

Abstract— Serto is the cursive alphabet of Syriac-Aramaic,
which is used by the largest corpus of documents in libraries in
Aramaic. A lingua franca, and often a source language, Aramaic
has influenced major Judaic, Christian and Islamic thoughts as
well as the development of science. The script is cursive, e.g.
Arabic, and consequently it has a hand-writing appearance
compared to Latin. Serto, and Aramaic in practice, has not an
automatic character recognition system, OCR. Most library
documents are reproductions using printed characters. The
readers would strongly benefit from having an OCR, as these
reproductions are predominantly books, printed in the
pre-computer era. We propose a segmentation-free OCR using
linear symmetry features with an individual threshold for the
tensors of the characters, and an ordered search sequence. It
yields ~ 90 % correctly identified characters in the average. As a
first recognition scheme for Serto, it represents a base-line OCR
for Syriac-Aramaic.

I. INTRODUCTION

There are many documents written in Aramaic, as this
Semitic language is the language spoken and written for the
longest uninterrupted period in time. This is partly due to the
fact that during nearly 2 millennia starting from 8 BCE it
served as a lingua franca in a large geographic region, from
the Middle East to the Far East. Syriac is a dialect of Aramaic
and is of particular interest as it contains a rich corpus of
ancient religious documents important to Judaic, Christian
and Islamic thoughts as well as scientific documents of
ancient times.

Yet the Serto Script, which is the name of the cursive
alphabet of Syriac and represents the largest corpus in
libraries, currently does not have a character recognition
system. Most of these documents are reproduced by printed
letters from the pre-computer era. Consequently a printed
Syriac-Aramaic character recognition system is desirable to
make these documents computer searchable.

The approach proposed in this paper uses a
segmentation-free process using linear symmetry with a
threshold of correlation for each character, and an ordered
sequence of characters to be searched for. The system, using
the same font type and size for the training corpus and testing
corpus, has yielded results of approximately 90 percent
correctly identified characters for the overall system. As a
first recognition scheme for Syriac-Aramaic, the suggested
scheme represents a base-line reference system for this
cursive alphabet which appears more like hand-writing than

Manuscript received July 14, 2007.
E. Tse is with Halmstad University, S-301 18 Halmstad, Sweden (e-mail:

mi04elts@stud.hh.se)
J. Bigun is with IDE, Halmstad University, S-301 18 Halmstad, Sweden

(corresponding author josef.bigun@ide.hh.se).

printed text when compared to Latin.
There as been no OCR system or scheme for the Serto

script of Syriac. However, Clocksin [1] has studied
Estrangelo which is another script of Syriac. The two scripts
of the language (Serto and Estrangelo) differ significantly
both in style and their intended use. The Estrangelo script
came to be used more for titles and scripts in ancient
monuments and documents whereas Serto is used for the bulk
of the documents. Accordingly the overwhelming share of
Syriac-Aramaic texts is in Serto.

Additionally, Syriac-Aramaic is spoken daily by a small,
but yet still vibrant minority, approximated to 2 million
globally. Thus, an OCR for Syriac-Aramaic is highly
desirable, both for scholarly and social purposes that include
preventing the knowledge about an ancient language from
disappearing.

A summary of the OCR systems used by other languages
than Aramaic is given in Section II.

II. RELATED OCR SYSTEMS

The two fields which share the most in common with Serto
script are Arabic OCR systems and Cursive handwriting OCR
systems. Both of these fields deal with cursive characters
where characters are connected together and the form of the
letter depends on the position where the letter occurs in a
word. After describing these OCR systems, we introduce the
segmentation-free approach to character recognition.

A. Arabic OCR systems
Arabic writing shares some features with Serto but the two

scripts have their differences, which are significant even for
untrained Latin readers. The similarities are that both scripts
have cursive characters written from right to left.

OCR systems for Arabic continue to be an area of ongoing
research. Currently there are two approaches to recognition:
holistic and analytical.

