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Abstract. This paper suggests the use of symmetric patterns and their
corresponding symmetry filters for pattern recognition in computer vi-
sion tasks involving multiple views and scales. Symmetry filters enable
efficient computation of certain structure features as represented by the
generalized structure tensor (GST). The properties of the complex mo-
ments to changes in scale and multiple views including in-depth rotation
of the patterns and the presence of noise is investigated. Images of sym-
metric patterns captured using a low resolution low-cost CMOS camera,
such as a phone camera or a web-cam, from as far as three meters are
precisely localized and their spatial orientation is determined from the
argument of the second order complex moment I20 without further com-
putation.

1 Introduction

Feature extraction is a crucial research topic in computer vision and pattern
recognition having numerous applications. Several feature extraction methods
have been developed and published in the last few decades for general and/or
specific purposes. Early methods such as Harris detector [3] use stereo matching
and corner detection to find corner like singularities in local images whereas
more recent algorithms use extraction of other features from gradient of images
[4, 7] or orientation radiograms [5] with the intention of achieving invariance or
resilience to certain adverse effects in vision, e.g. rotation, scale, view and noise
level changes, to match against a database of image features.

In this paper, the strength of symmetric filters in localizing and detecting the
orientation of known symmetric patterns such parabola, hyperbola, circle and
spiral etc in varying scales and spatial and in-depth rotation is investigated. The
design of the pattern via coordinate transformation by analytic functions and
their detection by symmetry filters is discussed. These patterns are non-trivial
and often do not occur in natural environments. Because they are non-trivial,
they can be used as artificial markers to recognize certain points of interest in an
image. Symmetry derivatives of Gaussians are used as filters to extract features
from their second order moments that are able to localize as well as detect the
local orientation of these special patterns simultaneously. Because of the ease
of detection, these patterns are used for example in vehicle crash tests by using
the known patterns as markers on artificial test driver for automatic tracking [2]



and in ffingerprint recognition by using the symmetry filters to detect core and
delta points (minutia points) in fingerprints[6].

2 Symmetry features

Symmetry features are discriminative features that are capable of detecting lo-
cal orientations in an image. The most notorious patterns that contain such
features are lines (linear symmetry), that can be detected by eigen analysis of
the ordinary 2D structure tensor. However, with some care even other patterns
such as parabolic, circular or spiral (logarithmic), or hyperbolic shapes can be
detected but by eigen analysis of the generalized structure tensor [1, 2] which is
summarized below.

First, we revise the structure tensor S which enables to determine the domi-
nant direction of ordinary line patterns (if any) and the fitting error through the
analysis of its eigenvalues and their corresponding eigenvectors. S is computed
as:

S =
( ∫∫

(ωx)2|F |2
∫∫

(ωxωy)|F |2∫∫
(ωxωy)|F |2

∫∫
(ωy)2|F |2

)
(1)

=
( ∫∫

(Dxf)2
∫∫

(Dxf)(Dyf)∫∫
(Dxf)(Dyf)

∫∫
(Dyf)2

)
(2)

Where F = F (ωx, ωy) is the fourier transform of f and the eigenvectors kmax,
kmin corresponding to the eigenvalues λmin, λmax represent the inertia extremes
and the corresponding axes of inertia of the power spectrum |F |2 respectively.

The second order complex moment Imn of a function h, where m,n are non
negative integers and m+ n = 2 is calculated as,

Imn =
∫∫

(x+ iy)m(x− iy)nh(x, y)dxdy (3)

It turns out that I20 and I11 are related to the eigenvalues and eigenvectors
of the structure tensor S as follows:

I20|F |2 = (λmax − λmin)ei2ϕmin (4)

I11|F |2 = λmax + λmin (5)
|I20| = λmax − λmin ≤ λmax + λmin = I11 (6)

Here λmax ≥ λmin ≥ 0. If λmin = 0 then |I20| = I11 which signifies the
existence of a perfect linear symmetry which is also the unique occasion where
the inequality in Eq. (6) is fulfilled with equality, i.e. |I20| = I11. Thus a measure
of linear symmetry (LS) can be written as:

LS =
|I20|
I11

=
λmax − λmin
λmax + λmin

ei2ϕmin (7)



In practice this is a normalization of I20 with I11. The value of LS falls within
[0, 1] where LS = 1 for perfect linear symmetry and 0 for complete lack of linear
symmetry (balanced directions or lack of direction).

