number of facial
landmarks employed (always three in our experiments). Saccadic search is continued until
a complete set of facial landmarks which has a very high score is found or until the retina
has been centred on the maximum allowed number of different locations. If at this point
no set of facial landmarks with a satisfactory score has been found, the search is restarted
from scratch for a second attempt (we have allowed a maximum of four independent trials).
Sets of fewer than three facial landmarks are considered if no candidates are detected for
one or more of the search targets.

4 Face Authentication

Face authentication is performed using a multiple expert approach. Three classifiers are
employed to independently authenticate each client based on the three sets of Gabor



responses obtained with the retinotopic sensor centred on the eyes and the mouth of the
subject, as detected by the Saccadic Search algorithm.

We have experimented with different implementations of the experts, namely Nearest
Neighbour (NN), K Nearest Neighbours (KNN) and SVM classifiers with various choices of
the kernel function. All classifiers are used in the two-class context of face authentication,
with examples from the client representing the “accept” class and examples from the
training impostors representing the “reject” class, irrespective of their differing identities
(note how this differs from face recognition, which is intrinsically a multi-class problem).
NN experts output a discrete score of +1 (acceptance) or —1 (rejection). KNN experts
also yield a discrete but graded score equal to the signed difference between the number
of positive and negative examples that appear among the K nearest neighbours; this in a
way gives a measure of “how sure” the expert is feeling about its output.

Expert fusion is achieved by majority voting in the case of NN classifiers. KNN experts
are combined by considering the sign of the total score. When fusing together the outputs
of SVM experts, we have found it convenient to use a nonlinearity to limit the influence
of any single expert £; on the final outcome by gradually saturating the scores outside
the (—1,1) interval. The decision on identity claim I is therefore given by the inequality

3
1/3 " tanh (k&;(1) 2 7 (4)

=1

where £ is a constant and 7 can be varied to obtain FA/FR curves and determine the
EER.

Optimal performance is already achieved using linear SVM classifiers, which separate
the client and impostor classes with a hyper-plane. This confirms the remarkably good
behaviour of SVM classifiers when a very low number of training examples is available.
Although one could argue that the lack of statistically significant improvements using
higher order kernels is due to the scarcity of training examples, the fact that a remarkably
low EER can be achieved by means of linear decision surfaces confirms the discriminating
power of the (orientation) features employed.

5 Experimental Results

We present experimental results on the subsets of frontal images from both the M2VTS
(37 persons) and Extended M2VTS (295 persons) databases.

These multi-modal databases, featuring audio and video sequences of volunteers, have
been collected by the M2VTS consortium specifically for identity verification purposes.
Each subject has been acquired on four different occasions separated by a significant time
interval (four months for XM2VTS). This constitutes the major advantage of these data-
sets over other databases including FERET, as it allows performing more client tests,
which are needed to draw significant False Rejection curves.

The set of frontal images from the M2VTS database we employed contains a total of
551 images of the 37 subjects, that is 3—4 portraits of each person in each of the four
sessions. The frames were converted to grey level and down-sampled to a resolution of
174 x 143, corresponding to an average inter-eye distance of 29 pixels.

A set of frontal images from the XM2VTS database is released by the M2VTS con-
sortium as a CD-ROM distribution. It includes 2 images per session for each of its 295
subjects, yielding a total of 2360 frames. Again we converted these images to grey level
and we down-sampled them to 180 x 144 resolution, which resulted in an average inter-eye
distance of 27 pixels.

In both data-sets, appearance of subjects varies widely across the different sessions.
For the same person differences include changes in tan, expression, and hair style. Some



subjects changed their glasses or did not wear them in all of the sessions in favour of
contact lenses.

5.1 Facial Landmark Detection

Facial landmark detection tests were run on a total of 349 images from the M2VTS
database and on 2388 images from XM2VTS (we also included in the test set the images
of a few subjects who are not part of the official XM2VTS distribution). Training was
performed in both cases on the training set from the M2VTS database (see section 3.1);
all parameters were left unchanged for tests on the M2VTS and XM2VTS data-sets.

