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Abstract

The Gabor decomposition is a ubiquitous tool in computer vision. Nevertheless, it is
generally considered computationally demanding for active vision applications. We
suggest an attention—driven approach to feature detection inspired by the human
saccadic system. A dramatic speedup is achieved by computing the Gabor decom-
position only on the points of a sparse retinotopic grid. An off-line eye detection
application and a real-time head localisation and tracking system are presented.
The real-time system features a novel eyeball-mounted camera designed to simu-
late the dynamic performance of the human eye and is, to the best of our knowledge,
the first example of active vision system based on the Gabor decomposition.
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1 Introduction

Gabor decomposition has long been known to be a powerful tool for pattern
recognition tasks [6,3]. Its use in computer vision problems is motivated by
strong biological analogies, since Gabor responses constitute a good model
of the responses of the simple cells in the visual cortex [7,12]. Unfortunately,
the calculation of Gabor filter responses imposes a heavy computational load
which has so far made these features ill-suited for active vision applications.
In this paper, we propose a bio-inspired approach to circumvent this problem.

The human eye explores a visual scene by performing a sequence of large
“jumps”, known as saccades, between the different points of interest, on which
fixation is maintained for a short while [4,10]. Saccades have been shown to
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play a central role not only in the exploration of a scene, but in the underlying
cognitive processes proper, where there appears to be a selection mechanism
for filtering task relevant information [8,9]. Our approach to head and facial
feature detection consists in performing an attention—driven search based on
a model of saccadic eye movements. The algorithm is built around a log—polar
retinotopic grid. Gabor decomposition is computed only on the points of the
grid, thus allowing real-time performance.

In the first part of this paper we will report on simulation experiments in
which the saccadic search is used to detect the eyes of subjects off-line but on
real images (M2VTS database). We shall then describe a real-time setup in
which the retinotopic grid is attached to a steerable eyeball-mounted camera,
designed to mimic the dynamic performance of the human eye. The “artificial
eye” so obtained is able to perform head localisation and tracking.

2 The retinotopic sampling grid

Central to our attentional strategy is the use of a sparse retinotopic sampling
grid which is rigidly displaced on the images. The grid has log-polar geometry,
meaning that the density of sampling points decreases exponentially with the
distance from the centre. In our approach, we limit the computation of the
Gabor decomposition to the points of the retinal grid, and require the grid to
be displaced in order for other image regions to be considered. This sampling
topology automatically implements a “focus of attention” concept, concen-
trating the computational effort on the current fixation point. Furthermore,
by keeping the global number of fixations low, it is possible to perform the
feature extraction by direct filtering in the image domain, without the need
of a Fourier transform. This brings about a dramatic increase in efficiency.

In analogy with the operation of the visual cortex of primates and humans [5],
we found it beneficial, at least during the finest part of the search (section 4.2),
to tune our frequency decomposition so that it matches the variable sampling
rate of the retina. We therefore associate high frequency Gabor filters to the
fovea of the retina, while low frequency responses are extracted at the periph-
ery, where the sampling rate is coarser. For our eye detection application, this
allows a smooth integration of dense information from the centre of the eyes
and global information from the outline of the orbit.



3 Log—polar frequency domain sampling

The log—polar mapping has also been applied to the design of the Gabor filters
in the frequency domain. Standard complex valued Gabor functions in the
frequency domain are scaled, translated and shifted versions of the following
function:
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The parameters o,, 0,, wo and the rotation parameter are chosen to cover the
frequency plane as completely at possible.

However, when only a small number of logarithmically spaced frequency chan-
nels is used, problems arise in obtaining a uniform coverage of the frequency
plane. Given that the spacing between the centres of the filters increases expo-
nentially, the symmetric Gaussian shape doesn’t appear to be optimal, since
it extends the same distance towards the (well sampled) central region of the
frequency space as well as towards the loosely sampled periphery. For these
reasons, we choose to substitute for the commonly used Gabor function a
modified filter
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where (p,¢) = (In(|&]), tan™!(w,/w;)) is the conformal mapping of the fre-
quency plane to log polar coordinates [1]. These filters have been previously
used in texture analysis problems, showing high discrimination power [2]. We
therefore construct a uniform grid of Gaussian filters in the log—polar fre-
quency domain, which in turn yields the desired consistent and exponential
coverage of the Fourier plane (figure 1).