The Generalized structure tensor (GST ) is similar in its essence with the
ordinary structure tensor but its target patterns are “lines” in curvilinear co-
ordinates, ξ and η. For example, using ξ(x, y) = log

√
x2 + y2 and η(x, y) =

tan−1(x, y) as coordinates, “oriented lines” in the log-polar coordinate system
(aξ(x, y) + bη(x, y) = constant), GST will simultaneously estimate evidence for
presence of circles, spirals and parabolas etc. In GST, the I20 and I11 inter-
pretations remain unchanged except that they are now with respect to lines in
curvilinear coordinates, with the important restriction that the allowed curves
for coordinate definitions must be drawn from harmonic curve family. [2] has
shown that as the consequence of local orthogonality of ξ and η the complex
moments I20 and I11 of the harmonic patterns can be computed in the cartesian
coordinates system without the need for coordinate transformation as:

I20 =
∫∫

eiarg((Dξ−iDη)ξ)
2
[Dx + iDyf ]2dxdy (8)

I11 =
∫∫
|(Dx + iDy)f |2dxdy (9)

where η = η(x, y) and ξ = ξ(x, y) represent a pair of harmonic coordinate
transformations. Such pairs of harmonic transformations satisfy the following
constraint: ξ(x, y) = constant1 and η(x, y) = constant2 are orthogonal to each
other i.e. Dxξ = Dyη and Dyξ = −Dxη.

Thus, the measure of linear symmetry in the harmonic coordinate system by
the generalized structure tensor is in fact the analogue of the measure of linear
symmetry by the ordinary structure tensor but in a cartesian coordinate system.
The advantage is that we can use the same theoretical and practical machinery
to detect the presence and quantify the orientation of for example parabolic
symmetry (PS), circular symmetry (CS), hyperbolic symmetry (HS) drawn in
cartesian coordinates depending on the analytic function q(z) used to define the
harmonic transformation. Some of these patterns are shown in Figure 1 where
the iso-curves represent a line as aξ + bη = constant for predetermined ξ and η.

Harmonic transformation pairs can be readily obtained as the real and imag-
inary parts of (complex) analytic functions by restricting us further to q(z) such
that dq

dz = z
n
2 . Thus we have,

q(z) =





1
n
2 +1z

n
2 +1 if n 6= −2

log(z), if n = −2
(10)

Each of the curves generated by the real and imaginary parts of q(z) can
then be detected by symmetry filters Γ shown in the fourth row of Figure 1.
The gray values and the superimposed arrows respectively show the magnitude
and orientation of the filter that can be used for detection.
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Fig. 1. First row: Example harmonic function q(z), second and third rows show the
real and the imaginary parts ξ and η of the q(z) where z = x + iy. The fourth row
shows the filters that can be used to detect the patterns in row 2 and 3. The last row
shows the order of symmetry

Γ {n,σ
2} =





(Dx + iDy)ng if n ≥ 0

(Dx − iDy)|n|g if n < 0
(11)

Here g(x, y) = 1
2πσ2 e

− x2+y2

2σ2 is the Gaussian and n is the order of symmetry.
For n = 0, Γ is an ordinary Gaussian. Moreover, (Dx+ iDy) and

(−1
σ.2

)p (x+ iy)p

behave identically when acting on and multiplied to, a Gaussian respectively [2,
1]. Due to this elegant property of Gaussians functions, the symmetry filters in
the above equation can be rewritten as:

Γ {n,σ
2} =





(
− 1
σ2

)n (x+ iy)ng if n ≥ 0

(
− 1
σ2

)|n| (x− iy)|n|g if n < 0
(12)

3 In-depth (non-planar) rotation of symmetric patterns

Recognition of a pattern when rotated spatially in 3D is a challenging issue
and requires resilient features. To test the strength of the symmetry filters in
recognizing patterns viewed from different angles, we rotated the patterns geo-
metrically using ray tracing as follows.

Suppose we are looking at the world plane W from point O through an image
plane I in a pin-hole camera model as in Figure 2. Note that, if the image plane
I is parallel to the world plane W , we would see a zoomed version of the world
image depending on how far the image plane is from the world plane. When W
is not parallel to I, then the image plane is a skewed and zoomed version of the
world plane.
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Fig. 2. Ray tracing for non-planar rotation

A point P represented in the world coordinates as d, transfers to the camera
coordinates as R(t + d) if both t and d are in world coordinates. Here R is a
rotation matrix aligning the world coordinate axes with the camera coordinate
axes and t is the translation vector aligning the origin of the world coordinate
system to the origin of the camera coordinate system. The rotation matrix R
of the world plane is the product of the rotation matrices around each axis Rx,
Ry, and Rz relative to the world coordinates. As an example Rx is given as:

Rx(α) =




1 0 0
0 cos(α) −sin(α)
0 sin(α) cos(α)


 (13)

similarly Ry and Rz are defined and the overall rotation matrix R is given
as:

R = Rx(α) ∗Ry(β) ∗Rz(γ) (14)

The normal n to the world plane is the 3rd row of the rotation matrix R expressed
in the camera coordinates.