The holistic approach looks at the whole word when doing
the recognition; there is no attempt to try to break it down into
characters for identification. These systems look at words by
methods based on Dynamic Programming or Hidden Markov
models. [2]

The analytical approach does not look at words as a whole
when doing recognition, instead smaller units are used. [2]

Segmentation beyond the word and sub-word
segmentation can be done using segmentation into primitives
or segmentation into characters.

In most systems segmentation is the source of the majority
of errors the system makes. [3]

A Base-line character recognition for Syriac-Aramaic

Elizabeth Tse and Josef Bigun, fellow of IEEE

10481-4244-0991-8/07/$25.00/©2007 IEEE

Authorized licensed use limited to: Halmstad Hogskola. Downloaded on March 11, 2009 at 09:30 from IEEE Xplore. Restrictions apply.

josef
Typewritten Text
IEEE int. conf. on Systems, Man, and Cybernetics, volume 1-8,
pages 2602-2609. IEEE Xplore, 2007

B. Cursive handwriting OCR systems
Research on OCR systems for cursive handwritten Latin

text is very intensive. The study of segmentation is still
ongoing with varying degrees of success in character
segmentation. Some problems are the start and end points of
characters, the thickness of the writing and the style of writing
used [4].

The segmentation used currently is either word
segmentation or over segmentation using some of the same
techniques used in Arabic OCR systems.

C. Using a segmentation-free approach
The system proposed in this paper uses a segmentation-free

approach because the Serto script has characters that are
cursive with difficult to determine start and end points for
characters. This is one difference between Serto and Arabic
or the cursive handwritten form of Latin languages. Since
segmentation in these languages is difficult and not easy as in
scripts like printed Latin, removing the need for segmentation
becomes an alternative way of dealing with the problem of
segmentation, at least to obtain a quick baseline recognition
scheme.

Premaratne [5] has used a segmentation-free approach of
character recognition which uses Linear Symmetry (LS) in
the recognition process, as we do in this study, but for the
Sinhala script (used in Sri-Lanka) with approximately 95%
recognition of characters. However, the same accuracy level
cannot be expected for Serto, as Serto is cursive whereas
Sinhala has isolated characters.

III. THE SERTO SCRIPT OF SYRIAC

As the analysis below at the alphabet level shows, the
recognition that needs to be done by an OCR when scanning
Serto is more challenging than Latin because the character
differences are very subtle and the characters are connected.
Once the characters are displayed in their alphabetic form as
in Fig. 1, the next step is to look at these characters as they
appear in a more natural connecting way, [6].

Serto is written from right to left and from the top of the
page to the bottom of the page. The letters are cursive and
depending on where in the word or sub-word they are located
take on the different shape. Each of the 22 characters have a
different form if the character is an isolated character, a
character at the end of the word, a character in the middle of a
word or a character at the beginning of a word.

There are also some characters which can have another
character attached on its right side but cannot have a character
connected to it on its left side. These characters only have two
forms, an isolated form and a form for a character at the end
of the word. Any word which has one of these characters is
separated into sub-words, having the character which can
only have right connecting characters as the end of the
sub-word and the next character in the word as the starting
character of the following sub-word in the word.

The number of characters, 22, can shape wise (though not
semantically) be expanded to 72 including the variations of

each character as shown in Fig.1. Furthermore, there are some
special characters used in specific cases not related to
location. Adding these 6 special characters to the 72 main
characters and their variations, gives a total of 78 shape wise
unique characters, see also Section IV E.

Some characters look quite similar, with only small
differences. The characters that presented problems at first
were ones that were very similar in appearance like: d lat
(,) and r š (,); taw (,) in its form at the beginning of a
word or sub-word and lap (,) in its form at the end of a
word or sub-word; b t (, , ,) and k p (, , ,) in the
form in the middle of a word or sub-word and at the beginning
of a word or sub-word; w w (,) and qop (, , ,); l mad
(, , ,) and C (, , ,); and h t (, , ,) and yod
(, , ,).

The characters d lat (,) and r š (,), presented some
difficulty in recognizing them as there is only a difference of a
dot. The dot is either above or below the main stroke of the
character. Other than the location of the dot, both d lat (,)
and r š (,) appear the same.