4 Eye localisation

When human subjects explore a natural scene, they do not use their eyes
to scan it in a raster—like fashion. They rather perform rapid jumps between
regions of interest, which they fixate for about 0.3 seconds. All the relevant
information is acquired during such fixations, although much of the time is
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Fig. 1. Iso—curves of the Gabor filters created by uniform sampling of the frequency
plane in log—polar coordinates. The crosses represent maxima, whose positions are
slightly biased towards origin.

spent in deciding where the next saccade should be aimed. In 1957 Yarbus,
who pioneered the study of the saccadic system, found that the stopping places
of a subject’s gaze exploring human faces were more densely distributed in the
eye region [13,4]. This motivated us to use saccadic search for eye detection,
even because of the relevance of such region for face recognition.

The procedure consists of three main steps. At first, local information driven
saccadic eye movement is used to home the retinotopic grid on one of the eyes;
following, the search is refined by pixel-wise displacement of the grid; finally,
if detection is successful a saccade is performed to the assumed position of
the other eye. During each of the above steps, several criteria are applied to
check for the consistency of information. If a mismatch is detected, doubtful
assignments are discarded.

4.1 Saccadic search

A local, appearance—based description of the search target (the eyes) is con-
structed by averaging the Gabor responses from the centre of the eyes of
the persons in the training set. The resulting feature vector e,, consists of
six orientation-selective responses for each one of the five frequency channels
employed [11].

At the beginning of the search, the retinal sampling grid is placed at a random
position on the image and the Gabor feature vectors are extracted for each of
its points. Each of these vectors is subsequently matched against the reference
€4y- The point of the grid for which the Euclidean distance from e,, is minimal
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Fig. 2. The retinal sampling grid placed on a person’s right eye for model creation.

is selected as the target for the next saccade. Saccadic search is assumed to
have converged when saccades become shorter than a threshold. If no saccade
target whose distance from e,, is reasonably low can be found (which can be
the case if the search starting point happens to fall in a blank region of the
image), the search is restarted from a random position.

4.2 Refining the search

A more complete description is obtained, for each eye, by placing the retinal
sampling grid on the centre of each eye on the images of the training set
(figure 2) and storing the Gabor responses from all of the retinal points. In
order to reduce the sensitivity to positioning errors for small training sets, a
relaxation procedure is used: user—supplied eye coordinates are employed to
train a first version of the models, which is then used to perform a search
on the training set itself. The eye coordinates thus detected are then used to
retrain the system.

The two resulting “extended” eye models are used to distinguish left eyes from
right eyes and to improve the precision of the localisation. A first comparison



of the left and right eye models with the features currently “seen” by the retina
is performed to state whether the spotted facial feature looks more like a left
eye or a right eye. A gradient descent minimisation is successively performed
by displacing the retina pixel-wise until the best match with the appropriate
eye model is found.

The residual distance from the model is used to classify the detected feature
as “eye” or “non—eye”. The saccadic search is subsequently restarted in the
expected direction of the other eye or, in the case that no eye has been found,
from a random position.

Experiments have shown that the saccadic search may detect some erroneous
local minima (e.g. the corners of the mouth, ear-rings or details in the hair).
In order to discriminate such fake targets, the difference is computed between
the candidate’s distance from the attributed eye model and its distance from
the alternate model. The ratio of this difference to the minimum distance,
which we call the asymmetry, measures the amount to which the chirality
of the detected feature contributes to the match. In our experiments, the
asymmetry always turned out to be grater than 0.1 for correct matches, while
it generally dropped of one or two orders of magnitude in the case of spurious
identifications. The errors thus detected are treated by restarting the search
from a random position.

4.8 Ezxperimental results

The algorithm has been tested using a retinal sampling grid with 5 rings and
16 rays. The relation between the dimension of the retina and the size of the
facial images is evidenced in figure 2.

