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Abstract

The Gabor decomposition is a ubiquitous tool in
computer vision. Nevertheless, it is generally consid-
ered computationally demanding for active vision ap-
plications. We suggest an attention—driven approach
to head detection and tracking inspired by the human
saccadic system. A dramatic speedup is achieved by
computing the Gabor decomposition only on the points
of a sparse retinotopic grid. The real-time head local-
isation and tracking system presented features a novel
eyeball-mounted camera designed to simulate the me-
chanical performance of the human eye. It is, to the
best of our knowledge, the first example of active vision
system based on the Gabor decomposition.

1 Introduction

The Gabor decomposition is a ubiquitous tool in
pattern recognition [3, 1], and its use is motivated
by strong biological analogies [4, 9]. Nevertheless,
it is generally considered computationally demand-
ing for active vision applications. In this paper, we
present a real-time head detection and tracking sys-
tem in which a bio—inspired approach is used to cir-
cumvent this problem. The human eye explores a vi-
sual scene by performing a series of large “jumps”,
known as saccades, between the different points of in-
terest [2, 7]. Saccades play a central role also in filter-
ing task-relevant information [5, 6]. We propose an
attention—driven search strategy based on a model of
saccadic eye movements. Input to the system is pro-
vided by a special eyeball-mounted camera designed
to mimic the dynamic performance of the human eye.
Motion detection is used to identify regions of interest
in the image, thus “activating” the relevant points of a
sparse log—polar retinotopic grid. A dramatic speedup
is achieved by computing the Gabor responses only
on such points, which can be done by direct image

domain filtering. The camera is then centred on the
point which matches a pre-computed head model the
best; this procedure is iterated to achieve tracking.

2 Modelling the head

A local, appearance—based description of the head
has been obtained from a training set of 180 images
of 6 different persons sitting in front of the (static)
camera. The images were acquired at a resolution of
320 x 240 pixels (half of standard SECAM resolution).
The responses of 24 Gabor filters placed on the middle
point between the eyes have then been computed for
each image; the average response vector constitutes
the head model.

The filters employed are organised in three logarith-
mically spaced frequency channels whose wavelengths
range from 8 to 12 pixels; the orientation channels are
8. Due to the wide—angle optics adopted, the average
distance between the eyes in a typical image is about
15-20 pixels, which is comparable with the wavelength
of the filters. This is necessary if we want the fil-
ter responses to encode a signature of the whole head
rather than of its subparts. Under these conditions,
we can expect the map of the Euclidean distance be-
tween the head model and the Gabor vector responses
extracted in all the points of an image containing a
head to present a single pronounced minimum in cor-
respondence of the head itself.

3 Motion detection

As the first step in the tracking procedure, two con-
secutive frames are acquired and the absolute value of
their difference is computed. The difference is thresh-
olded to identify pixels that differ significantly be-
tween the two images. The field of view is then parti-
tioned according to a 10 x 10 rectangular grid. Each



Figure 1: The output of the motion detection stage is
a set of rectangles surrounding moving objects in the
scene.

grid cell can be labelled as a region of motion or not
according to the percentage of differing pixels it con-
tains (figure 1). Only the parts of the image that have
been marked as regions of motion are considered for
further processing. This step also allows to make sure
that the camera has stopped moving before a frame is
considered for processing. If more than 70% of the im-
age appears to contain motion, the current frames are
discarded and two new ones are immediately acquired.

4 Saccadic search

Finding the position of a head in an image requires,
in our framework, computing Gabor feature vectors to
be matched against the head model. Since the feature
extraction step is computationally demanding, the use
of complex tools such as the Gabor decomposition is
currently considered impractical for active vision ap-
plications.

The approach we followed consists in selecting a
priori a fixed subset of image points on which the Ga-
bor decomposition can be computed [8]. Such a subset
is organised in a log—polar retinotopic grid (figure 2)
which is centred on the image and can be thought of
as if it were “attached” to the camera, in the sense
that it moves rigidly on the scene when the camera
moves. The information contained in the grey level
of the image pixels is accessible to the system only
to the extent that it contributes to the response of a
filter centred at one or another of the retinal points.
Access to a more detailed description of a particular
image area is obtainable only by centring the retina

Figure 2: Gabor features are extracted only at the
retinal points that happen to fall inside a region of
motion. The retinal point at which the best match
with the head model is found (marked white in the
image) is selected as the target for the next saccade.

at that position. Since the number of points in the
grid is small (29 in our experiments), the required re-
sponses can be computed directly by filtering in the
image domain, with a reduced computational effort.