The characters taw () in its form at the beginning of a
word or sub-word and lap () in its form at the end of a word
or sub-word have similar structures. Both characters have a
vertical line with a horizontal line connect to it at the right
hand side of the vertical line. The distinction between these
two is that for the lap character, a small stroke or tail that
comes from the vertical stroke does not finish at the point
where it joins the horizontal stroke. There is an easier way to
distinguish these two characters when they are in their natural
form in a piece of text. The fact that taw in this form () can
only appear at the beginning of a word or sub-word and that
lap in this form () can only appear at the end of a word or

sub-word makes the characters easy to determine once they
are examined in a real text.

The characters b t (, , ,) and k p (, , ,) in the
form in the middle of a word or sub-word and at the beginning
of a word or sub-word are similar in that they are all
characters having a horizontal stroke with a curved stroke
starting at the right hand side and ending on the left hand side
before connecting again with the horizontal stoke. In Latin
these look like a backward c written in cursive form. The
main difference between these two is the length and radius of
the curved line. With b t (, , ,) the curve has a large
radius and length making it appear more of a smoother curve
compared to the more compact curve of the k p (, , ,) in
the form in the middle of a word or sub-word and at the
beginning of a word or sub-word.

The characters w w (,) and qop (, , ,) are similar in
that they are all very similar to the Latin o. The w w (,)
character at the beginning of a word is less likely to be
confused as it only has no horizontal line at the base of the
character. The w w (,) at the end of word or sub-word is
very similar to all qop (, , ,) character variation in that
they all have horizontal components at the bottom of the
circle. The main way to distinguish these is that w w (,) at
the end of a word or sub-word only has a horizontal stroke to

1049

Authorized licensed use limited to: Halmstad Hogskola. Downloaded on March 11, 2009 at 09:30 from IEEE Xplore. Restrictions apply.

the right hand side of the circle part of the character. The qop
(, , ,) characters all have a horizontal stroke to the left of
the circle part of the character.

The characters l mad (, , ,) and C (, , ,) are
practically identical except for the length of the stroke in the
north-west direction for C (, , ,)is about half the size as it
is for the l mad (, , ,) characters.

The characters h t (, , ,) and yod (, , ,) are very
similar except that h t (, , ,) has one more bump or
small peak off the baseline of the character compared to the
same variation of the yod (, , ,) characters.

A. Understanding how the characters are connected
The Serto script has characters which overlap in the

horizontal direction. The overlap happens for characters
which are connected to one another where one character has a
vertical stroke in the upper direction and the other in the lower
direction, or when one character is close to the baseline of
another character and the other character to which it is
connected has a long vertical stroke, has an angle to it or a
curve.

Figure 2 shows some characters from a text which has
overlapping bounding boxes.

Both characters are easily identified but where does one
character end and the next start? Is there a place on the
baseline of where one ends and the other starts? The answer is
no, there are not places where you can draw a vertical line and
be able to separate the two characters with one being fully on
one side of the line and the other being fully on the other side
of the line. More sophisticated representation than vertical
rectangles are needed, which adds to the implementation
complexity.

B. Words and Sub-words
There are some characters that can only be connected to

another character on the right hand side of the character. This
is the reason why there are sub-words (within words) that
actually do not represent complete words but are caused by
the writing system. In Fig. 3, a word is separated into
sub-words because of the characters which can only be
connected on the right hand side. In Fig. 4, two words which
appear next to each other are shown.

The spacing between words and sub-words is different as
shown in Fig. 3 and Fig 4. There is a much large distance
between two words then there are between 2 sub-words. The
exact distance depends on the font used, but in general the
distance between two words is double the distance between 2
sub-words.

IV. THE RECOGNITION PROCESS

The recognition process proposed in this paper examines
the correlation of the tensor of the character in the page to be
recognized with each of the tensor templates of the characters
through a filtering process. To do this each image
neighborhood is filtered through the LS tensor yielding the
LS tensor image. In the recognition process the scalar
products between the tensor image and the tensor template of

the character (being searched for) are computed for every
pixel via complex correlation filtering. This is repeated for
every character of the alphabet until all characters in the
image are identified.