Detection performance was evaluated by visual inspection. Experimental results show
reliable eyes and mouth detection performance, with comparable results on both databases.
The error rate for the M2VTS test set is 0.7% for each eye and 0.0% for the mouth, which
is always detected correctly. Therefore, 5 images out of 349 present a misdetection of one
eye; the three facial landmarks are correctly detected in all the others (98.6%). Error rates
on the XM2VTS database are 1.0% for each eye and 1.3% for the mouth. This last figure
reflects the higher variability in the appearance of the mouth due to changes in expression.
Completely erroneous detection has occurred in 0.3% of the images (i.e. 6 images out of
2388); in 99.5% of the cases at least two features have been detected correctly. Correct
detection of both the eyes and the mouth has been achieved on 97.4% of the test set.
The system appears to be robust to the presence of eyeglasses, partial occlusion and even
significant pose changes (Figure 4). It also generalises quite well to the presence of beards
and of non-Europeans, that are not represented in the training set (the M2VTS database
only includes Europeans, and only two subjects have a beard). This generalisation ability
is likely a consequence of the contrast invariance obtained by normalising Gabor feature
vectors prior to classification.

Results on facial landmark detection on the M2VTS database by another research
group have been published in (Kotropoulos and Pitas, 1997), where an 86.5% success
rate for simultaneous detection of eyebrows/eyes, nostrils/nose and mouth over 37 frontal
images from the database is reported.

5.2 Face Authentication on the M2VTS Database

Face authentication experiments on the M2VTS database were conducted according to a
“leave-one-out” rotation scheme (jack—knife bootstrapping) (Efron and Tibshirani, 1993)
also known as “Brussels Protocol” (Bigun et al., 1998). At each step one person is
removed from the database to act as impostor, while one entire session is set aside for
client tests. The 36 persons remaining act as registered clients, and their three image
series are available for training. Client tests are performed taking, for each client, a non-
training image. Likewise, a single image of the impostor is used for impostor tests. This
amounts to 36 client tests and 36 impostor tests. By choosing the impostor and the test
series in all the possible ways, 36 x 37 x 4 = 5328 client tests and the same number of
impostor tests can be generated.

In our training, each expert (independently of its implementation) uses the three
training series of images from the client which it should learn as positive examples, and
all of the images from the remaining 35 clients known to the system as negative examples
(training impostors).

Since part of the M2VTS database has been used as the training set for the facial
landmark detection algorithm, we only present authentication results obtained by manu-
ally identifying the position of the eyes and the mouth of the subjects in both the training
and the test images, so that the performance of the authentication algorithm itself can
be gauged.



Figure 4: Reliable eyes and mouth detection can be achieved even in the presence of eyeglasses
(1st row), partial occlusion (2nd row), pose changes (3rd row) and facial hair (4th row). The
system generalises well to non-Europeans (5th row). These images belong to the XM2VTS
database.
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| (K)NN [ FA | FR | VFA-FR | SVM | FA | FR | EER |
NN 11% [2.0% | 1.5% [ Linear 0.0% [ 10.0% [ 0.17%
0.5% | 40% | 1.3% | Poly - deg 2 | 0.0% | 10.8% | 0.15%
0.2% | 8.0% | 14% | Poly - deg 3 | 0.0% | 11.5% | 0.15%
Poly - deg 4 | 0.0% | 11.5% | 0.13%

K=3
K=5

Table 3: FA, FR and EER with KNN and SVM experts (M2VTS database).

Experiments indicate that a very low error rate can be achieved with both SVM based
and (K)NN based experts (table 3). As can be observed, all classifiers have a marked
tendency towards false rejection, due to the low number of training images available for
each client as compared to impostors. In the case of SVM experts, this can be com-
pensated by tuning the threshold 7 in equation (4), which allows determining the EER.
To provide some form of comparison, for (K)NN experts we listed the geometric average
error. Variations of the EER due to the choice of different kernel functions for the SVM
classifiers are not statistically significant. The FA/FR curve for linear SVM experts is
reported in Figure 5. For increased readability, the curve has been plotted on a Normal
Deviate scale (Martin et al., 1997) using the software provided by NIST.

Summing up, (linear) SVM experts practically yield the best performance with an EER,
around 0.15%. For comparison, we refer the reader to published results on the M2VTS
database obtained using Elastic Graph Matching (EER = 6.1%, Brussels Protocol) (Duc
et al., 1999) and the Morphological Dynamic Link Architecture (EER = 3.7%, Brussels
Protocol) (Tefas et al., 1998). The latter technique is based on pyramids of morphological
differences that have been extensively used in texture analysis, e.g. (Veenland et al., 1998).
Finally, EERs of 5.4% for frontal image authentication and 3.1% for image sequence based
authentication are reported in (Matas et al., 1997), where a warping and correlation
algorithm is employed. Although none of these approaches require the facial landmarks
to be detected (which we did manually in our test since part of the M2VTS data was
used to train the detector), the comparable results (EER = 0.25%, section 5.3) achieved
by our procedure in entirely automated tests over the larger XM2VTS database suggest
that the above comparison has at least an indicative value.