To find the distance vector from O to the world plane W , we can proceed in
two ways as LTn and tTn. Because both measure the same distance, they are
equal, i.e. LTn = tTn

L = τ



x
y
1


 = τLs ⇒ τLTs n = tTn (15)

where Ls = (x, y, 1)T . Thus

τ =
tTn

LTs n
(16)

⇒ L =
(
tTn

LTs n
Ls

)
(17)

d = R(L− t) (18)



Accordingly, g(x, y) = f(u, v), where d = (u, v, 0). The last two rows of
Figure 3 show the results of some of the symmetric patterns painted on the
world plane but observed by the camera in the image plane.
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Fig. 3. Illustration of in-depth rotation of symmetric patterns

4 Experiment

4.1 Recognition of symmetric patterns using symmetry filters

We used the filter designed as in Eq. 12 to detect the family of patterns f
generated by the analytic function q(z), where

f = cos(k1<(q(z)) + k2=(q(z))) + 1 (19)

Here q(z) is given by Eq. 10 and n ∈ −4,−3,−2,−1, 0, 1, 2
The following steps are applied on the image to detect the pattern and its

local orientation:

1. Compute the square of the derivative image hk by convolving the image f
with a symmetry filter of order 1, Γ {1,σ

2
1} and pixelwise squaring of the com-

plex valued result as:
hk =< Γ

{1,σ2
1}

k , fk >
2. Here σ1 controls the extension of the interpolation

function, i.e. the size of the derivative filter Γ 1,σ1 that is modeling the ex-
pected noise in the image;

2. Compute I20 by convolving the complex image hk of step 1 with the appro-
priate complex filters from Eq 12 according to their pattern family defined
by n and by their expected spatial extension controlled by σ2. That is:
I20 =< Γ

{m,σ2
2}

k , hk >.
3. Compute the magnitude image I11 by convolving the magnitude of the com-

plex image hk with the magnitude of the symmetry filters from Eq 12 as:
I11 =< |Γ {m,σ

2
2}

k |, |hk| >;



4. Compute the certainty image and detect the position and orientation of the
symmetry pattern from its local maxima. The argument of I20 at locations
characterized by high response of the certainty image, I11 yields the group
orientation of the pattern;

The strength of the filters in detecting patterns and their rotated version is
tested by applying the in-depth rotation of the symmetric patterns as discussed
in the previous section. Figure 4 illustrates the detection results of circular and
parabolic patterns rotated 45◦ around the x and y axes.
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Fig. 4. Detection of symmetric patterns using symmetry derivatives of Gaussians on
simulated rotated patterns

The color of the I20 image corresponding to the high response on the detected
pattern (last column) indicates the spatial orientation of the symmetric pattern.
The filters are also tested on real images captured with low-cost off the shelf
CMOS camera. The result shows that symmetry filters detect these patterns
from distance of up to 3 meters and in-depth rotation of up to 45 degrees, see
Table 1. Similar result is achieved with web cameras and phone cameras as well.
The color of the I20 once again indicates the spatial orientation of the symmetric
pattern detected.
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Fig. 5. Detection of symmetric patterns in real images using symmetry filters



Rotation Distance from image and accuracy
(in-depth) 2 meters 3 meters

d α d α

0◦ ±1 pixel ±2◦ ±1 pixel ±5◦

30◦ ±1 pixel ±3◦ ±1 pixel ±8◦

45◦ ±2 pixel ±6◦ ±2 pixel ±12◦

60◦ ±3 pixel ±15◦ ±4 pixel ±20◦

Table 1. Average results of recognition of symmetric patterns from multiple views.
d=localization error and α=orientation error. The test is performed on 12 different
images, e.g. Figure 5 captured by a 2.1 megapixel CMOS camera. Each of the images
are subjected to zooming and in-depth rotation as in Figure 4 but naturally

4.2 Recognition of symmetric patterns using Scale Invariant
Feature Transform-SIFT

Lowe [4] proposed features known as SIFT to match images representing dif-
ferent views of the same scene by using histograms of gradient directions. The
features extracted are often used for matching between different views severed
by scale and in-depth local rotation as well as illumination changes. SIFT feature
matching is one of the most popular object detection methods.