If the correlation which is calculated for the pixel being
focused on meets or exceeds the threshold for correlation, the
pixel is identified as the centre pixel of a possible character.
The pixel column and row coordinates are then checked
against the vector which stores the list of all identified
characters. If there are no centre pixels of previously
identified characters which occur inside the exclusion area of
the possible character, the character is identified. The column
and row value of the pixel, the pixel which was focused on, is
added to the vector of identified character along with the
ASCII value of tensor template of the character. If there are
any previously recognized characters in the exclusion area of
the possible character, then character is rejected as a (new)
character.

Once a character is either accepted or rejected, the
recognition process moves on to the next pixel to be
recognized on the page upon which the OCR is being
preformed and the correlation is calculated for this new pixel.

A. Linear Symmetry Tensor as Template
The LS Tensor of an image is constructed using four 1-D
filters:
 dx (Gaussian Kernel) . (1)
 dy (= -dxT) . (2)
 gx (Gaussian Kernel) . (3)
 gy (= gx T) . (4)

The two derivative convolutions dxf and dyf of the original
image are constructed using the pairs dx, gy and dy, gx
respectively.

 dxf = convolution(gy, convolution(dx, Image) (5)
 dyf = convolution(gx, convolution(dy, Image) (6)

The spatial averages of the complex quantity below
represents the orientation information of the LS Tensor [7].
Thus we only use 2 components of the direction tensor (which
has 3 components) and do so by representing it as a single, but
complex valued scalar, LS, for every pixel, for efficient
implementation of tensor scalar products.

() 2^*ˆ dyfjdxfSL += where)1(−=j

))ˆ,(,(SLGynconvolutioGxnconvolutioLS =
where Gx and Gy are gaussians that are larger than gx
and gy.

(7)

B. The size of the local neighbourhood
The LS is constructed by averaging the infinitesimal

direction, SL̂ , of the local neighbourhood as represented by
Gx and Gy, an area around the pixel, for each of the pixel in
the image.

C. The Frame for comparison
A frame is used to limit the area of the page (to be

1050

Authorized licensed use limited to: Halmstad Hogskola. Downloaded on March 11, 2009 at 09:30 from IEEE Xplore. Restrictions apply.

recognized) by making an area around the pixel being
examined the same size as the size of tensor template of the
character being searched for.

D. The Correlation between character template and the
image
The Correlation between the character Tensor template and

the tensor image of the page which is being searched for
characters actually implements a scalar product, and
therefore, a complex conjugation is needed before
multiplications. This is implemented as follows (with
Absolute operation calculating the magnitude of the complex
valued pixels):

Absolute(convolution(conjugate(LS Tensor of
Character), LS Tensor of Image))

(8)

E. Adding special characters
In the Serto script there are a few special characters that are

modified letters. In Fig. 5, we show these special characters.
These modifications do not represent new characters.

For ease in the recognition process, however, these are
viewed as distinct characters and each is given its own
template.

The special character r š (,) in its plural form was also
the second group of characters our scheme turned out to have
difficulties with in preliminary studies with. In the Serto
script to denote the plural form, a dot is added to the top of a
character. The letter r š (,) has a dot already above the main
part of the character, so a second one is added. This
modification made by the written language convention makes
it difficult to identify it as a r š (,) letter. As shown in Fig 5,
this modified letter is made a new character, giving both
forms of this letter their own tensor template, the problem is
limited; thus meaning there will be less likelihood in
misidentifying this letter as d lat (,).

F. Finding the order of characters to be recognized by
minimizing confusion
To find the order in which the characters should be

identified, each character was studied in its isolated form as in
Fig. 1 then recognized, to identify the other characters with
which it could be confused. A matrix is made for each
character showing all the characters that are also identified
when searching for the original character.

By putting all the characters which can be mistaken for a
different letter, before the character it is confused with, the
confusion can be reduced.