5.3 Face Authentication on the XM2VTS Database

Face authentication experiments on the XM2VTS database were carried out using the
training and test sets stated by the Lausanne Protocol, Configuration II, as established
by the M2VTS Consortium (Messer et al., 1999). The Protocol specifies 200 identities
to be used as clients and 70 impostor identities. For each client, two sessions (4 images)
are available for training; one is used for testing (2 images) and two images are set aside
as “evaluation set” (unused). All the 8 images of each impostor are used to generate
impostor tests. This gives a total of 400 client tests and 70 x 8 x 200 = 112’000 impostor
tests.

As was the case with the M2VTS database, we trained each expert using the available
images from the client it is supposed to authenticate as positive examples and the images
of all the other registered clients as negative examples (training impostors).

Experiments are performed in an entirely automatic fashion, that is we let the facial
landmark detection algorithm (which has not been trained on any image of the XM2VTS
database) find the coordinates of the eyes and the mouth both in the training images
and in the images of the test set. An EER of 0.50% has been achieved using linear SVM
experts (dash-dot line, Figure 5). This corresponds to two client tests failed out of 400.

This result can be further improved by adding the remaining two images of each client
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Figure 5: Left: FR vs FA, M2VTS database (linear SVMs). The EER (~ 0.15%) is indicated
by a star. The square marks the fixed operation point of the system when NN experts are
used. Right: FR vs FA, XM2VTS database (linear SVMs). The dash-dot line refers to
Lausanne Protocol, Config. II tests (4 training images). The EER (0.50%) is marked with
a star. The solid line is obtained by using 6 training images for each client. The square
indicates the EER (0.25%). The FR plateau to the right of the square is due to the false

rejection of a single image.

that are labelled “evaluation set” in the Lausanne Protocol to the training set, which then
contains six images of each registered subject. In that case system operation is described
by the solid line in Figure 5. The EER (0.25%) corresponds to only one client test failed
out of 400. Comparison of these results with those obtained on the M2VTS database
by manually identifying the position of the eyes and the mouth (EER = 0.15%) shows
that relying on automatic facial landmark detection for both training and tests does not
significantly degrade authentication performance. This is due both to the reliability of the
facial landmark detection procedure and to the intrinsic robustness of the authentication
algorithm, which is achieved through the use of multiple training images and of a mixture
of experts approach.

A detailed comparison of our results with the performance of several other algorithms
developed by independent research groups was published following the face verification
contest organised in conjunction with the International Conference on Pattern Recognition
2000 (Matas et al., 2000). The seven algorithms reviewed all achieved EERs in excess of
1% over the same training and test sets.

6 Discussion and Conclusions

In this paper we introduced a new vision paradigm, namely a concept of Retinal Vision. It
consists of an artificial retina driven by saccades that is able to locate sought-for landmarks
and to perform authentication. Our experiments indicate that a good integration between
cognitive tasks and low-level visual processing can be achieved if the biological analogy
that underlies retinotopic sampling and the Gabor decomposition is coherently pursued
at higher stages of the chain that goes from the visual input to symbolic representations.
The idea is that of providing a simple view—based mechanism for modelling objects to
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be located and possibly authenticated. This intermediate layer would allow cognitive
processes to be more perspicuous and effective in their use of visual information.

The model of saccadic search we have presented attempts to implement such a concept
by providing a flexible general purpose attentional mechanism. The algorithm is in no way
specific to eye or mouth detection, and more primitive versions have already been success-
fully applied in such different contexts as real time head detection and tracking (Smeraldi
et al., 2000) and robot navigation (Arleo et al., 2000).

We have chosen to present the Retinal Vision paradigm with an application to face
authentication because of the intrinsic complexity of this problem. Also, the low-level
visual processing tools involved, retinotopic sampling and the Gabor decomposition, have
already been widely applied in face authentication, which makes the specific contribution
of the more organic Retinal Vision approach plausible.

The very low error rates achieved on the two largest verification oriented databases
available (EER < 0.25%) as well as on privately owned industrial databases support the
viability of our approach. Although the databases used included scale changes up to
10% and severe pose disturbances in the supposedly frontal images and the results were
good, we believe that scale and pose invariance should yet be included into the Retinal
Vision approach. In future work, we would like to address those issues by introducing
generalisation ability with respect to scale and pose at the level of the saccadic planning,
thus providing the cognitive level with a more powerful interface to the world.
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