
Face Authentication by retinotopic sampling of the Gabordecomposition and Support Vector MachinesF. Smeraldi, N. Capdevielle, J. Big�unMicroprocessor and Interface LaboratorySwiss Federal Institute of Technology (EPFL)CH-1015 Lausanne

Accepted for publication in the Proceedings of the 2nd International Conference onAudio and Video Based Biometric Person Authentication (AVBPA '99)Washington DC (USA), March 22nd { 24th, 1999

AbstractWe describe a face authentication algorithm basedon retinotopic sampling of the Gabor decomposition.A log{polar sampling grid is used to encode informa-tion from relevant regions of the face. Decision isbased on a multi expert scheme, in which each expertindependently authenticates the client based on a dif-ferent facial feature. Implementation of the expert asSupport Vector Machines is discussed. An alternativeimplementation using K{Nearest{Neighbours classi-�ers is presented for comparison.1 IntroductionAs services which require automatic access of eli-gible persons (clients) to services (privileges) becomeincreasingly common, the importance of face authen-tication has been growing. Neurological investigationshave shown a strong analogy between the responses ofthe simple cells in the Visual Cortex and a classic andpowerful computer vision tool, the Gabor decompo-sition [13]. Some aspects of the human visual infor-mation processing have been captured by the elasticgraph matching algorithm described in [8]. On theother hand, perceptive studies have shown that certainparts of the face, the eye region in particular, tend tobe more relevant than the others for face characteri-sation [12]. This observation, combined with the neu-rophysical and computational studies on attentionalmechanisms such as retinotopic sampling and the hu-man saccadic system [18], motivated us to develop anapproach based on the retinotopic sampling of the Ga-bor decomposition of facial images in the eye region.A rigid log{polar sampling grid is used to extract threesets of Gabor features for each client. These are ob-tained with the retina positioned on the subject's righteye, left eye and on the point midway between them,to which we will refer as \the nose" in the rest of thispaper. Three classi�ers are then separately trainedon the features set, so that a left eye expert, a right

eye expert and a nose expert are available which canindependently authenticate the person. Such a mul-tiple expert approach has already been shown to beadvantageous in [7].Two choices have been tested for the classi�er: aclassical K{Nearest{Neighbours solution and SupportVector Machines [17, 4]. The latter have already beenapplied to the related problem of face detection [15].Comparison of the results shows that optimal perfor-mance is obtained with the use of linear SVM's, whichalso con�rms the discriminating e�ciency of the fea-tures employed.2 Log polar sampling and the GabordecompositionOur feature extraction step is based on the use ofa sparse retinotopic sampling grid. The grid has log{polar geometry, meaning that the density of samplingpoint decreases exponentially from the centre. Thissampling topology automatically implements a \fo-cus of attention" concept, concentrating the computa-tional e�ort on the current �xation point. During thefeature extraction step, the retinotopic grid is placedon the two eyes and the nose of the subject being con-sidered for processing 1. For each of these placements,a feature set is acquired by computing a vector of Ga-bor �lter responses at each point of the grid. The threefeature sets so obtained constitute all the informationwe retain about a person, and are treated separatelyby the left eye, right eye and nose experts.The log{polar mapping has also been applied to thedesign of the Gabor �lters in the frequency domain.Standard complex valued Gabor functions in the fre-quency domain are scaled, translated and shifted ver-sions of the following function:Ĝ(~!j�x; �y; !0) =exp�� (!x � !0)22�2x � � exp � !2y2�2y!
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140Figure 1: The retinotopic sampling grid placed on theright eye of a subject for feature extraction.The parameters �x, �y, !0 and the rotation parameterare chosen to cover the frequency plane as completelyat possible.However, when only a small number of logarith-mically spaced frequency channels is used, problemsarise in obtaining a uniform coverage of the frequencyplane. Given that the spacing between the centresof the �lters increases exponentially, the symmetricGaussian shape doesn't appear to be optimal, sinceit extends the same distance towards the (well sam-pled) central region of the frequency space as well astowards the loosely sampled periphery. For these rea-sons, we choose to substitute for the commonly usedGabor function a modi�ed �lterĜ0(~!j��; ��; �0) =exp�� (�� �0)22�� � � exp � !�2�2�!where (�; �) = (ln(j~!j); tan�1(!y=!x)) is the confor-mal mapping of the frequency plane to log polar co-ordinates [1]. These �lters have been previously usedin texture analysis problems, showing high discrimi-nation power [2]. We therefore construct a uniformgrid of Gaussian �lters in the log{polar frequency do-main, which in turn yields the desired consistent andexponential coverage of the Fourier plane (�gure 2).3 Expert implementationAcceptance or rejection of the identity claims isdelegated to three independent experts, separatelytrained on the features extracted from the left eyeregion, the right eye region and the nose region of