The second step was to study the letters as they naturally
occurred. We used pages of text for this purpose. Each page
contained approximately 110 words. Repeating the process
used for the isolated characters and by starting from the
already partly ordered list derived from looking at the isolated
characters, we could obtain a convergence of the order of
characters to be recognized.

G. Correlation threshold
The threshold of correlation is a value used as an

acceptance level. The character is searched for by examining
every pixel currently for easy implementation, though it is
possible to avoid searches in the space between text-lines.
The scalar product is computed between the LS tensor of the
frame and the corresponding tensor template for the
character, by using complex correlation. The characters are
accepted as possibly recognized if the correlation exceeds the
threshold of a candidate character. Otherwise they are
rejected.

H. The exclusion area around identified characters
The fact that characters are not segmented means the same

character can be identified more than once as the same
character or as a different character at neighboring pixels.
Setting a box around the found character in which another
character may not be identified can solve the problem of
multiple identifications. However, the idea of using a box the
same size as the template character is not something that
would work well in this case because of overlapping
characters as discussed in section III A.

Instead, defining an additional area around the character
boxes turned out to be a better approach to avoid the
overlapping bounding-boxes. As in Fig. 2, the end point and
start point overlap causes even the bounding-boxes overlap.

In Fig. 2, the two boxes contain some of the pixels which
belong to the other character. In setting a box around each
character which is found pending on the bounding-box of the
template, the second character, enclosed in the solid box, may
not be identified because its box overlaps the dashed box and
the solid box would be rejected as a character.

Using a box other than the bounding-box around the centre
pixel, allows for more flexibility with little impact on
recognition performance. As in Fig. 6, making a number of
pixels above and below as well as to the right and to the left of
the centre pixel of a character, allows for the same character
not to be identified multiple times as the same character and
allows for characters that have some overlapping column
pixels.

The problem now becomes how large the box around the
centre pixel should be. In the approach used in this paper, a
standard vertical and horizontal distance around the centre
pixel was chosen for all characters.

I. Testing the system
Once the training of the system was completed, 20 new

pages of text were used to test the system. These are pages
which have not been seen by the system before.

J. Parameters for the testing the system
The testing was performed by using the following

parameters: all pages that are processed had a skew angle of
less than 1 degree; all non-Serto script characters are removed
manually; a single source (one book) is used for all the pages
used in tests; all images are scanned in using 300dpi; all
templates are made from characters which appear in the
single source.

1051

Authorized licensed use limited to: Halmstad Hogskola. Downloaded on March 11, 2009 at 09:30 from IEEE Xplore. Restrictions apply.

V. THE PROCESS TO PREPARE THE SYSTEM

The recognition process proposed uses a comparison
between the correlation of each of the 72 characters (the 22
letters in the alphabet including all the variations) plus the 6
special characters templates and the image to be recognized.

Each of the character templates is searched for in the tensor
image (of the page to be recognized) pixel by pixel. Using a
frame of pixels of an area comparable in size to the template
size, the correlation of the template character and the tensor
image is calculated moving through the image (to be
recognized) pixel by pixel.

A. Constructing the template
Each of the characters, the letters in all their variations and

the 6 special characters need to have templates created.
1) Finding the characters to make the templates of

Here, the characters that the templates are made from are
found out of the pages from the book on which the system
will perform the character recognition.

2) The tensor template
An adjustable box is used around the character from which

the tensor is made to determine the coordinates of the top left
pixel’s column and row, and the bottom right pixel’s column
and row of the box. All pixels inside the box will be used in
the tensor template.

The process for computing a Tensor described in Section
IV.A is used for the template character Tensor except instead
of performing the calculation on the whole page, only the area
in box described above is used.

B. Finding the initial threshold for the template
Once the tensor is constructed, a threshold is needed. The

plot of tensor scalar products is used to find the threshold. The
threshold found by examining the plot is a temporary
threshold which will be modified when the characters
template is studied further together with other character
templates and when tests are made on the system.