The SIFT approach uses the following four steps to extract the location of a
singularity and its corresponding feature vector from an image and store them
for subsequent matching.

1. Scale-space extrema detection: this is the first step where all candidate points
that are presumably scale invariant are extracted using arguments from
scale-space theory. The implementation is done using Difference of Gaus-
sian (DoG) function by successively subtracting images from its Gaussian
smoothed version within an octave;

2. Keypoint localization: the candidate points from step 1 that are poorly lo-
calized and sensitive to noise, especially those around edges, are removed;

3. Orientation assignment: in this step, orientation is assigned to all key points
that have passed the first two steps. The orientation of the local image around
the key point in the neighborhood is computed using image gradients;

4. Extracting keypoint descriptors: the histograms of image gradient directions
are created for non-overlapping subsets of the local image around the key
point. The histograms are concentrated to a feature vector representing the
structure in the neighborhood of the key points to which the global orienta-
tion computed in step 3 is attached.

The SIFT demo software1 can be used to extract the necessary features to
automatically recognize patterns in an image such as those shown in Figure 5.
To this end, we used real images (containing symmetric patterns), e.g. the 2nd

1 SIFT Demo http://www.cs.ubc.ca/ lowe/keypoints/



and 3rd rows of Figure 4, so that a set of SIFT features could be collected for
each image. However, keypoint extraction failed often presumably. The method
returned a few key points or in some cases failed to return any key point at all
in the extraction of the SIFT features.

SIFT features are often successful in extraction of discriminative features in
images and are widely used in computer vision. The key points at which these
features are extracted are essentially based on their lack of linear symmetry
(orientation of lines) in the respective neighborhood, e.g. to detect corner like
structures. These keypoints as well as the corresponding features are organized
in such a way that they could be matched against keypoints in other images with
similar local structure. However, the lack of linear symmetry does not describe
the presence of a specific model of curves in the neighborhood such as parabolic,
circular, spiral, hyperbolic etc. In our case, lack of linear symmetry in addition
to existence of known types of curve families as well as their orientation can
be precisely determined, as demonstrated in Figure 4. Although these patterns
are structurally different, SIFT keypoints consider them as the same often with
only one key point - the center of the pattern leaving the description of the
neighborhood type to histograms of gradient angles(SIFT features). The center
of the pattern is chosen as a key point by SIFT since that is where there is a lack
of linear symmetry. However, SIFT features apparently cannot be used to identify
what patterns are represented around the key point because all orientations
equally exist in the local neighborhood for all curve families despite their obvious
differences in shape.

Two of the images from Figure 1 are used to test the capability of SIFT
features in detecting the patterns in real images. Additive noise is applied to the
images to study the change in extraction of keypoints as well as the corresponding
SIFT features. The clean images returned 1 and 6 key points and the noisy images
returned 89 and 101 key points, see Figure 6. Although, 89 and 101 key points
are extracted from the two noisy images, none of these points actually match to
the patterns in the real scene which contains these patterns, last row of Figure
6.

5 Conclusion and further work

In conclusion, the strength of the responses of symmetry filters in detecting
symmetric patterns that are rotated (planar and in-depth) is investigated. It is
shown via experiments that images of symmetric patterns (see Figure 5) used
as artificial landmarks in a realistic environment can be localized and their spa-
tial orientation simultaneously detected by symmetry filters from as far as 3
meters and in-depth rotation of 45 degrees. The images are captures by a low
resolution commercial 2.1 megapixel Kodak CMOS camera. The results of this
experiment illustrated that symmetry filters are resilient to in-depth rotation
and scale changes in symmetric patterns. On the other hand, it is shown that
SIFT features lack the ability to extract keypoints from these patterns as they
look for lack of linear symmetry (existence of corners) and not the presence of
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Fig. 6. Extraction and matching of keypoints on Symmetric patterns and their noisy
counterparts using SIFT

certain types of known symmetries. SIFT feature extraction fails because all ori-
entations equally exist around the center of the image which makes it difficult
for SIFT feature to find differences in the gradients in the local neighborhood.

The findings of this work can be applied for automatic camera calibration
where symmetric patterns are used as artificial markers in a non-planar arrange-
ment in a world coordinate system to automatically determine the intrinsic and
extrinsic parameter matrices of a camera by point correspondence. Other possi-
ble applications include generic object detection and encoding and decoding of
numbers using local orientation and shape of symmetric images.
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