Figure 2: Iso{curves of the Gabor �lters created byuniform sampling of the frequency plane in log{polarcoordinates. The crosses represent maxima, whose po-sitions are slightly biased towards origin.each single subject. Each expert is implemented asa classi�er. The sampling retina used for feature ex-traction consists of �ve concentric rings for a total of50 points. Gabor responses along six directions and�ve frequency channels are extracted at each point, sothat each expert is fed with 1500-dimensional data.Experts are trained to discriminate between datafrom the client and data from 35 training impostors.The database we employed for testing allows using anaverage training set of 10 images from the client and350 images of training impostors, for a total of around360 vectors. Since this number is small when com-pared with the dimensionality of the feature space, wechose to implement the experts as Support Vector Ma-chine (SVM) classi�ers. SVM's are known to assurea good generalisation ability even in the case of smalltraining sets. The SVM engine we used was developedfollowing the ideas in [11] and [14].3.1 SVM ExpertsThe theory behind SVM's is rather complex, andwe therefore refer the reader to speci�c literature.Nevertheless, the general working principle of a Sup-port Vector Machine can be intuitively described by aschematic diagram like the one in Figure 3. After an(optional) nonlinear mapping to a higher dimensionalspace, data are separated by means of the OptimalSeparating Hyperplane, which is the unique one hav-ing a maximum distance from the training examplesof the two classes. The decision function in this higherdimensional space is the sign off(x) = w � x+ b; (1)where x is the vector to be classi�ed and b is the con-stant. The normal vector to the hyperplane, w, is a



Figure 3: The Optimal Separating Hyperplane(schematic). The distance between the hyperplaneand the closest examples from the two classes is max-imised.linear combination of some of the training examples(or their images after the nonlinear mapping), whichare known as Support Vectors. If the norm ofw is cho-sen so that f(x) = �1 for the support vectors, jf(x)jcan be considered a measure of the certainty of theclassi�er. Given that the three experts are expectedto have comparable performance, it therefore makessense to combine their output by averaging the valueof the three classi�cation functions.3.2 KNN ExpertsIn order to allow estimating the role played bySVM's in the classi�cation result as compared withthe discriminating power of the feature extraction stepwe also implemented the experts by means of sim-ple K{Nearest{Neighbours (KNN) classi�ers [6]. Ina KNN classi�er, all of the positive and negative ex-ample vectors are retained to constitute a descriptionof the two classes. When presented with a vector xto be classi�ed, the classi�er �nds the K training ex-amples which happen to be closest to x according tosome metric (which in our case is the Euclidean dis-tance). The vector is then assigned to the class whichis mostly represented in the set of K neighbours, seeFigure 4. We emphasise that KNN based authenti-cation is di�erent from minimum Euclidean distancebased recognition in that the training impostors areconsidered as a whole to represent the \reject" class.That means that in case the set of K neighbours hap-pens to contain two example vectors belonging to theclient and K� 2 examples each from a di�erent train-ing impostor, the claim is rejected even if the client