A further selection among the retinal points can be
performed based on the information from the motion
detection stage. We chose to compute the set of 24 Ga-
bor responses only at the retinal points that fall into
regions of motion. The Euclidean distance between
these vectors and the head model is then computed,
and the camera is moved so that the field of view is
centred on the point at which the best match has been
found. The central point of the retina is always con-
sidered in the computation regardless of motion, so
that the system is allowed to keep fixating the same
spot if nothing has changed in the scene.

Each frame is processed independently of the pre-
ceding ones, i.e. there is no time integration. Nev-
ertheless, the structure of the retina, which is denser
near the centre, helps to concentrate the computa-
tional effort in the region in which the head was found
at the previous iteration. Also, as the system homes
in on a head the resolution at which the Gabor decom-
position is sampled automatically becomes higher, al-
lowing for finer adjustments. On the other hand, mo-
tion detection can draw the attention of the system
to the periphery of the retina, thus allowing for quick
recovery from tracking failures or rapid detection of
subjects entering the field of view.



Figure 3: Front view of the Swiss Institute of Tech-
nology Vision Sphere. The two narrow black cylinders
are the DC motors; the larger ones are the optical en-
coders.

5 Hardware setup

The algorithm was implemented on the Swiss In-
stitute of Technology Vision Sphere (figure 3). This
system acquires high resolution images from a stan-
dard CCD camera that can tilt and pan under com-
puter control. Its innovative principle is close to a
"reversed” computer mouse: two orthogonally placed
motors, replacing the encoders in a standard mouse,
move the sphere. The position of the cameras is
known using two orthogonally placed incremental op-
tical encoders. Absolute desired camera positions are
transmitted through a serial line to a Motorola 68336
micro-controller card. This cards generates 20KHz
pulse-width modulated 8-bit precision signals that
drives the motors. The controller was elaborated by a
robust—control pole—placing method. The low inertia
of the Vision Sphere affords a fast response to reach
any point of interest in the view space (table 1). Con-
trol is made easy by the fact that the two rotation
axes and the optical axis of the camera intersect in a
single point.

Visual computations are carried out on a 200MHz
Pentium PC equipped with a PCI Matrox Meteor
frame grabber. The average cycle time, including the
time required by the camera to move, is about half a
second; it is generally less for small corrections, since
in that case the motion detection stage activates fewer
retinal points and the camera settling time is shorter.

Video Signal Composite NTSC
Pixels 542 (H) x 492 (V)
Field of View 43° (H) x 32° (V)
Excursion + 40 °

Speed 500 °/s
Acceleration 40.000 °/s?
Dimensions 60 x 170 x 170 mm?3
Power 12V DC,05Auptol2 A

Table 1: Characteristics of the Swiss Institute of Tech-
nology Vision Sphere.

6 Experimental results

The performance of the system has been tested by
tracking the head of 10 persons sitting in front of the
camera. Subjects were asked to move freely. The sys-
tem was programmed to acquire a full SECAM resolu-
tion frame (640 x 480) each time it believed the head
of a person to be centred in the image. A 110 x 130
“passport photo” subframe was then cropped at the
image centre and stored for visual inspection. The
subframe represents 5% of the image area. Its size has
been computed from the average head size (75 x 90)
by adding to each side the intrinsic system accuracy of
10 pixels (the radius of the inner circle of the retina)
plus another 10 pixels of tolerance.

Out of 500 images acquired from the 10 persons,
446 (89%) turned out to represent the head as ex-
pected (figure 4). Three error typologies were found.
In the first, subjects move outside the camera’s range
of operation. In the second, subjects move too quickly,
causing the frames to be blurred. The third typology
is erroneous head detection, which normally happens
in the presence of sharp geometrical patterns with con-
trasting lines moving in the image (figure 5). This
type of failure is partially corrected by the motion de-
tection stage, and is due to the simplicity of the head
model employed (represented by 24 responses at a sin-
gle point).

7 Conclusion

We have discussed a real-time head detection and
tracking system based on saccadic exploration and the
Gabor decomposition. This is, to the best of our
knowledge, the first attempt to apply the Gabor de-
composition in such an active vision task.

The systems displays a certain robustness to scale



Figure 4: A “passport photo” subframe covering 5% of
the image size is grabbed each time the system believes
a head is centred in the field of view.

changes, a good recovery speed and the ability to effec-
tively discriminate between a head and other objects,
as for example a hand waving in front of the camera.
Robustness could have been increased by implement-
ing a simple contrast test to rule out geometric pat-
terns. Also, a more complex classifier could have been
used as a post—processing stage to give the system
feedback about the fact that the object being tracked
actually is a head.
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