C. The second step in determining the correlation
threshold
Figure 1 is used to test each character to find a better

threshold. Each character template is compared with the
tensor representation of a page that has all the characters to be
recognized. The threshold is changed until a limited number
of characters are identified as the character being searched
for. It might not be possible to limit the character identified to
the one that is being searched for. If there is more than one
character that is identified and changing the threshold does
not help, then a list is made of the characters that are also
confused with the character being searched. This list will be
used later to determine the order of characters searched for by
the system.

D. Compute the tensor for all the pages which OCR is to
be preformed on
The system does not look at the pages as ordinary image

files for the analysis. The pages must be in the Tensor

representation for the image.

E. The scheme is run for all the characters
The above scheme is run through for all the characters and

the results are analyzed. A confusion matrix is made to help
analyze the results. For every letter, which has a minimum of
2 characters, the correctly identified characters are counted,
the missed characters are counted and all the wrongly
identified characters are recorded on the matrix. Once the
matrix is finished, it is used to find out which characters need
more modifications to the threshold and to the order in which
the characters are searched. At the beginning the confusion
matrix had entries for all the different characters not just the
letters.

F. Determining the order of the characters to be searched
for
The results from the confusion matrix are used for

determining the order of characters to be searched for in the
program. If it appears that one character is being missed when
it is being searched for, but found when searched for another
character, the missed character is then put before the
character with which it is confused.

G. Adjusting the threshold of correlation
The third step in adjusting the threshold is done from the

confusion matrix. If too many characters are missed in the
test, lowering the threshold may help, or if too many other
characters are also found when searching for the character,
the threshold can be increased. Before a new full test is made,
a smaller test is performed with the newer threshold to see if
this change in threshold will improve the results.

H. Perform the test again
The test is preformed again with the changes to the

threshold and the changes to the order of the characters to be
found. A new matrix is made and the steps from Sections E
through G, above, are repeated and the test is redone. This
process is continued until the results are at a level that is no
longer improved.

VI. RESULTS

The Serto script OCR system proposed in this paper
generated approximately 90-percent overall character
recognition rate after a test was performed. The individual
results for the characters were also high with a few problems
achieving character recognition rates beyond 80 percent for
certain characters.

The results for each letter and the 6 special characters
varied from almost 100 percent recognition to as low as 59
percent. Letters such as h t (), tet () yod (), h t (), nun
() and qop () were found to be less than 80% correctly
identified.

There are few characters with low recognition rates; these
are characters with high similarity to other characters. Two of
the lowest recognition rates were found in qop and yod.

The qop characters were often confused with the characters

1052

Authorized licensed use limited to: Halmstad Hogskola. Downloaded on March 11, 2009 at 09:30 from IEEE Xplore. Restrictions apply.

h t and w w. The character qop as it appears in the middle
and end of a word or sub-word was mistaken for w w as it
appears at the end of the word or sub-word.

The w w character as it appears at the beginning of a word
or sub-word was often misidentified as h t as it appears at the
beginning of a word or sub-word or h t was misidentified as
w w.

The yod letter had the lowest recognition rate –
approximately 59 percent. The character yod was often not
identified as any character, was misidentified as h t or was
misidentified as part of a larger character.

There is also a problem with the character being missed
because they are presumed to be part of a large character.

The yod character, which is a tiny modification of a straight
line, is missed in the identification process because another
character which has already been identified is close to the yod
character. When a check to see if there are any identified
characters in the exclusion area of the yod character, the
simple test used rejects the yod character. This is illustrated in
the Fig. 6.

These characters also get confused with the h t characters.
Two yod characters which appear next to each other in a word
or sub-word can be misidentified as h t rather then 2
instances of the yod character. This problem was also found in
human recognition of individual letters.

Further work needs to be done to obtain better recognition
rates for these 4 characters so they aren’t misidentified as h t
or not identified as anything.

Some of the characters experience better recognition rates
when they came before or after other characters. An example
of these can be seen with character had to come before ,

 and . Characters and had to be before , , ,
which had to be before characters and .

A solution to the false rejection of the character could be
addressed by having each character have an exclusion area
best suited to that character. Some larger characters which
have the problem of being identified more than once as the
same character would need a larger exclusion area and
smaller characters like yod could have a smaller exclusion
area. This has not been attempted due to the limited
time-period for the current study, but would be a ripe area for
future research.