Figure 4: The K{Nearest{Neighbours classi�er(schematic, K = 5). X is assigned to class f+g.is more represented than each of the impostors sep-arately taken. Since KNN classi�ers give an intrinsi-cally binary output, these outputs are combined by amajority voting scheme.4 The test procedureThe database used for testing was extracted fromthe �rst multi{modal veri�cation oriented databasecollected by the M2VTS consortium. It consists offour series of images of 37 people taken at di�erent pe-riods of time. Each series contains two to four frontalimages from each subject. Appearance of subjectsvaries widely across the di�erent series.Tests are performed according with a \leave{one{out" rotation scheme known as \Brussels Protocol" [3,5, 10]. At each step, one person is removed from thedatabase to act as impostor. Also, one entire imageseries is set aside for client tests. The 36 persons re-maining act as registered clients, and their three imageseries are available for training. Client tests are per-formed taking, for each client, an image from the testseries; a single image of the impostor is used for im-postor tests. This amounts to 36 client tests and 36impostor tests. By choosing the impostor and the testseries in all the possible ways, 36� 37� 4 = 5328 es-sentially di�erent client tests and the same number ofimpostor tests can be generated.In the training, each expert (independently of itsimplementation) uses the three training series of im-ages from the client which it should learn as positiveexamples, and all of the images from the remaining 35clients known to the system as negative examples.



SVM Experts FA FRLinear 0.0% 9.2%Poly - deg 2 0.0% 9.4%Poly - deg 3 0.0% 9.5%Poly - deg 4 0.0% 11.6%RBF 0.0% 14.1%Figure 5: False Acceptance and False Rejection withSVM experts | linear, polynomial and Radial BasisFunction kernels.KNN Experts FA FRK=1 1.4% 2.0%K=3 1.0% 5.4%K=5 0.5% 10.7%Figure 6: False Acceptance and False Rejection withKNN experts.5 Experimental resultsWe performed our tests by manually supplying theeye coordinates to the system for all of the images.The results we obtained indicate that a very low errorrate can be achieved by means of both SVM based andKNN based experts. Results are summarised in Fig-ures 5 and 6. As can be observed, the best KNNresults are obtained in the Nearest Neighbour case(K = 1). This can be ascribed to the relatively lowdensity of client examples in the feature space. Due tothe wider variability present in the training impostors,as compared with the intra{class client variation, SVMexperts display a consistent tendency towards false re-jection. This can be compensated for by modifying theSVM expert fusion decision function3Xc=1 fc(x) > 0 (2)with the introduction of a variable threshold � :3Xc=1 fc(x) > � (3)In this way, False Acceptance (FA) and False Rejection(FR) curves can be obtained (Figure 8), and systemperformance can be assessed in terms of Equal ErrorRate (EER | Figure 7). The performance obtainedwith SVM experts is, as expected, slightly superior tothe results a�orded by the KNN technique. Althoughthe system pro�ts from the optimal margin separationassured by SVM's, the dimensionality boost obtainedby resorting to nonlinear kernels does not appear to

SVM Experts EERLinear 1.4%Poly - deg 2 1.4%Poly - deg 3 1.4%Poly - deg 4 1.4%RBF 1.4%Figure 7: Equal Error Rates with SVM experts anddi�erent types of kernel.improve classi�cation results any further. This fact,together with the comparable performance of KNNexperts, certi�es the good discriminating power of thefeatures employed.As a �nal remark, since the decision function 1 ap-plies directly in the feature space in the case of linearSupport Vector Machines, SVM experts have the ad-vantage that training data are condensed into a singlevectorw. This is an advantage (over SVM's with non-linear mappings) in case a large client database mustbe maintained or biometric data must be stored on asmartcard.6 ConclusionsWe have described a face authentication systembased on log{polar sampling of the Gabor decompo-sition in the eye and nose regions. Experimental re-sults show that very low error rates (1.4% EER) canbe achieved by splitting the decision among multi-ple experts, each of which is trained on a di�erentfacial feature. Comparison of results from di�erentclassi�er types as well as previous results (� 6:5%EER) using the \Brussels Protocol" on the M2VTSdatabase [9] evidence the discriminating power of thefeatures themselves. The choice of a retinotopic sam-pling grid is also motivated by the possibility of per-forming attention{driven face and eye detection, asdescribed in [16]. In the future, we plan to integratethis facial feature detection step into the identity ver-i�cation system.AcknowledgementThis work has been supported by the VIRSBSproject within the European IT-LTR programme.References[1] J. Bigun. Speed, frequency, and orientation tuned3-d gabor �lter banks and their design. In Pro-ceedings of International Conference on PatternRecognition, ICPR, Jerusalem, pages C{184{187.IEEE Computer Society, 1994.
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