The image database employed consists of forty frontal shots of twenty different
persons ! . The image resolution employed is 143 x 175 pixels. Differences be-
tween the shots of the same persons consist in tan changes, haircut, makeup,
eyelid position, head position (heads are often slightly rotated) and slight scale
changes. Several persons in the database wear eyeglasses.

Single shots from six persons have been used to extract the left and the right
eye models. Repeated testing has then been performed on the whole database
without any mismatch being found (figure 3). Information obtained from the
outline of the orbit allows correct detection of the features even when the
subject’s eyes are closed (figure 4). In our trials we found the median of the
number of fixation points to be 49 for the detection of both eyes, that is to

1 This image database is a part of an audiovisual database, collected in the frame-
work of the European person authentication project M2VTS.
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Fig. 3. The + and X signs denote the best match with the right and left eye models
respectively. Numbers identify successive starting points for saccades. Eye detection
required 51 fixations, the great majority of which are part of search refinement (only
saccades are displayed here). Note how saccadic search 1 was considered uninter-
esting and therefore discarded. A random restart (2) then lead to detection of the
left eye, after which saccadic search resumed (3) near the location of the right eye.

Fig. 4. Information from the outline of the orbit allows eye detection even if the
person’s eyes are shut. During this trial 99 fixations were made and 14 eye candidates
located by saccadic search were rejected after comparison with the eye models.

say that the centre of the retinal sampling grid explores 0.2% of the image
pixels. The number of fixations is considerably increased (typically 100) for
subjects wearing glasses with strong reflections or having their eyes shut. This
is mainly due to the fact that since the algorithm knows nothing about facial
features other than the eyes, no alternative cues can be used to infer their
spatial position when their visibility is low. Nevertheless, detection is always
correctly accomplished at the end.



5 Real time head localisation and tracking

In order to demonstrate the flexibility and efficiency of the saccadic search al-
gorithm we have implemented it into a real-time head localisation and tracking
system. The retinotopic grid has been “attached” to a b/w steerable camera
developed at our laboratory. The camera has a spherical mount and is specifi-
cally designed to mimic the dynamic performance of the human eye (figure 6).

The saccadic search algorithm described in section 4.1 can be readily adapted
to the head detection task by substituting the eye model with an equivalent
global description of the head. Details on this point are given in section 5.1. In
order to increase performance, dynamic information from the image sequence
can be used. This was achieved by complementing the algorithm with a motion
detection stage (see section 5.2). A detailed description of the hardware can
be found in section 5.3; finally, experimental results are discussed in section 6.

5.1 Modelling the head

A local, appearance-based description of the head has been obtained from a
training set of 180 images of 6 different persons sitting in front of the (static)
camera. Images have been acquired at a resolution of 320 x 240 pixels (half
of standard SECAM resolution). The responses of 24 Gabor filters placed on
the middle point between the eyes have then been computed for each image;
the average response vector constitutes the head model.

The filters employed are organised in three logarithmically spaced frequency
channels whose wavelengths range from 8 to 12 pixels; the orientation channels
are 8. Due to the wide—angle optics adopted, the average distance between the
eyes in a typical image is about 15-20 pixels, which is comparable with the
wavelength of the filters. This is necessary if we want the filter responses to
encode a signature of the whole head rather than of its subparts. Under these
conditions, we can expect the map of the Euclidean distance between the head
model and the Gabor vector responses extracted in all the points of an image
containing a head to present a single pronounced minimum in correspondence

of the head itself.

5.2 Motion detection

As the first step in the tracking procedure, two consecutive frames are ac-
quired and the absolute value of their difference is computed. The difference
is thresholded to identify pixels that differ significantly between the two im-
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Fig. 5. The output of the motion detection stage is a set of rectangles surrounding
moving objects in the scene.

ages. The field of view is then partitioned according to a 10 x 10 rectangular
grid. Each grid cell can be labelled as a region of motion or not according to
the percentage of differing pixels it contains (figure 5). Only the parts of the
image that have been marked as regions of motion are considered for further
processing. This step also allows to make sure that the camera has stopped
moving before a frame is considered for processing. If more than 70% of the
image appears to contain motion, the current frames are discarded and two
new ones are immediately acquired.