VII. CONCLUSION

There are many historical documents which are written in
Aramaic, and most of these are written in the form of the
Serto script of Syriac. Currently there is no OCR system to
put these documents into electronic form; documents are
either scanned in as pictures into electronic format or
someone takes the time to type the document on a word
processor. If the document is turned into a picture, any
information needed from the document must be found by
reading the whole document. If the document is hand typed
into a word processing program it takes a great deal of time.
Neither of these methods allow for large amounts of such
documents to be turned into an electronic format.

The system proposed in this paper is segmentation-free
processing using linear symmetry with a threshold of
correlation for each character, and ordered sequence of
characters to be searched for; has given results of 90%
correctly identified characters for the overall system.

The combination of using both ordered sequence of
character and the appropriate threshold of correlation together
yielded the best results. However because there is no
segmentation done before the recognition process, a character
on the original image can be identified as the same character
more than once. Adding an exclusion area around the centre
pixel around the character and checking to see if any
previously identified character has a centre pixel within the
exclusion area, helps avoid this problem. If there is previously
identified character within the exclusion area, the character is
simply not added to the list of recognized characters.

Further work is needed to make the system more flexible in
terms of fonts and to speed up the execution of the system
(e.g. not processing the inter-line spaces). Yet we believe that
the approach proposed here gives a good insight on the
challenges and provides for a baseline recognition system.
For future research in the character recognition for
Syriac-Aramaic, a baseline system would serve as a scheme
to be improved upon and/or to measure progress against.

ACKNOWLEDGMENT

The Syriac text is set using the MELTHO fonts from Beth
Mardutho: The Syriac Institute [www.BethMardutho.org].

REFERENCES

[1] Clocksin, W.F. "Handwritten Syriac character recognition using order
structure invariance", Proc. 17th International Conference on Pattern
Recognition, ICPR04, IEEE Computer Society Press, 2004, pp.
562-565.

[2] Amin, A. “Off-line Arabic Character Recognition: The state of the
Art”, Pattern Recognition, Vol. 31, No.5, pp 517-530, 1998.4. al-Badr,
B and Mahmoud, S, “Survey and bibliography of Arabic optical text
recognition”. Signal Processing 41, 1995, pp 49-77.

[3] AL-Badr, B. and Mahmoud, S.A. “Survey and bibliography of Arabic
optical text recognition”. Signal Processing 41 (1995), pp 49-77.

[4] Schlapbach,A and Bunke, H “Off-line Handwriting Identification
Using HMM Based Recognizers”, Proceedings of the 17th
International Conference on Pattern Recognition (ICPR’04), IEEE
Computer Society, 2004, pp. 1051-1055.

[5] Premaratne, H.L “A Printed Sinhala Script Recognition System”.
Thesis for the Degree of Licentiate of Engineering, Technical Report
No. 440L, Chalmers University of Technology.

[6] Healey, J. F. "First Studies in Syriac", University of Birmingham,
Birmingham, 1980

[7] Premaratne, H.L., and Bigun, J. "A segmentation-free approach to
recognize printed Sinhala script using linear symmetry", Pattern
Recognition, 37:2081-2089, 2004.

1053

Authorized licensed use limited to: Halmstad Hogskola. Downloaded on March 11, 2009 at 09:30 from IEEE Xplore. Restrictions apply.

Fig. 1. The Serto Alphabet.

Fig. 2. Two characters that overlap.

Fig. 3. (Left) Word broken into 2 sub-words.

Fig. 4. (Right) Two words.

Fig. 5. Special modification of letters.

Fig. 6. Non-overlapping boxes.

Fig. 7. Misidentified as part of a larger character.

1054

Authorized licensed use limited to: Halmstad Hogskola. Downloaded on March 11, 2009 at 09:30 from IEEE Xplore. Restrictions apply.

1055

Authorized licensed use limited to: Halmstad Hogskola. Downloaded on March 11, 2009 at 09:30 from IEEE Xplore. Restrictions apply.