5.8 Hardware setup

The algorithm was implemented on the Swiss Federal Institute of Technology
Vision Sphere (figure 6). This system acquires high resolution images from
a standard CCD camera that can tilt and pan under computer control. Its
innovative principle is close to a "reversed” computer mouse: two orthogo-
nally placed motors, replacing the encoders in a standard mouse, move the
sphere. The position of the cameras is known using two orthogonally placed
incremental optical encoders. Absolute desired camera positions are transmit-
ted through a serial line to a Motorola 68336 micro-controller card. This card
generates 20KHz pulse-width modulated 8-bit precision signals that drive
the motors. The controller was elaborated by a robust—control pole—placing
method. The low inertia of the Vision Sphere affords a fast response to reach
any point of interest in the view space (table 1). Control is made easy by the
fact that the two rotation axes and the optical axis of the camera intersect in
a single point.

Visual computations are carried out on a 200MHz Pentium PC equipped with



Fig. 6. Front view of the Swiss Federal Institute of Technology Vision Sphere. The
two narrow black cylinders are the DC motors; the larger ones are the optical

encoders.
Video Signal Composite NTSC
Pixels 542 (H) x 492 (V)
Field of View 43° (H) x 32° (V)
Excursion + 40°
Speed 500° /s
Acceleration 40.000° /s2
Dimensions 60 x 170 x 170 mm3
Power 12V DC,0.5 Aupto1,2 A
Table 1

Characteristics of the Swiss Institute of Technology Vision Sphere.

a PCI Matrox Meteor frame grabber. The average cycle time, including the
time required by the camera to move, is about half a second; it is generally less
for small corrections, since in that case the motion detection stage activates

fewer retinal points and the camera settling time is shorter.
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Fig. 7. A “passport photo” sub-frame covering 5% of the image size is grabbed each
time the system believes a head is centred in the field of view.

6 Experimental results

The performance of the system has been tested by tracking the head of 10
persons sitting in front of the camera. Subjects were asked to move freely. The
system was programmed to acquire a full SECAM resolution frame (640 x 480)
each time it believed the head of a person to be centred in the image. A
110 x 130 “passport photo” sub-frame was then cropped at the image centre
and stored for visual inspection. The sub-frame represents 5% of the image
area. Its size has been computed from the average head size (75x90) by adding
to each side the intrinsic system accuracy of 10 pixels (the radius of the inner
circle of the retina) plus another 10 pixels of tolerance.

Out of 500 images acquired from the 10 persons, 446 (89%) turned out to
represent the head as expected (figure 7). Three error typologies were found. In
the first, subjects move outside the camera’s range of operation. In the second,
subjects move too quickly, causing the frames to be blurred. The third typology
is erroneous head detection, which normally happens in the presence of sharp
geometrical patterns with contrasting lines moving in the image (figure 8).
This type of failure is partially corrected by the motion detection stage, and is
due to the simplicity of the head model employed (represented by 24 responses
at a single point).
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Fig. 8. The top two images show errors due to blurred frames. The two at the bottom

represent errors induced by sharp geometric patterns or head—shaped objects (the
helmet).

7 Conclusions

We have presented an attention driven search strategy mimicking the be-
haviour of the human saccadic system. The main feature of this algorithm is
the log—polar sampling of the Gabor decomposition. We have discussed two
applications: eye detection on static images and real-time head detection and
tracking. The same algorithm has been applied in the two cases, with only
minor modifications. We believe that the main advantages of our approach
are its generality and the dramatic reduction of the information processed in
order to perform the task. This is crucial to allow the use of such a powerful
mathematical tool as the Gabor decomposition in active vision applications.
Our setup constitutes, as far as we know, a novelty in that sense. Head lo-
calisation and tracking has been the privileged application for this research;
however, further work remains to be done on the tracking of small objects

(e.g. real-time eye detection) and the smooth pursuit of large objects in slow
motion.
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